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Summary

The European Chemicals Agency, ECHA, made available a total of 13,832 oral toxicity studies for 

8,568 substances up to December 2014. 75% of studies were from the retired OECD Test 

Guideline 401 (11% TG 420, 11% TG 423 and 1.5% TG 425). Concordance across guidelines, 

evaluated by comparing LD50 values ≥ 2,000 or < 2,000 mg/ kg bodyweight from chemicals tested 

multiple times between different guidelines, was at least 75% and for their own repetition more 

than 90%.

In 2009, Bulgheroni et al. created a simple model for predicting acute oral toxicity using no 

observed adverse effect levels (NOAEL) from 28-day repeated dose toxicity studies in rats. This 

was reproduced here for 1,625 substances. In 2014, Taylor et al. suggested no added value of the 

90-day repeated dose oral toxicity test given the availability of a low 28-day study with some 

constraints. We confirm that the 28-day NOAEL is predictive (albeit imperfectly) of 90-day 

NOAELs, however, the suggested constraints did not affect predictivity.

1,059 substances with acute oral toxicity data (268 positives, 791 negatives, all Klimisch score 1) 

were used for modeling: The Chemical Development Kit was used to generate 27 molecular 

descriptors and a similarity-informed multilayer perceptron showing 71% sensitivity and 72% 

specificity. Additionally, the k-nearest neighbors (KNN) algorithm indicated that similarity-based 

approaches alone may be poor predictors of acute oral toxicity, but can be used to inform the 

multilayer perceptron model, where this was the feature with the highest information value.
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1 Introduction

Acute oral toxicity data is a key component of classification and labeling as well as hazard 

assessment for industrial substances and is a requirement in diverse regulatory testing 

regimes. The first acute oral toxicity test was created by the British pharmacologist J. W. 

Trevan in 1927. It used to involve up to 150 animals until the OECD Test Guideline (TG) 

401 standardized it to 45 animals in 1981.

The usefulness of the OECD TG 401 test has often been challenged. Gerhard Zbinden in the 

1980s described the standard in vivo test as little more than “a ritual mass execution of 

animals”1. However, the classification derived from the test results impacts on worker 

protection and transport safety regulations. For this reason it is one of the most common 

assessments performed and was responsible for about one third of the animals used in 

toxicology in the 1990s2. The abolition of the original OECD TG 401 and its replacement 

by tiered testing strategies, which effectively reduced the number of animals further from 45 

to 8–12, is probably one of the most animal-saving reduction methods in toxicology. 

REACH has changed the testing demands and patterns as for the first time high-production 

volume substances with complex test requirements came to the foreground (Rovida and 

Hartung, 2009; Hartung and Rovida, 2009). Still, all REACH substances require acute 

toxicity data by 2018 (Hartung, 2010).

The tiered testing methods replacing OECD TG 401 introduced in 2002 were the Fixed 

Dose Procedure (OECD TG 420), Acute Toxic Class Method (OECD TG 423), and Up and 

Down Dosing (OECD TG 425). While OECD TG 423 primarily identifies classification 

limits, the reported results of tests performed according to this guideline within ECHA 

dossiers include LD50 assessments. Of course, each of these tests extrapolates from a fairly 

limited dosing regime to estimate LD50 – with likely different levels of accuracy and biases. 

This complicates any attempt to build a predictive model.

Importantly, the majority of industrial substances are of low oral toxicity. It was shown 

earlier (Bulgheroni et al., 2009) that the European New Chemicals Database (NCD) in 2008 

included 4,773 substances of which 4,219 included oral toxicity data: 70.2% were Category 

5 (LD50 2,000 – 5,000 mg/kg bodyweight (b.w.)) and 16.7% were “Not classified” LD50 > 

5,000 mg/kg b.w.). This means that the most important questions are whether a substance 

falls into these categories and whether potency testing needs to be done for highly toxic 

substances with LD50 below 2,000 mg/kg. However, the NCD contains predominantly low-

production volume specialty substances and therefore might not reflect the high-production 

volume and special concern substances (carcinogenic, mutagenic, reproductive toxin) of the 

early REACH deadlines analyzed here.

1http://wapo.st/1KpRRiH
2http://bit.ly/1nMMr7B
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Oral toxicity is also assessed in repeated-dose toxicity studies in rodents: the (subacute) 28-

day Oral Toxicity Study in Rodents (OECD TG 407) and the (subchronic) 90-Day Oral 

Toxicity Study in Rodents (OECD TG 408) are commonly employed as cornerstones for risk 

assessments. These assays include complex assessments of many organ toxicities by 

pathohistology, clinical chemistry and others. The studies yield information on general 

characteristics of the toxicity, the target organs of toxicity, the dose-response (curve) for 

each toxicity endpoint, responses to toxic metabolites formed in the organism, delayed 

responses, cumulative effects, the margin between toxic/non-toxic dose, information on 

reversibility/irreversibility of the effect, and NOAEL (No Observed Adverse Effect Level), 

NOEL (No Observed Effect Level) for toxicity. In the REACH legislation (Regulation (EC) 

No 1907/2006), TG 407 is required for substances with more than 10 tons and both TG 407 

and TG 408 must be done for substances with more than 100 tons of production or 

marketing volume per year. Here, only the derived NOEL will be analyzed.

ECHA’s public database of REACH registration dossiers offers a large toxicology dataset 

useful for modeling toxicological studies. Here, we examine two hypotheses concerning oral 

toxicity – that a 28-day oral toxicity test can predict the 90-day oral toxicity test, and that a 

28-day by iteratively training test can predict acute toxicity. Finally, we demonstrate that for 

the ECHA dataset there is a clear clustering of chemically similar, acutely toxic substances 

and evidence that both QSARs and read-across can accurately assess oral acute toxicity 

provided an appropriate applicability domain has been defined.

2 Material and methods

2.1 LD50 oral toxicity data

Oral toxicity data was extracted from studies in ECHA dossiers as described in Luechtefeld 

et al. (2016, this issue). ECHA studies for experimental oral toxicity reporting an LD50 value 

in mg/ kg body weight were aggregated into a dataset of 13,832 studies over 8,568 

substances. A substance LD50 was defined as the average substance LD50 reported in studies 

meeting stated criteria (Klimisch score/guideline number).

2.2 Cheminformatic methods

Chemical similarity and molecular descriptors were derived with the Chemistry 

Development Kit (CDK) version 1.5.11 (Stein-beck et al., 2003) for substances in ECHA 

disseminated studies. CDK provides methods for generating chemical structural fingerprints 

as well as molecular descriptors. 3,122 substances that could be mapped from REACH to 

SMILES were analyzed using CDK.

Similarity between substances was calculated via the Tanimo-to distance, a binary based 

similarity measure (Lourenço et al., 2004) as the number of shared substructures divided by 

the total number of substructures. We used supervised and instance-based learning methods 

(Hall et al., 2009; Aha et al., 1991) to predict oral toxicity from chemical descriptors and 

chemical similarity.
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2.3 Machine learning

K-nearest neighbors (KNN) was implemented for this study. We predict a chemical as an 

oral toxicant (LD50 < 2,000 mg/ kg) if the majority of its 5 closest neighbors are oral 

toxicants (LD50 < 2,000 mg/kg) where a chemical is considered a neighbor if its Tanimoto 

similarity is greater than or equal to 70%.

Multilayer perceptron and decision tree supervised learners were trained using the 29 

molecular descriptors available via CDK. The Weka machine learning toolkit 

implementation of multilayer perceptron was used with default parameters (Hall et al., 

2009). Weka version 3.6.12 was used for training and testing of instance-based and 

supervised learning methods.

KNN was fused with multilayer perceptron to create a combined supervised learner by using 

the output of the KNN model as a feature in the multilayer perceptron.

2.4 Feature importance

Two approaches were used to evaluate feature importance. For both approaches we split the 

dataset into 100 sub-datasets of equal size with balanced toxicant/non-toxicant frequency.

In the first approach we evaluate the information gain of each feature across the sub datasets. 

In the second approach we evaluate a classifier (decision tree classifier) by iteratively 

training on a training set comprised of 99 datasets and testing on the remaining one dataset. 

Features were then removed and impact on accuracy was ascertained. Features whose 

removal result in greater accuracy reduction show more promise of being part of an effective 

set of features.

The first approach we refer to as the Ranker and the second approach as the WrapperEval; 

these names are derived from their implementation in the machine learning toolkit (Hall et 

al., 2009).

3 Results

3.1 OECD guideline prevalence and LD50 toxicity results

Within the ECHA database, results and discussions data give information on effective doses, 

effect levels (NOAELS, LELs, etc.), observed mortality, observed clinical signs, physical 

chemical properties and more. Unfortunately, the results data in the ECHA disseminated 

database does not follow a standard data format. Many studies record results in natural 

language (such as “sensitizing” or “no observed dose for acute toxicity”). These limitations 

should be considered when evaluating the reliability of our ECHA dossier results. Despite 

the lack of a standardized format and the use of natural language, it is still relatively simple 

to automatically group together studies that share a single OECD TG or are related to a 

common endpoint.

As our values were extrapolated according to the main OECD TG methodologies for acute 

toxicity, we were able to examine both the use of the various testing guidelines and the 

resulting distributions of LD50 values. As can be seen in Figure 1, the overwhelming number 
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of studies were performed according to OECD TG 401 (OECD, 1987), while OECD TG 425 

(Up and Down Procedure) was the least common. Other studies have shown strong 

agreement in terms of hazard classification among OECD TG data3 (Lipnick et al., 1995). 

However, a look at the LD50 distributions points to an interesting difference between OECD 

test guidelines in the distribution of calculated LD50 values. Figure 2 shows a substantial 

skew in the distribution for OECD TG 423 and 425 towards lower doses, which is likely the 

result of the dosing regime and extrapolation method – an important difference between 

methodologies, which is prudent to keep in mind when predicting LD50.

Table 1 gives the number of substances with labels H300 through H305. Substances given a 

label are reported here as “positive” and otherwise as “conclusive but not sufficient evidence 

for classification”, “data lacking” and “inconclusive”. These hazards cover harm caused via 

oral intake of substances. 0.6% of substances were “Fatal if swallowed” (H300), 3.9% 

“Toxic if swallowed” (H301), 18.7% “Harmful if swallowed” (H302) and 0.4% “May be 

harmful if swallowed” (H303), which leaves 76.4% that were not orally toxic.

We were able to extend the previous studies of concordance across guidelines by evaluating 

the consistency of results for substances tested under more than one TG. In this analysis we 

consider guidelines to be in agreement when both either report LD50 ≥ 2,000 mg/kg b.w. or 

both report LD50 < 2,000. Table 2 shows percent agreement for guidelines averaged over 

substances with the number of substances with data for both TGs in parentheses. All TGs 

show > 90% self-consistency. With the exception of the TG 401 versus 423 comparison, all 

guidelines show at least 80% inter-guideline consistency; our results are thus within the 

same range as previously reported (Lipnick et al., 1995).

3.2 Testing mutual information

Previous attempts to evaluate mutual information between different toxicological tests have 

involved tedious and error-prone manual curation of both ECHA and other toxicological 

studies (Taylor et al., 2014; Janer et al., 2007; Dang et al., 2009). Manual curation limits 

both the possible size of analyzed datasets and the applicability of the results to larger, more 

diverse chemical sets due to the inherent subjectivity of manual human analysis as well as 

considerably greater required resources.

Fortunately, the REACH-extracted data allow for a preliminary evaluation of two well-

known oral toxicity redundancy claims on a dataset considerably larger than those initially 

used. In 2009, Bulgheroni et al. evaluated whether acute oral toxicity could be predicted 

(and thus made redundant) by repeat-dose 28 day toxicity data. Bulgheroni et al. used 

authorized access to the NCD (Bulgheroni et al., 2009). In 2014, Taylor et al. published an 

evaluation of the added value of the 90-day repeated dose oral toxicity test given the 

availability of a “sub-acute toxicity profile” (Taylor et al., 2014).

Bulgheroni’s analysis identified 1,791 substances with acute oral LD50 and 28-day oral 

NOAEL data from the NCD (Bulgheroni et al., 2009). The evaluation indicated that a 200 

mg/kg body weight (b.w.) threshold for the 28-day NOAEL was strongly predictive for 

3http://www.unece.org/fileadmin/DAM/trans/danger/publi/ghs/ghs_rev02/English/03e_part3.pdf
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negative acute oral toxicity (LD50 > 2,000 mg/kg b.w.) with a negative predictive value of 

97% and a positive predictive value of 27%. Consequently, the authors suggested a testing 

strategy whereby a > 2,000 mg/kg b.w. LD50 estimation could be made given a NOAEL 

value > 200 mg/kg b.w. (Bulgheroni et al. 2009). Collation of ECHA disseminated acute 

toxicity oral LD50 results (OECD TG 401, 423, 420 and 425) and 28-day NOAELs (OECD 

407) allows for the evaluation of this testing strategy on the extracted substances. Table 3 

gives the Bulgheroni threshold counts, i.e., NOAELs > 200 mg/kg and < 200 mg/kg, on 

1,625 REACH extracted substances with key study LD50 values (white) and on 5,270 

substances with any study LD50 data (including key studies, ReadAcross and non-key 

studies) (grey).

We find the proposed 200 mg/kg b.w. NOAEL threshold to have an 89.9% negative 

predictive value for key studies, meaning that a substance with > 200 mg/kg b.w. NOAEL 

will also have LD50 > 2,000. When the 200 mg/kg b.w. NOAEL threshold is considered for 

all studies, it has a negative predictive value of 94.5%. Key studies show a positive 

predictive value of 38.5%. All studies show a positive predictive value of 33.7%. These 

results are in close agreement with the statistics published by Bulgheroni et al. (2009), and 

indicate that the results are largely robust for different chemical types – lack of toxicity in a 

subchronic study is broadly indicative of lack of acute toxicity. If a 28-day NOAEL of 200 

mg/kg per day had been used to rule out acute toxicity, then 928 previous acute oral toxicity 

studies could have been avoided. It should be noted that a method will be required to set 

dose levels for regulatory studies such as OECD TG 407 if acute toxicity testing is replaced 

in line with these suggestions.

Taylor et al.’s (2014) research suggests a redundancy between 28-day and 90-day repeated 

dose toxicity tests, proposing that the latter can be predicted given the former. They propose 

that non-toxicity (NOAEL ≥ 1,000 mg/kg b.w.) in the 28-day test is a strong predictor for 

non-toxicity in the 90-day study. 90-day tests are required by REACH for substances 

produced or marketed in a volume of 100 tons per year or above (Annex IX of Regulation 

(EC) No 1907/2006) (Aulmann and Pechacek, 2014). The assumption that a 90-day test is 

more sensitive than a 28-day test can be evaluated by observing the distribution of NOAEL’s 

for both tests independently and on the same substances. Using ECHA dossier study 

materials and methods data, we can test NOAEL prevalence by grouping all repeated dose 

oral toxicity tests with 28 day duration, and grouping tests with 90 day duration. Figure 3 

shows that the 90-day test has a higher prevalence of low NOAEL’s than the 28-day test. 

Specifically, it appears that 90 day tests have a lower prevalence of NOAEL’s ≥ 1,000 

mg/kg-day.

Chemical sets derived from 90-day and 28-day distributions in Figure 3 differ, with more 

substances having extractable 90-day studies than 28-day studies (1,427 vs. 1,336) and not 

all substances with 28-day studies having 90-day studies. This figure serves only as an 

indirect comparison of NOAEL distributions for the two tests.

Taylor et al. stipulate several requirements for test redundancy (Taylor et al., 2014):

• Experimental data equivalent to OECD TG 407, on the substance itself, 

conducted 1981 or later, with reliability score 1 or 2 and conducted to the limit 
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dose (1,000 mg/kg b.w. per day) or higher, with a study result reported to be a 

NOAEL of 1,000 mg/kg b.w. per day or higher.

• The substance is not reported to be mutagenic or a skin sensitizer or acutely toxic 

by any route and there are adequate data to support this (i.e., any positive results 

from in vitro mutagenicity tests are followed up).

• There is no additional evidence based on physicochemical properties, structure 

or use to suggest that the substance could be biologically active.

In order to approximate these constraints, we required high reliability (Klimisch score of 1 

or 2) and that substances have no positive GHS hazards for H300-H399. While this forms an 

imperfect reproduction, we found that all constraint meeting substances identified by Taylor 

(16 substances) were also identified in our query. Our query also identified an additional 184 

substances meeting these constraints, making a total of 200 substances. Figure 4 visualizes 

Taylor constraint effects on the relationship between repeated dose 28-day and 90-day 

NOAELs for a set of 773 substances with data for both. Substances with both 28-day and 

90-day NOAEL data matching the Taylor constraints are shown in red, substances failing to 

meet these constraints are in black. Several matching substances show higher 90-day 

NOAELS than 28-day NOAELs. We manually checked two of these substances:

• Ethoxy propoxy propanol (ECNumber 405-820-6) has one OECD TG 408 study 

(Repeated Dose 90-day Oral Toxicity) with a NOAEL of 1,000 mg/kg b.w. per 

day. It has a 28-day study with NOAELs of 225 mg/kg b.w. per day for female 

rats and 50 mg/kg b.w. per day for male rats. Large discrepancies between 28- 

and 90-day NOAELs may present study flagging opportunities, as it is unlikely 

for a 90-day study to report no toxicity when a 28-day study reports a low 

NOAEL. Such flags could identify potential faulty 28- or 90- day studies or other 

potential problems with a registration.

• Tris(2,4-ditert-butylphenyl) phosphite (EC Number 250-709-6) shows two 90-

day studies reporting 500 mg/kg NOAEL for rats and > 318 mg/kg for dogs and 

one chronic study on rats with a NOAEL > 2,000 ppm (58-147 mg/kg b.w.). The 

single related 28-day study reports a 250 mg/kg b.w. per day NOAEL.

Taylor et al.’s primary hypothesis is that 28-day NOAELs greater than or equal to 1,000 

mg/kg b.w. should predict high (≥ 1,000 mg/kg b.w. per day) 90-day NOAELs. This data 

point represents the upper right hand corner of Figure 4. We found that out of 121 

substances meeting the Taylor constraints with 28-day NOAEL ≥ 1,000 mg/kg b.w., 70.2% 

also had 90-day NOAEL’s ≥1,000 mg/kg b.w., while the remaining 29.8% had lower 90-day 

NOAELs, which can be seen on the right side of Figure 4. In the total dataset (including 

substances not meeting Taylor constraints), 305 substances had 28-day studies with NOAEL 

≥ 1,000 mg/kg b.w., with 68.9% having a matching high 90-day NOAEL and 31.1% having 

a lower NOAEL. This data shows that the 28-day NOAEL is predictive (albeit imperfectly) 

of 90-day NOAELs. However, the study constraints suggested by Taylor et al. do not appear 

to affect 28 day predictivity of the 90 day test, although we cannot rule out the possibility 

that this may be a consequence of a flawed constraint reproduction due to our reliance on 

machine readable values rather than manual curation of hundreds of studies.
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The interrelationship of 28-day and 90-day NOAEL is also used very pragmatically in line 

with ECHA’s test guidance to estimate from a 28-day study a 90-day Derived No-Effect 

Level (DNEL) using an assessment factor of 3 (ECETOC, 2010). We used the dataset to test 

this assumption. 133 substances had both 9-day and 28-day key studies. Only, 11 chemicals 

had NOAEL below one third of the 28-day NOAEL, while 122 (91.7%) were within this 

limit. Given the reproducibility issues of repeated-dose studies (Wang and Gray, 2015), this 

is a strong confirmation of this pragmatic approach.

3.3 Acute oral toxicity modeling

3.3.1 Dataset—A dataset of 1,059 substances was aggregated from the ECHA extraction 

for modeling acute oral toxicity. This modeling dataset consists of 268 positive (substances 

having an average reported LD50 in Klimisch score 1 studies of < 2,000 mg/ kg b.w. per day) 

and 791 negative substances. The Chemical Development Kit was used to generate 27 

molecular descriptor values for each chemical in the dataset (Tab. 4). These descriptors were 

used in conjunction with substructure/Tanimoto-based k-nearest-neighbors (KNN) to make a 

similarity-informed multilayer perceptron. The evaluation metrics for KNN, decision tree 

and multilayer perceptron model are seen in Table 5.

A chemical similarity map, Figure 5A, was created to explore the relationships between 

substances. The approach to the creation of this similarity map is given in more detail in 

(Luechtefeld et al., 2016, this issue). In short, edges are drawn between substances with high 

(> 70%) similarity as determined by Tanimoto distance. Similarity map layout was 

calculated via physical simulation by the force atlas algorithm (Jacomy et al., 2014; Bastian 

et al., 2009). The Blondel et al. (2008) modularity algorithm was applied to define the 

modules of the chemical similarity map. Figure 5A shows chemical modules which create an 

approach to the evaluation of model domains of applicability. Modules can be considered as 

having defining substructures, which are shared by the majority of module constituents. 

Module analysis for the ECHA-extracted substances was analyzed in greater depth in 

Luechtefeld et al.(2016, this issue). The LD50 of chemicals in this similarity map are 

visualized in Figure 5B for the 613 chemicals, which could be mapped to PubChem.

3.3.2 K-nearest neighbors modeling—Evaluation of KNN on the global dataset results 

in a balanced accuracy of 71.4% with higher specificity than sensitivity (89.1% versus 

53.7%) – a skew that is largely the consequence of the high prevalence of non-toxicants. The 

skew can also be attributed to using 2,000 mg/kg b.w. as a somewhat arbitrary threshold. 

Many chemicals come close to the 2,000 mg/kg b.w. threshold, which may make them more 

difficult classification targets. While traditionally seen as prevalence-independent, sensitivity 

and specificity of a machine learning algorithm such as KNN can be influenced by the 

balance of positive and negative substances than sensitivity in the training set. In this case, 

the large number of negative substances imbalances KNN towards a higher specificity.

The potential for KNN performance is suggested by visualizing clustering of toxicants in the 

chemical similarity map (Fig. 5C). The force atlas algorithm shows some strong clustering 

of oral toxicants, particularly in local regions of modules 3, 0 and 1. The impact of 

introducing the 2,000 mg/kg b.w. per day threshold can be seen by comparing Figure 5B and 
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Figure 5C. Figure 5B is colored by LD50 value, whereas Figure 5C shows the binary 

classification. A particularly good example of the problems with selecting a threshold is seen 

in module 2 (a relatively non-toxic module), where two substances are defined as toxicants 

but can be seen to have high LD50 values (> 1,900 mg/kg b.w. per day) in Figure 5B.

The predictions made by KNN are visualized in Figure 5D. We can see that many of the 

toxicants shown in Figure 5C are missed; non-toxic neighbors of these toxicants are 

sometimes mislabeled as well. The naïve nature and relatively strong correspondence of 

toxicant locations provides motivation for the stronger instance-based learning models 

proposed by Jaworska and Nikolova-Jeliazkova (2007).

Table 6 gives the modular sensitivity and specificity for KNN. Several modules have 

relatively few oral toxicants (module 3 has 0 oral toxicants, module 2 has 2 oral toxicants) 

and thus care must be taken when evaluating on a per module basis. KNN is shown to 

perform more strongly for cohesive modules with their toxicants well clustered (module 5 

vs. module 0). The overall sensitivity and specificity across all substances with a modularity 

class (615 substances) is 39.3% and 93.4%, representing a drop from the global sensitivity 

and specificity (53.7% and 89.1%).

3.3.3 Supervised learning—Instance-based learning approaches derive strong 

“localized” results, but the lessons learned from substructures correlated with toxicity in one 

module cannot be extended to other modules by k-nearest neighbors. This fundamentally 

limits the KNN approach. Moreover, such an approach limits the understanding of toxic 

mechanisms. As some molecular and physical properties of substances are likely to be 

generally associated with toxicity status, we attempted to use a supervised learning model to 

derive rules from chemical features to predict toxicity. Such models essentially “learn” from 

large numbers of examples spanning the chemical universe. However, they fail to exploit 

relationships between substances on a local level. If a chemical is almost identical to an oral 

toxicant as determined via chemical structures, a supervised learning method only using 

molecular descriptors will fail to take advantage of this knowledge.

Instance-based learning methods can be used to inform supervised learning methods of 

chemical similarity data by constructing new features for supervised learning from the 

results of instance-based learning. Therefore, we used a toxic/non-toxic prediction from the 

KNN-model as a feature in a supervised learning model. The KNN feature ranks highest in 

both the Ranker and WrapperEval approaches to feature evaluation for acute oral toxicity. So 

while KNN alone does not adequately separate toxic from non-toxic substances, it contains 

more information than any chemical descriptor alone.

3.3.4 Decision tree—To illustrate the combination of a KNN feature with chemical 

descriptors, we built a simple decision tree using the KNN feature and the next most 

informative feature, as determined by the Ranker approach to feature importance. In an 

attempt to balance the dataset, we weighted every toxicant in the dataset 2.95 times more 

heavily than non-toxicants; this makes the total weight of toxicants equal to non-toxicants 

with a total weight of 791 negative and 791 positive (268 before reweighting). This 

reweighting was done using the Weka toolkit (Hall et al., 2009). The resulting decision tree 
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predicts that a chemical is positive when KNN is positive and negative when KNN is 

negative AND BPolDescriptor is > 10.95. Reweighting has the primary effect of improving 

the balance between sensitivity and specificity in the supervised learner trained on the 

reweighted data.

This tree has a resulting balanced accuracy of 70.4%, improved sensitivity (over KNN) of 

68.7% and specificity of 71% (see Tab. 5). Interestingly, the second predictor – 

“BPolDescriptor” measures the sum of atomic polarizabilities of all bonded atoms in the 

molecule (Steinbeck et al., 2003); this descriptor may have simply separated out smaller 

substances with less labile bonds.

This decision tree illustrates how instance-based learning can be used in concert with 

supervised learning methods via feature generation. Although decision trees are 

fundamentally limited in their expressive power (they can only model endpoints via a 

conjunction of feature values), this model serves to demonstrate the possibility to improve 

sensitivity by fusing supervised and instance-based learning.

3.3.5 Multilayer perceptron—Multilayer perceptron (feedforward artificial neural 

networks) algorithms can build more expressive feature relationships for toxicity prediction 

than decision trees. However, their resulting models are more difficult to visualize. Rather 

than only capturing conjunctions of feature values, multilayer perceptrons can model a wide 

variety of feature relationships. This “universal approximator” property is important for 

modeling potentially complex relationships of the sort chemical descriptors may have for 

predicting toxicological endpoints.

One consequence of the increased expression of multilayer perceptrons is the risk of 

overfitting. When training and testing multilayer perceptron on the entire dataset, the 

resulting sensitivity, specificity and balanced accuracy is 93.7%, 99.6% and 96.7%, 

respectively (Tab. 5). To account for overfitting, we performed stratified 10-fold cross-

validation (after rebalancing instances by weighting toxicants 2.95x higher than non-

toxicants). The stratified results show 70.7% sensitivity and 71.6% specificity for the 

multilayer perceptron (Tab. 5).

When evaluating feature importance we see that both the Ranker and WrapperEval 

approaches identify the KNN model feature as the most informative variable (Tab. 4). We 

use the KNN model as a feature for model training.

To visualize perceptron performance on each chemical in the chemical similarity map, we 

trained perceptrons on all other substances and predicted the chemical in question. This 

approach is referred to as leave-one-out cross-validation. The resulting perceptron prediction 

similarity graph (Fig. 5E) shows highly clustered toxicant predictions. This is perhaps a 

consequence of chemical descriptor dependency on substructures. In evaluating the leave-

one-out perceptron on modules, we saw consistently higher sensitivity values relative to the 

KNN evaluation (Tab. 6 and 7) with an overall increased balanced accuracy of 69.4% 

resulting from significantly increased sensitivity and only slightly decreased specificity.
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3.3.6 Feature importance—Two approaches were taken to evaluate feature importance. 

For both approaches we split the dataset into 100 sub-datasets of equal size with balanced 

toxicant/non-toxicant prevalence.

In the first approach (Tab. 4), we evaluate the information gain of each feature across the 

sub-datasets. This approach is referred to as the Ranker approach (from its implementation 

in Weka.attributeSelection.Ranker; Hall et al., 2009).

In the second approach, we evaluate a classifier(decision tree classifier) by iteratively 

training on a training set comprised of 99 of the 100 subsets and testing on the remaining 

single dataset. Features were then removed and the impact on accuracy was ascertained. 

Features whose removal results in greater accuracy reduction show more promise to 

contribute to an effective set of features. This approach is referred to as the WrapperEval 

approach (from its implementation in Weka called WrapperSubsetEval; Hall et al. 2009). 

The instance-based learning KNN feature ranks highest in both ranker evaluation and 

wrapper evaluation indicating its independent and additive strength in predicting oral 

toxicity outcome.

The top three features as evaluated via independent oral toxicity information gain are KNN, 

Bpol, and AromaticBondsCount. Other than KNN, the wrapper evaluation approach to 

feature importance is not in strong agreement with the ranker approach. This may indicate 

redundancy between highly ranked ranker features such as KNN and Bpol. The wrapper 

evaluation approach is less sensitive to redundant, highly informative features.

KNN is selected in 100% of the 100 iterations of wrapper evaluation feature selection; 

topological polar surface area (TPSA) is selected in 84%. This indicates that TPSA and 

KNN represent some non-redundant information.

4 Discussion

Understanding limits of acute oral toxicity tests, LD50 biases of the various guidelines (due 

to dosing protocols), redundancy with other tests, and the potential of predictive algorithms 

to accurately classify a chemical can help improve and modernize acute toxicity guidelines. 

These data and algorithms can help experts to identify mechanisms behind toxicity via 

visualizations of decision trees, clustering of toxic/non-toxic chemicals with similar 

substructures and predictions of hazard for as yet untested chemicals.

In light of the ban on animal testing for cosmetic ingredients in Europe (Hartung, 2008) as 

well as the need to establish testing data for all tens of thousands of substances under 

REACH registration (Hartung, 2010), it is important to understand the practice of oral 

toxicity testing. The fact that consistency between guideline studies is in the 80% range 

shows against what an alternative approach should be measured.

While we found reasonable reproducibility amongst the various guidelines, both the 

moderately skewed probability of OECD TG 425 and the overall distribution of acute 

toxicity values cast some doubt on the usefulness of using a 2,000 mg/kg b.w. cut-off as a 

goal for modeling purposes. We found that a lack of toxicity in a 28-day study is a relatively 
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good predictor that a chemical will be non-toxic acutely, but weaker support for the 

hypothesis that a 90-day dose can be extrapolated from a 28-day dose, and no support that 

further winnowing the data (i.e., by eliminating substances with hazard warnings) adds 

information for the purpose of extrapolating from short-term to long-term effects.

Going forward, a careful understanding of the value of each dosing regime – acute, subacute, 

subchronic and chronic – could likely guide a smarter testing regime tailored to each 

chemical class based on the likelihood of that test uncovering not just a NOAEL or a 

LOAEL but the most useful dose to inform hazard assessment. For example, integrated 

testing strategies can be built that use predictive models as an input into guideline protocols. 

There are many possible ways to integrate models into testing guidelines. One potential 

result would be to reduce animal use by starting dose protocols at higher levels for chemicals 

with low probabilities of toxicity.

Finally, our data indicate that while it is not straightforward to predict oral acute toxicity, it 

is not an intrinsically unsolvable problem. Overall, the KNN approach had relatively poor 

predictive power. However, our use of the simplistic PubChem 2D fingerprint is one source 

for this poor predictive power. Another explanation of the poor predictive power could be 

activity cliffs that limit the ability of QSAR models to predict acute toxicity over broad 

chemical classes. Our data indicates that it is likely a combination of those two explanations. 

Finally, the arbitrary choice of 2,000 mg/kg b.w. as a threshold for oral toxicant status may 

reduce modeling ability. It would appear that many of the substances that are likely non-

toxic are within a range of LD50 values that are close enough to 2,000 mg/kg b.w. and thus 

the discretization of the data set into toxic/non-toxic at that dose likely complicates a model 

unnecessarily. More advanced instance-based learning models can avoid this problem by 

predicting actual NOAELs rather than binary thresholds. At the same time, it is clear that 

while acute oral toxicity largely does cluster together, there are certainly exceptions – in 

other words, significantly toxic compounds with structurally similar, non-toxic neighbors.

Although our models ultimately were not accurate enough to be useful from a hazard 

prediction perspective, our models were fairly naïve and worked purely off chemical 

descriptors. It is quite likely that additional descriptors – for example, corrosivity or 

sensitization – as well as a more detailed analysis of either ADMET or in vitro assays of 

biological activity – could substantially improve the models. The oral acute toxicity test has 

been subject to decades of refinement – reducing animals and reducing suffering. Our data 

suggest that the next “refinement” could come from the insights gleaned from a “Big Data” 

approach.
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Fig. 1. Number of substances with studies for each of the acute oral toxicity OECD guidelines
The Limit Test (OECD TG 401, now deleted) was performed on 8,482 substances, the Fixed 

Dose Procedure (OECD TG 420) on 1,140 substances, the Chemical Classification Test 

(OECD TG 423) on 1,081 substances, and Up and Down Dosing (OECD TG 425) on 147 

substances.
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Fig. 2. Histograms for use of OECD TG 401, 420, 423, and 425 in registrations of acute oral 
toxicant OECD TG 401, 423, 420, and 425
Y-axes are not equivalent. The x-axis represents LD50 for each OECD guideline. Density 

plot with overlapping densities between 0 and 5,000 mg/kg dosage. Notice the LD50 

clustering around 2,000 and 5,000 mg/kg dosage; this is due to dosing schemes.
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Fig 3. Prevalence frequency histogram of NOAELs for 28 and 90 day subchronic oral toxicity 
tests
This figure was made by aggregating results of 2,400 90-day tests and 1,933 28-day tests.
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Fig. 4. 28- and 90-day acute oral toxicity matched NOAELs
Circles represent the averaged 28 day (x-axis) and 90 day (y-axis) NOAEL for a given 

chemical taken from ECHA 28-day and 90-day oral toxicity studies. Red circles represent 

200 substances matching the constraints given by Taylor et al. (2014).
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Fig. 5. Chemical similarity maps for substances with acute oral toxicity LD50 data that could be 
mapped from REACH to PubChem
The map contains 613 substances and is built from 3,122 substances mapped from REACH 

to PubChem and for which similarity and structure data could be determined from the 

chemistry development kit (Bolton et al., 2008; Steinbeck et al., 2003). Edges are shown 

between substances with similarity ≥ 0.7 as determined by their Tanimoto distance 

(Lourenço et al., 2004). The force layout algorithm is used to distribute substances 

(Fruchterman and Reingold, 1991).

A. Similarity map modules: Nine modules are created by maximization of the Q-metric, a 

measure of module coherence (Blondel et al., 2008). Chemical nodes are colored by their 

module identification.

B. Chemical similarity map colored by experimental LD50: Dark pink = low LD50, white = 

1,000 mg/kg b.w./day, dark green = 2,000 mg/kg b.w./day. Results based on average LD50 

values. Clusters of low LD50 values can be seen in module 5 and 0 with some otherwise 

sporadic distribution.

C. Chemical similarity map colored by oral toxicant status: Pink substances denote LD50 < 

2,000 mg/kg b.w. per day. Green substances denote LD50 ≥ 2,000 mg/kg b.w. per day (not 

classified).
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D. KNN classifications for LD50: Pink = predicted LD50 < 2,000 mg/kg b.w. per day. Green 

= predicted LD50 ≥ 2,000 mg/kg b.w. per day.

Substances are predicted as toxicant if the majority of the closest 5 neighbors are toxicants. 

A chemical is considered a neighbor if it has Tanimoto similarity > 70% (Lourenço et al., 

2004).

E. Multilayer perceptron classifications for LD50: Pink = predicted LD50 < 2,000 mg/kg b.w. 

per day. Green = predicted LD50 ≥ 2,000 mg/kg b.w. per day. Classifier built on 1,059 

substances referenced by at least one acute oral study with Klimisch score = 1. 

Classifications made by the multilayer perceptron appear to be well clustered; this indicates 

that chemical descriptors are influenced by substructure presence.
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Tab. 2
Percent agreement of OECD test guidelines for acute oral toxicity tests averaged over 
substances

Number of substances with both tests in parentheses. Calculated by finding substances having studies with 

both guidelines where guidelines agree (defined as both having toxicity ≥ 2,000 or < 2,000 mg/kg b.w.) and 

dividing by total number of substances tested with both guidelines.

OECD 401 OECD 420 OECD 423 OECD 425

OECD 401 93% (8,541) 90% (1,966) 74% (1,303) 83% (127)

OECD 420 92% (1,521) 81% (400) 92% (25)

OECD 423 90% (656) 84% (44)

OECD 425 94% (76)
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Tab. 3
Evaluation of Bulgheroni et al. testing strategy on extracted ECHA data

White cells only count experimental key in vivo oral toxicity studies. Grey cells count all oral toxicity studies 

(including read-across, and non-key studies).

NOAEL (mg/kg bw) from 28d study LD50 (mg/kg bw) Total

< 2,000 ≥ 2,000

≤ 200 237 411 648

> 200 49 928 977

Total 286 1,339 1,625

≤ 200 660 1,301 1,961

> 200 183 3,126 3,309

Total 843 4,427 5,270

ALTEX. Author manuscript; available in PMC 2017 June 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luechtefeld et al. Page 24

Tab. 4
Cross-validated feature importance via information gain, ranker evaluation and wrapper 
evaluation

Summary descriptions of molecular descriptors used in perceptron training (as implemented by CDK).

Name Description Ranker Evaluation Ranker stDev Wrapper Evaluation

KNN (K=5,T=0.7) K nearest neighbors with k=5 and neighbor 
threshold = 0.7

0.07 0.004 100

TPSA Calculation of topological polar surface area 
based on fragment contributions

0.023 0.002 84

AcidicGroupCount Returns the number of acidic groups 0 0 19

Apol Sum of the atomic polarizabilities (including 
implicit hydrogens). Polarizabilities are taken 
from http://www.sunysccc.edu/academic/mst/
ptable/p-table2.htm

0.05 0.003 15

HBondAcceptorCount This descriptor calculates the number of 
hydrogen bond acceptors using a slightly 
simplified version of the PHACIR atom types

0.042 0.003 15

RuleOfFive The number failures of Lipinski’s Rule of 5.
See http://en.wikipedia.org/wiki/Lipinski
%27s_Rule_of_Five

0.042 0.003 6

EccentricConnectivity A topological descriptor combining distance and 
adjacency information

0.044 0.003 5

MannholdLogP Prediction of logP based on the number of 
carbon and hetero atoms

0.041 0.003 4

AromaticAtomsCount Number of aromatic atoms 0.008 0.005 4

Bpol Sum of the absolute value of the difference 
between atomic polarizabilities of all bonded 
atoms in the molecule (including implicit 
hydrogens) with polarizabilities taken from 
http://www.sunysccc.edu/academic/mst/ptable/p-
table2.htm

0.067 0.008 3

ZagrebIndex The sum of the squares of atom degree over all 
heavy atoms i

0.044 0.003 3

FractionalPSA Polar surface area expressed as a ratio to 
molecular size

0.004 0.009 3

LargestPiSystem Number of atoms in the largest pi system 0.052 0.003 2

XLogP Prediction of logP based on the atom-type 
method called XLogP

0.045 0.004 2

LargestChain The number of atoms in the largest chain 0.047 0.006 1

HybridizationRatio Reports the fraction of sp3 carbons to sp2 
carbons

0.041 0.004 1

AromaticBondsCount Number of aromatic atoms 0.067 0.005 0

RotatableBondsCount The number of rotatable bonds is given by the 
SMARTS specified by Daylight on SMARTS 
tutorial

0.061 0.007 0

AtomCount Number of atoms 0.054 0.007 0

FragmentComplexity C=abs(B^2-A^2+A)+H/100 where 
C=complexity; A=number of non-hydrogen 
atoms; B=number of bonds and H=number of 
heteroatoms

0.054 0.004 0

Weight Molecular weight 0.052 0.003 0
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Name Description Ranker Evaluation Ranker stDev Wrapper Evaluation

BondCount Number of bonds of a given bond order (single, 
double, triple)

0.046 0.003 0

VadjMaDescriptor Vertex adjacency information (magnitude): 1 + 
log2 m where m is the number of heavy-heavy 
bonds. If m is zero, then zero is returned 
(Definition from MOE tutorial on-line)

0.046 0.003 0

LongestAliphaticChain Number of atoms in the longest aliphatic chain 0.045 0.008 0

PetitjeanNumber Molecular graph descriptor measuring graph 
eccentricity

0.039 0.003 0

FMF Ratio of heavy atoms in the Murcko framework 
to the total number of heavy atoms in the 
molecule

0.025 0.002 0

HBondDonorCount Number of hydrogen bond donors using a 
slightly simplified version of the PHACIR atom 
types

0.02 0.004 0

BasicGroupCount Returns the number of basic groups 0 0 0
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Tab. 5
Sensitivity, specificity and balanced accuracy (BAC) of classifiers trained and tested on all 
substances existing in a module (see Fig. 5)

Stratified 10-fold cross-validation was performed on the multilayer perceptron and indicates some overfitting 

of the decision tree.

Classifier Train/Test Sensitivity Specificity BAC

KNN (K=5,T=0.7) 1,059 substances, 268 positive 791 negative 53.7% 89.1% 71.4%

Decision tree* 1,059 substances, 268 positive 791 negative 68.7% 71.0% 69.9%

Multilayer perceptron* 1,059 substances, 268 positive 791 negative 93.7% 99.6% 96.7%

Multilayer perceptron* stratified 10-fold cross validation 70.7% 71.6% 71.2%

*
indicates that the classifier balanced positive and negative substances prior to training by weighting positive substances 2.95x heavier than 

negative examples, thus creating a balanced weight between negative and positive examples.

ALTEX. Author manuscript; available in PMC 2017 June 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luechtefeld et al. Page 27

Ta
b

. 6
M

od
ul

ar
 s

en
si

ti
vi

ty
 a

nd
 s

pe
ci

fi
ci

ty
 o

f 
K

N
N

T
he

se
 m

ea
su

re
m

en
ts

 g
iv

e 
an

 id
ea

 o
f 

th
e 

do
m

ai
ns

 o
f 

ap
pl

ic
ab

ili
ty

 f
or

 K
N

N
 a

nd
 c

an
 b

e 
co

m
pa

re
d 

to
 th

e 
sa

m
e 

do
m

ai
ns

 in
 T

ab
le

 8
. K

N
N

 w
as

 n
ot

 tr
ai

ne
d 

or
 

te
st

ed
 in

 c
ro

ss
-v

al
id

at
io

n 
bu

t i
ns

te
ad

 u
si

ng
 th

e 
en

tir
e 

da
ta

se
t f

or
 tr

ai
ni

ng
 a

nd
 te

st
in

g.
 M

od
ul

e 
3 

ha
s 

no
 p

os
iti

ve
 s

ub
st

an
ce

s 
ou

t o
f 

its
 4

5 
m

em
be

rs
 m

ak
in

g 

se
ns

iti
vi

ty
 n

ot
 a

 n
um

be
r 

(N
A

N
).

 B
A

C
 =

 b
al

an
ce

d 
ac

cu
ra

cy
. F

N
 =

 f
al

se
 n

eg
at

iv
es

, T
P 

=
 tr

ue
 p

os
iti

ve
s,

 T
N

 =
 tr

ue
 n

eg
at

iv
es

, F
P 

=
 f

al
se

 p
os

iti
ve

s.

M
od

ul
e

Se
ns

it
iv

it
y

Sp
ec

if
ic

it
y

B
A

C
F

N
T

P
T

N
F

P
To

ta
l

0
38

.2
4%

94
.8

3%
66

.5
3%

21
13

11
0

6
15

0

1
50

.0
0%

89
.6

6%
69

.8
3%

5
5

26
3

39

2
0.

00
%

85
.7

1%
42

.8
6%

2
0

6
1

9

3
N

A
N

10
0.

00
%

10
0.

00
%

0
0

45
0

45

4
0.

00
%

97
.5

0%
48

.7
5%

8
0

39
1

48

5
72

.4
1%

55
.1

7%
63

.7
9%

8
21

16
13

58

6
20

.0
0%

94
.5

0%
57

.2
5%

8
2

10
3

6
11

9

7
23

.0
8%

93
.7

5%
58

.4
1%

10
3

45
3

61

8
0.

00
%

10
0.

00
%

50
.0

0%
6

0
80

0
86

A
L

L
39

.2
9%

93
.4

4%
66

.3
6%

68
44

47
0

33
61

5

ALTEX. Author manuscript; available in PMC 2017 June 07.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Luechtefeld et al. Page 28

Ta
b

. 7
M

od
ul

es
 s

en
si

ti
vi

ty
 a

nd
 s

pe
ci

fi
ci

ty
 o

f 
m

ul
ti

la
ye

r 
pe

rc
ep

tr
on

 t
ra

in
ed

 in
 le

av
e-

on
e-

ou
t 

cr
os

s-
va

lid
at

io
n

R
eg

io
ns

 w
he

re
 m

ol
ec

ul
ar

 d
es

cr
ip

to
rs

 f
ai

l t
o 

pr
ed

ic
t o

ra
l t

ox
ic

ity
 a

cc
ur

at
el

y 
m

ay
 b

e 
a 

co
ns

eq
ue

nc
e 

of
 th

e 
ar

bi
tr

ar
y 

th
re

sh
ol

d 
pi

ck
ed

, o
r 

m
ay

 in
di

ca
te

 m
or

e 

su
bt

le
 c

he
m

ic
al

 e
ff

ec
ts

 n
ot

 d
es

cr
ib

ed
 b

y 
de

sc
ri

pt
or

s.
 F

N
 =

 f
al

se
 n

eg
at

iv
es

, T
P 

=
 tr

ue
 p

os
iti

ve
s,

 T
N

 =
 tr

ue
 n

eg
at

iv
es

, F
P 

=
 f

al
se

 p
os

iti
ve

s.

M
od

ul
e

Se
ns

it
iv

it
y

Sp
ec

if
ic

it
y

B
A

C
F

N
T

P
T

N
F

P
To

ta
l

0
70

.5
9%

69
.8

3%
70

.2
1%

10
24

81
35

15
0

1
60

.0
0%

82
.7

6%
71

.3
8%

4
6

24
5

39

2
50

.0
0%

85
.7

1%
67

.8
6%

1
1

6
1

9

3
N

A
N

10
0.

00
%

10
0.

00
%

0
0

45
0

45

4
37

.5
0%

67
.5

0%
52

.5
0%

5
3

27
13

48

5
79

.3
1%

41
.3

8%
60

.3
4%

6
23

12
17

58

6
20

.0
0%

96
.3

3%
58

.1
7%

8
2

10
5

4
11

9

7
61

.5
4%

45
.8

3%
53

.6
9%

5
8

22
26

61

8
0.

00
%

93
.7

5%
46

.8
8%

6
0

75
5

86

A
L

L
59

.8
2%

78
.9

3%
69

.3
7%

45
67

39
7

10
6

61
5

ALTEX. Author manuscript; available in PMC 2017 June 07.


	Summary
	1 Introduction
	2 Material and methods
	2.1 LD50 oral toxicity data
	2.2 Cheminformatic methods
	2.3 Machine learning
	2.4 Feature importance

	3 Results
	3.1 OECD guideline prevalence and LD50 toxicity results
	3.2 Testing mutual information
	3.3 Acute oral toxicity modeling
	3.3.1 Dataset
	3.3.2 K-nearest neighbors modeling
	3.3.3 Supervised learning
	3.3.4 Decision tree
	3.3.5 Multilayer perceptron
	3.3.6 Feature importance


	4 Discussion
	References
	Fig. 1
	Fig. 2
	Fig 3
	Fig. 4
	Fig. 5
	Tab. 1
	Tab. 2
	Tab. 3
	Tab. 4
	Tab. 5
	Tab. 6
	Tab. 7

