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Abstract

Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse

range of applications in cancer biology, yielding great insight into mechanisms leading to

therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of

information, a common bottleneck is the lack of throughput, with many current processing

methods being limited to the analysis of small volumes of single cell suspensions with cell

densities on the order of 107 per mL. In this work, we present a high-throughput full-length

mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody

conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing. We evaluate

the efficiency and quality of this protocol with a simulated circulating tumor cell system,

whereby non-small-cell lung cancer cell lines (NCI-H1650 and NCI-H1975) are spiked into

whole blood, before being enriched for single-cell mRNA-seq by EpCAM-functionalized

magnetic nanoparticles and the magnetic sifter. We obtain high efficiency (> 90%) capture

and release of these simulated rare cells via the magnetic sifter, with reproducible transcrip-

tome data. In addition, while mRNA-seq data is typically only used for gene expression anal-

ysis of transcriptomic data, we demonstrate the use of full-length mRNA-seq chemistries

like Smart-seq2 to facilitate variant analysis of expressed genes. This enables the use of

mRNA-seq data for differentiating cells in a heterogeneous population by both their pheno-

typic and variant profile. In a simulated heterogeneous mixture of circulating tumor cells in

whole blood, we utilize this high-throughput protocol to differentiate these heterogeneous

cells by both their phenotype (lung cancer versus white blood cells), and mutational profile

(H1650 versus H1975 cells), in a single sequencing run. This high-throughput method can
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help facilitate single-cell analysis of rare cell populations, such as circulating tumor or endo-

thelial cells, with demonstrably high-quality transcriptomic data.

Introduction

In recent years, much work on technologies and chemistries for enrichment of biological cell

subpopulations, and subsequent single-cell level analysis, has emerged [1–4]. Among other

achievements, this has led to the discovery of rare subpopulations such as tumor-initiating

cells in solid and hematopoietic tumors [5, 6]. Work by Yu et al. and Miyamoto et al. are strik-

ing examples of how researchers utilized single-cell measurements to characterize heterogene-

ity in response to cancer treatment, and illustrate how single-cell RNA-seq can deliver insights

into pathways in therapy-related resistance in cancer [4, 7, 8].

While the wealth of information is a big driver for single-cell characterization, the subpopu-

lation of interest in many situations is an extremely scarce component of the entire bulk popu-

lation, rendering rapid isolation and preparation of these rare cells for single-cell analysis as

much of a challenge as the actual single-cell sequencing. The human circulatory system, in

particular, consists of many interesting cell subpopulations, such as hematopoietic stem cells,

relevant in recovery from marrow ablative therapy [9], and activated immune cells in cancer

immunotherapy [10]. Similarly, stem cell populations in solid tumors can be as scarce as

0.01% [11], while circulating tumor cells (CTC) are present in the whole blood of diseased

patients at cell concentrations of 1–10 parts per billion [12–15].

In many single-cell studies, fluorescence-activated cell sorting (FACS) remains the labora-

tory technique of choice for enrichment of the rare subpopulation, as it can achieve single-cell

separation on multiple cell markers and is a relatively mature technology [16, 17]. Addition-

ally, immuno-fluorescence reagents for FACS are widely available commercially. Nonetheless,

the technology faces a fundamental limitation due to its serial processing. Ultimately, every

cell has to be interrogated sequentially as it passes the optical apparatus, and every cell must be

deflected separately into the appropriate receptacle (e.g. a 96-well microplate). An event rate of

104 /s is cited as the practical upper limit for FACS due to the high pressures required for faster

flow-rates being detrimental to cell viability [18]. Barring massive parallelism, this results in

sort times on the order of hours for a population of 107 cells, and this linear scaling makes sort-

ing samples such as whole blood, with> 109 cells / mL, impractical without prior processing.

The need for rapid, high through-put cell isolation techniques is further emphasized by the

relatively fast decay rates of human mRNA, with their median half-life of 10 hours [19]. Essen-

tially, extended processing times can result in mRNA profiles being measured that are different

from the actual time of sampling, further confounding the testing of biological hypotheses

[20].

Hence, many researchers have innovated various devices for rapid cell enrichment, both as

a pre-processing step for integration with single-cell platforms such as Fluidigm’s C1 and Bio-

mark machines, or for direct single-cell characterization on-chip [21–25]. Nonetheless, a

majority of these devices leverage on microfluidic technology, which can present significant

practical difficulties when large sample volumes are required. On the contrary, the magnetic

sifter, which utilizes standard MEMS processing for easy fabrication, yet is 3-dimensional in

operation, allows for high-throughput via fast volumetric flow-rates [26], while leveraging on

the high specificity of immuno-magnetic cell separation, as demonstrated in other immuno-

magnetic flow-through cell separation systems [27–29]. Having previously presented its

Magnetic sifter-based immuno-magnetic rare cell enrichment and Smartseq2-based mRNA-seq
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application to the enrichment and enumeration of CTC on-chip [26], we further demonstrate

the ease of cell recovery post-enrichment by the sifter, and apply it, in combination with

FACS, to obtain high-quality single-cell expression data by the Smart-seq2 protocol.

We evaluate our method with 2 non-small-cell lung cancer (NSCLC) cell lines (NCI-H1650

and NCI-H1975 from ATCC, Manassas, VA), and illustrate the ease with which this protocol

can be adapted towards identifying distinct cell populations in a simulated heterogeneous mix-

ture. We then present a heuristic for analyzing single-cell mRNA-seq data for mutations and

gene expression differences based on our cell line data, which can be useful to researchers

interested in simultaneous analysis of genotype-phenotype data. Lastly, while we applied this

method towards the isolation and analysis of simulated circulating tumor cells in blood, the

flexibility of this approach allows easy adaptation towards other systems where rapid isolation

of rare cells from a highly heterogeneous matrix is required, such as in the isolation of a spe-

cific subcomponent of the human immune system.

Results

Protocol efficiencies

Spiked NCI-H1650 cells were added to healthy donor blood from the Stanford Blood Center,

isolated with anti-Epithelial Cell Adhesion Molecule (EpCAM) functionalized MNPs (NVI-

GEN, Inc, Sunnyvale, CA), sorted by FACS as single cells into 96-well plates (Sony LE-SH800

cell sorter, Sony Biotechnology, San Jose, CA), and then prepared for sequencing as per the

Smart-seq2 protocol [30]. At every step, the cells were counted to evaluate the efficiencies asso-

ciated with every process. Measured efficiencies are shown in Fig 1. Capture efficiency on the

magnetic sifter for NCI-H1975 cells spiked into blood is also presented to illustrate the consis-

tency in sifter capture performance.

Capture efficiencies were evaluated with 2 NSCLC cell lines, H1650 and H1975 cells, and

both showed good capture performance on the magnetic sifter (94% and 92% respectively), as

shown in Fig 1(a). Crucially, release efficiencies of the NSCLC cells from the magnetic sifter

were consistently high, with an average of 89% as per Fig 1(b). This is especially pertinent in

rare cell isolation, where cell losses need to be minimal.

From Fig 1(c), it is clear that cell losses associated with this protocol are primarily due to

the FACS sort, while the standard Smart-seq2 chemistry is only 51% efficient on a 96-well

microplate in this work. These processes were done with standard instrument settings (for

FACS), and published protocols (for Smart-seq2), and were not further optimized in this

work, indicating the potential for higher overall efficiencies. However, since FACS involves a

trade-off between sample purity (probability of each droplet/well containing only single-cells)

and sample yield (percentage of droplets/cells discarded), even if further improvements in

yield are possible, concerns about purity may not make it desirable.

In this instance, if the semi-purity mode is used for the sort, the entire protocol would result

in a final yield of 20%. This is similar to the 20% yield reported by Swennenhuis et al. when

they combined the FDA-cleared CellSearch system with whole genome amplification for the

analysis of circulating tumor cells [31].

Gene expression analysis

Using this protocol for isolation and sequencing of rare cells in blood, we sequenced H1650

single cells isolated from healthy donor blood in 3 separate runs of a simulated CTC experi-

ment, and compared the results to sequencing results from bulk H1650 cells that had been

freshly harvested from a tissue culture dish, and bulk white blood cells (WBCs) from healthy

Magnetic sifter-based immuno-magnetic rare cell enrichment and Smartseq2-based mRNA-seq
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donor blood. This was done to verify that the transcriptomic data obtained from H1650 cells

post-magnetic sifter separation continues to resemble the starting bulk populations.

A subset of isolated cells was selected from each run for library preparation to minimize

cost. Libraries were also prepared from wells containing more than 1 H1650 cell (termed bulk

H1650 samples). The single-cell gene expression data obtained from 3 separate runs was then

compared to bulk H1650 cells and WBCs separately FACS-sorted from donor blood. Pair-wise

Spearman’s correlation was computed for the gene expression across all single cells and bulk

cells, as a measure of their similarity, and the inter-cell correlations in Fig 2(a) show that the

transcriptomes obtained between single cells after sifter processing remain similar across runs.

When averaged across all pair-wise combinations, inter-cell correlations for the single H1650

cells are 0.67 ± 0.1, while the correlations for the bulk H1650 samples are 0.75 ± 0.04. There

appear to be outliers in some of the single cells analyzed, with transcription patterns that do

not match either white blood cells or the other H1650 cells. However, in the absence of further

analysis to understand the biological reason for these outliers, they have not been excluded

from the calculation of inter-cell correlation. The current value of 0.67 is hence anticipated to

be higher if these outliers are removed. Nonetheless, the close match between the single-cell

Fig 1. Efficiencies of different steps in this method. (a) The sifter shows high capture efficiencies (> 90%) for 2 NSCLC cell lines tested (H1650 and

H1975). Additionally, 2 sets of negative controls were also done with H1650 cells, with no non-specific capture observed. These negative controls are run as

per the regular experiments, but with non-antibody functionalized magnetic nanoparticles (negative control for non-specific nanoparticle capture), and

without the application of a magnet (negative control for non-magnetic capture). (b) The sifter also exhibits good release properties of captured cells and

magnetic nanoparticles (89%). Optical images illustrate the effectiveness of elution from the magnetic sifter. The sifter surface post-elution appears as

pristine as the surface of a brand new sifter. (c) FACS sort efficiencies vary with sort purity settings. 2 sort settings on the Sony SH-800 cell sorter are tested.

Efficiencies of 50% and 29% are observed for the semi-purity and ultra-purity modes respectively. A reduced purity setting is required for higher yields. By

following the Smart-seq2 protocol exactly, we observed successful cDNA synthesis in 51% of the wells.

https://doi.org/10.1371/journal.pone.0188510.g001
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Fig 2. (a) Gene expression correlations between single cells from replicate experiments. The Spearman correlations

observed are similar across replicates, and are just slightly lower than bulk controls (0.67 vs 0.75). In contrast, when

these single-cell H1650 transcriptomes are compared to those of white blood cells, very low correlation is observed.

Magnetic sifter-based immuno-magnetic rare cell enrichment and Smartseq2-based mRNA-seq
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and bulk measurements and similarity of the former to literature values of 57% and 65% for

single-cell variability further validates this protocol [32–34]. Additionally, the H1650 samples

exhibit poor correlation with the WBC samples. The results illustrate good reproducibility of

data obtained by isolation with the magnetic sifter, and show that the protocol can provide

high quality and consistent transcriptomic data. Sample scatter plots are also shown in Fig 2

(b), illustrating the good correlation between the individual H1650 single cells and the bulk

H1650 sample, and the lack of any correlation when compared to the WBC samples.

In addition, since we are simulating a CTC system, we analyzed the genes commonly used

to discriminate putative CTCs from WBCs in immunohistochemistry [35, 36]. Previous work

has shown that cytokeratins 7 and 8 (KRT7 and KRT8) can be targeted in lung adenocarcino-

mas, while white blood cells should have no cytokeratin expression [26, 37, 38]. In addition,

CD45 is a common white blood cell marker that should not be present on epithelial cells.

Hence, we looked at the expression levels of this panel of 4 genes (EpCAM, KRT7, KRT8,

CD45), to verify that we can successfully identify the cells as being of epithelial origin, as plot-

ted in Fig 3.

It is clear that the majority of the isolated cells are transcriptionally epithelial in nature, with

high EpCAM, KRT7 and KRT8 expression, and no CD45 expression, although 2 of the 37 cells

evaluated do exhibit atypical profiles. This matches the results from bulk H1650 cells, and is

the opposite of sequenced WBCs, which only exhibit CD45 expression.

Mutational analysis from mRNA-seq data

Typically, in sequencing experiments, the experimenter has to make an upfront decision to

focus on either genomic or transcriptomic data. Single-cell genomes can provide genetic het-

erogeneity and cell-lineage information, while single-cell transcriptomes can help define the

cells’ current phenotypes. However, in many instances, both sets of information are of interest

to the experimenter, and interactions between the genotype and phenotype can be illuminat-

ing. While this can be circumvented in bulk experiments by up-stream division of the sample

into two components, this is not possible in rare cell populations, where the amount of starting

material is scarce. Currently, many researchers are working on methods to accomplish simul-

taneous genomic and transcriptomic sequencing, however, these methods can be relatively

complicated [39]. A simpler work-around in literature is to utilize mRNA-seq data for infor-

mation on genetic heterogeneity, although mRNA-seq data is still primarily used for expres-

sion-level analysis [40, 41]. Hence, we explore the possibility of using mRNA-seq data from

Smart-seq2 to gain insights into variants in the cells isolated, as it was hoped that this method

would provide both mutational and expression-level data simultaneously in a more economi-

cal and informative experimental setup.

Additionally, Picelli et al. previously demonstrated the ability of the Smart-seq2 protocol to

generate full-length mRNA-seq data [42]. This is particularly useful for obtaining genetic level

information from transcriptomic data as we hypothesized that any nucleotide position in the

exons of genes being expressed will have equal probability of being sequenced, with a scaling

factor reliant on the gene’s expression level. Essentially, we should be able to observe mutations

Color of axis labels illustrate specific sample types, with red representing bulk white blood cell samples, black

representing bulk H1650 cell samples, and purple, green and blue representing single H1650 cells from 3 separate

replicate experiments. (b) Sample scatter plots illustrating correlation in gene expression between white blood cells

(WBCs) and H1650 cells. The single-cell data (3 randomly chosen examples shown) match the H1650 bulk sample (50

cells bulk), while having little correlation with the bulk WBC sample (10 WBC bulk).

https://doi.org/10.1371/journal.pone.0188510.g002
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across entire gene isoforms, as opposed to only mutations at the 3’-end of the mRNAs with the

use of a full-length mRNA-seq protocol.

With our simulated CTC system, we can evaluate our ability to obtain mutational informa-

tion from mRNA-seq data. We first extracted a list of common mutations in the H1650 cell

line from the Catalogue of Somatic Mutations in Cancer (COSMIC) [43, 44]. We then nar-

rowed this list to single nucleotide polymorphisms (SNPs) in exonic regions, and looked for

this list of SNPs in the transcriptomic data.

Of 151 SNPs from COSMIC, we only observed 81 in the cells’ transcriptome, as shown in

Fig 4(a). This is not completely unexpected, and highlights the inherent difficulty of attempting

to identify mutational level information from transcriptional data. If the gene is not highly

expressed, identifying de novo mutations with high statistical confidence can be difficult. Also,

Fig 3. Epithelial and WBC gene expression levels. Clear differences in CD45 (WBC marker) and EpCAM/KRT7/KRT8 (epithelial) genes are observed

between the white blood cells and the H1650 cells.

https://doi.org/10.1371/journal.pone.0188510.g003
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mutations which cause suppression or inactivation of the mutated allele gene might result in

only the wild-type allele being observed. Nonetheless, any mutation detected is still effectively

providing additional information over and above what would be typically determined from

mRNA-seq data.

Fig 4. (a) Observed COSMIC SNPs in H1650 transcriptional data. SNPs can be identified in the H1650 cells after being processed through the

magnetic sifter. Only 81 of 151 known SNPs had coverage. Not all known SNPs showed up in the transcriptional data, while some genes with coverage

showed almost no mutated allele. This could be due to effects such as reduced expression of the mutated allele relative to the wild-type allele. It should

be noted that the results are consistent with the bulk H1650 samples, suggesting the SNPs that are not observed are truly not present in the H1650

transcriptome. A full list of the genes is included in S1 Table. (b) EGFR exon 19 deletion in H1650 single-cell Smart-seq2 data. The figure shows a

collection of unique Smart-seq2 reads spanning the EGFR exon 19 region from a single H1650 cell, with a clear deletion in the exon as predicted from

the COSMIC database.

https://doi.org/10.1371/journal.pone.0188510.g004

Magnetic sifter-based immuno-magnetic rare cell enrichment and Smartseq2-based mRNA-seq

PLOS ONE | https://doi.org/10.1371/journal.pone.0188510 November 29, 2017 8 / 19

https://doi.org/10.1371/journal.pone.0188510.g004
https://doi.org/10.1371/journal.pone.0188510


H1650 cells are commonly studied in literature for their EGFR exon 19 deletion, an espe-

cially important driver mutation in NSCLC of interest to clinicians as it can be specifically

targeted with therapies such as erlotinib [45–47]. Hence, we also attempted to detect this par-

ticular deletion in the H1650 transcriptomic data. By analyzing the individual reads from each

cell, we could clearly observe the deletion in the base pairs corresponding to the exon 19 dele-

tion. A collection of the different reads obtained from sequencing that span the EGFR exon 19

location are displayed in Fig 4(b), illustrating the actual loss in base pairs in the read sequences.

We have thus successfully identified this particular EGFR deletion, illustrating that transcrip-

tomic data can be used for detection of both point mutations, as per Fig 4(a), and longer exon

insertions or deletions, as per Fig 4(b).

In typical mRNA-seq data, gene expression levels are often quantified by the fragment per

kilobase of exon per million reads (FPKM). This normalizes the amount of reads for a particu-

lar gene by the length of the gene, and the depth of sequencing. Incidentally, this is also a good

measure for normalizing the probability of observing a particular base location in the exon of

any gene when doing full-length mRNA-seq. Hence, we plotted a linear regression relating the

probability of having coverage at a SNP site to the gene expression level, based on the H1650

transcriptomic data, and observed a good linear correlation. Based on the data presented in

Fig 5, we further conclude that we have a greater than 50% chance of detecting any SNP within

Fig 5. Relationship between SNP coverage and gene FPKM levels. Gene expression levels (log2[FPKM]) are compared with the fraction of cells with

coverage at every SNP site, and the inset shows the regression curve. A linear relationship is obtained, with an r2 of 0.88. A full list of the genes is provided in

S2 Table, going from left to right.

https://doi.org/10.1371/journal.pone.0188510.g005
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the exon of a gene when the gene has an expression level greater than 16 FPKM. The linearity

of this relationship (r2 = 0.88) further proves how Smart-seq2 is indeed providing reads that

have an equal probability of spanning entire gene isoforms, with no 3’-end bias. This heuristic

can also serve as a guideline for defining what constitutes a high enough level of gene expres-

sion for observation of SNPs in the transcriptome.

Observing single-cell heterogeneity in a mixed population

To further demonstrate the use of mRNA-seq coupled with the magnetic sifter for unraveling

single-cell heterogeneity in CTCs, we simulated a mixed CTC population by spiking a 1:1 mix

of H1650 and H1975 NSCLC cells into blood. As the 2 cell lines are both NSCLC cells, gene

expression levels for all cells isolated and sequenced are very similar. Nonetheless, hierarchical

clustering based on their gene expression levels is able to distinguish two distinct clusters of

cells (p< 0.05), in addition to three outliers. The pair-wise Spearman’s correlation coefficient

between the isolated single cells is shown in Fig 6, and illustrates two distinct putative H1650

and H1975 clusters. The average inter-cell correlation within the putative H1650 clusters and

the putative H1975 clusters are 0.62 ± 0.1 and 0.66 ± 0.1 respectively, while the average inter-

cell correlation between cells within the putative H1650 and the H1975 clusters is 0.56 ± 0.05,

thus further supporting the identification of these two clusters.

Excitingly, unsupervised clustering of mutational analyses of these same cells picked up the

two separate sets of cells that were spiked into the original sample, as shown in Fig 7. The ana-

lyzed cell population yielded two clusters that were an almost exact 1:1 mix of putative H1650

and H1975 cells, corresponding to the original ratio of cells that were spiked into the simulated

CTC samples. This corroborates the similarity in capture efficiencies for these two cell lines

(> 90% in Fig 1), and further illustrates the consistency in performance of the magnetic sifter

system and this protocol. Bootstrap-based approximately unbiased (AU) probability values

were obtained for these two clusters, with the putative H1650 cluster having an AU of 100

(p< 0.05) and the putative H1975 cluster having an AU of 100 (p< 0.05) [48]. The two cell

lines can thus be independently identified from the simulated heterogeneous mixture via

either gene expression analysis or mutational analysis in a statistically significant manner.

Discussion

In this work, we demonstrated high efficiency capture and release of rare cells with the high-

throughput magnetic sifter and highly specific magnetic nanoparticle-antibody conjugates,

and its ability to integrate well with a full-length mRNA-seq chemistry. While the overall yield

is still non-ideal, the majority of losses are actually downstream of the magnetic sifter. The

downstream FACS and Smart-seq2 chemistry-based sequencing are both commercial tools

and were implemented here with standard protocols, and user optimization should further

improve the yield from this method. Also, the modularity of this protocol facilitates the use of

alternative single-cell cDNA synthesis chemistries or devices besides FACS and Smart-seq2 to

improve the protocol yield further. These alternatives are an active area of research currently,

and can include other microfluidic devices such as CytoSeq for high-throughput gene expres-

sion cytometry or droplet-based barcoding techniques for single-cell transcriptomics [49–51].

Other commercial solutions for improving the throughput of single-cell analysis include 10X

Genomics’ GemCode platform, and Fluidigm C1-based 800 cell HT chip, however, these solu-

tions still lack the capability to handle rare cells like CTCs in a complex background like blood,

and indeed, would integrate well with the magnetic sifter in place of FACS and Smart-seq2

microplate-based chemistry.

Magnetic sifter-based immuno-magnetic rare cell enrichment and Smartseq2-based mRNA-seq

PLOS ONE | https://doi.org/10.1371/journal.pone.0188510 November 29, 2017 10 / 19

https://doi.org/10.1371/journal.pone.0188510


It should be noted that a full-length mRNA-seq method (Smart-seq2) was chosen here for 2

reasons. Firstly, Ramskold et al. previously reported the successful application of this method

in the sequencing of single CTC, and this chemistry is also commonly used on the Fluidigm

C1 platforms for single-cell mRNA-seq, providing confidence in the robustness and quality of

this chemistry [42]. Additionally, the use of full-length mRNA-seq methods provides certain

advantages in analysis. Smart-seq2 has previously been shown to provide efficient detection of

transcript variants and alleles due to its coverage, and reduced 3’-end bias [42, 52]. This is espe-

cially critical in human transcriptomic analysis, as most multi-exon genes in humans exhibit

multiple isoforms and splice variants [53]. Recent work by Ziegenhain et al has also shown

that Smart-Seq2 is most sensitive and provides the most even coverage of transcripts in a direct

Fig 6. Differentiating simulated CTC subpopulations by gene expression analysis. H1975 and H1650 cells are spiked into blood, isolated by magnetic

separation, and analyzed. Their gene expression levels are very similar, and are consistent with prior results on the individual pure populations for both cell

lines. Two distinct subpopulations are identified by hierarchical clustering among the isolated cells with p < 0.05, with one being a putative H1650

subpopulation, and the other being a putative H1975 subpopulation.

https://doi.org/10.1371/journal.pone.0188510.g006
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comparison with other single-cell RNA-seq methods like CEL-seq2, Drop-seq, MARS-seq and

SCRB-seq, while remaining cost-effective for small cell numbers [54–57].

More critically, our mutational analysis of the H1650 full-length mRNA-seq data also sug-

gests that in an actual biological sample, the use of the Smart-seq2 protocol in combination

with the magnetic sifter can provide information for clonal analysis and lineage tracing, or for

dissecting genetic heterogeneity in rare cells such as circulating tumor cells [58], even while

conventional phenotype data is collected. This can also be useful in situations such as monitor-

ing the development of resistance in cancer therapy, where single-cell heterogeneity is particu-

larly relevant. As demonstrated in our simulated experiments, single cell heterogeneity can

occur on both the genetic (H1650 vs H1975) and the phenotypic (CTC vs WBC) level, and this

can be an approach to maximize information collection in both areas.

Conclusions

Taken together, these experiments all demonstrate the ability of the magnetic sifter and mag-

netic nanoparticles to integrate with Smart-seq2 to provide high-quality transcriptomic data.

Also, we derived a heuristic for analyzing the gene expression data for mutational information,

Fig 7. Differentiating simulated CTC subpopulations by mutational analysis. H1975 and H1650 cells are spiked into blood, isolated by magnetic

separation, and sequenced. By looking at the variants present in the cells, we are able to observe the same subpopulation mix as were originally spiked into

the blood sample. A full list of the genes is provided in S3 Table, going from left to right.

https://doi.org/10.1371/journal.pone.0188510.g007
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and successfully demonstrated the ability to interrogate single-cell heterogeneity in a simulated

CTC sample based on expression and mutational data.

Methods

Spiked CTC experiments

All cell lines were obtained from ATCC (Manassas, VA, USA). Both cell lines (NCI-H1650

and NCI-H1975) were maintained in RPMI-1640 media supplemented with 10% fetal bovine

serum (FBS), 0.05 mg/mL penicillin, 0.05 mg/mL streptomycin, 2 mM GlutaMAX, 1 mM

sodium pyruvate, and 0.1 mM MEM non-essential amino acids. All cell lines were maintained

in an incubator at 37˚C in 5% CO2.

For evaluation of tumor cell line capture efficiencies, the respective tumor cell lines are

labeled with Green CellTracker CMFDA dye (Invitrogen, Carlsbad, CA, Catalog number:

C7025), as per the product protocol, prior to detachment from the tissue culture plates. These

fluorescently labeled cells are subsequently spiked into a 2 mL volume of healthy donor blood

obtained from the Stanford Blood Center, followed by a 2-fold dilution in labeling buffer, and

the addition of 100 μL of 0.5 mg/mL of anti-EpCAM functionalized magnetic nanoparticles

(NVIGEN, Inc, Sunnyvale, CA). To obtain accurate counts of the number of spiked cells, a

small droplet (� 1 μL) of tumor cell suspension is pipetted onto the inside of a micro-centri-

fuge tube cap, and all cells in the droplet are counted before the same cap is used to seal the

micro-centrifuge tube containing the blood and the solution is mixed. Mixing is done under

constant rotation for 1 hour at 4˚C, whereupon the sample is processed through the magnetic

sifter. After processing, the magnetic sifter is examined under a fluorescence microscope, and

the capture efficiency is determined by counting the number of tumor cells on the surface and

dividing this by the number of cells initially spiked.

A similar protocol is used for determining the harvest efficiency. However, subsequent to

enumeration of the number of captured cells on the sifter, 400 μL of buffer is used to wash the

cells off the magnetic sifter without any external applied magnetic field, and the eluted volume

is spun onto a glass slide. The cells obtained are then counted by fluorescence microscope, and

the harvest efficiency is obtained by dividing the number of cells counted on the glass slide by

the number counted on the chip.

For the experiments which proceeded through to FACS and sequencing, to better simulate

a real sample where fluorescence staining post-isolation is required, no CellTracker fluores-

cence staining was incorporated prior to spiking into blood. However, this made visual count-

ing of the number of cells spiked into each experiment impractical. Hence, the concentration

of the original cell suspension was counted via a hemocytometer 3 times, and an average was

obtained. An appropriate volume as required to obtain the desired number of cells was then

spiked directly into the donor blood sample without any visual counting.

Cell immunostaining protocol

Cells were stained with a total of 4 reagents, 1 nuclear dye (Hoechst 33342), 2 antibodies

against common blood cell markers (CD31 and CD45), and 1 antibody against an epithelial

cell marker (EpCAM). Incubation was done simultaneously for all reagents, with the first 12

minutes at room temperature, and an additional 33 minutes on ice. Incubation was done with

5 μg/mL of Hoechst 33342 dye (Invitrogen, Carlsbad, CA, Catalog number: H3570) and 20x

dilutions of APC-conjugated CD31 (Clone: WM59, Biolegend, Inc, San Diego, CA, Catalog

number: 303116), APC-conjugated CD45 (Clone: HI30, Biolegend, Inc, San Diego, CA, Cata-

log number: 304012), and FITC-conjugated EpCAM (Clone: 9C4, Biolegend, Inc, San Diego,
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CA, Catalog number: 324204) antibodies. Upon completion of the incubation, cells are washed

with buffer once, before being left on ice prior to FACS processing

FACS protocol

All FACS sorts were done on a Sony LE-SH800 cell sorter (Sony Biotechnology Inc, San Jose,

CA) with a 100 μm sorting chip (Catalog number: LE-C3110). Prior to starting the sort, the

cell sorter and chip were calibrated with SH800 setup beads (Catalog number: LE-B3001) and

fluorescence compensation was done with BD’s CompBeads (BD Biosciences, Franklin Lakes,

NJ, Catalog number: 552843), incubated with the relevant fluorophore-conjugated antibodies

(typically fluorescein isothiocyanate [FITC] and allophycocyanin [APC]).

Also, for each experiment, a 100 uL aliquot of blood from the original sample was lysed in

an ammonium chloride-based red blood cell lysis buffer [59], stained with the same set of anti-

bodies, and analyzed by FACS at the beginning to act as a negative control, and assist with the

demarcation of gates to exclude blood cells for the actual samples of interest.

After the gates for the identification of blood cells are drawn, 96-well PCR plates (Bio-Rad

Laboratories, Inc, Hercules, CA, Catalog number: HSP9601) are loaded onto the LE-SH800

cell sorter, and gated single cells are sorted into the wells at the purity set. Two purity settings

were tested in this work, the “Ultra-Purity” and “Semi-Purity” mode, and it should be noted

that the purity settings would affect cell yield, and the possibility of obtaining more than a sin-

gle cell per droplet sorted.

The 96-well PCR plates were pre-loaded with a lysis buffer consisting of 0.1% Triton X-100

solution, 1 U/μL of RNAse inhibitor, and 2.5 μM of oligo-dT primer, and were spun down

upon sort completion [30]. The PCR plates were also kept on dry ice between sorts, and while

preparing for reverse transcription.

The FACS sort efficiencies were determined by dividing the number of positive events suc-

cessfully sorted into the 96-well plate by the total number of positive events in the entire vol-

ume processed. Positive events in both instances are defined by their location within the gates

drawn.

mRNA-seq protocol

Single-cell full-length mRNA-seq was carried out as per the Smart-seq2 method detailed by

Picelli et al [30]. The protocol was not adjusted, although some of the reagents were purchased

from different vendors. A complete list of the reagents and vendors are detailed in Table 1,

although the complete protocol is not reproduced here for brevity. After reverse transcription

Table 1. List of reagents used for Smart-seq2 and their respective vendors and catalog numbers.

Reagent Vendor Catalog Number

Oligo-dT Primer IDT Technologies Custom-order

ISPCR Primer IDT Technologies Custom-order

TSO Oligonucleotide Exiqon Custom-order

Recombinant RNAse Inhibitor Clontech Laboratories 2313A

Episcript RNAse H- Reverse Transcriptase Epicentre ERT 12925K

Betaine (5M) Affymetrix 77507

dNTP Mix (10 mM) Thermo Fisher Scientific R0192

Magnesium Chloride Thermo Fisher Scientific AM9430G

KAPA HiFi HotStart ReadyMix (2X) KAPA Biosystems KK2602

Agencourt Ampure XP Beads Beckman Coulter A63881

Nextera XT DNA Library Preparation Kit Illumina FC-131-1096

https://doi.org/10.1371/journal.pone.0188510.t001
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and amplification, cDNA generated from each single-cell was checked for quality on a frag-

ment analyzer (Advanced Analytical Technologies, Inc, Ankeny, IA). Selected single-cells

then underwent library preparation for Illumina sequencing with the Nextera XT DNA library

preparation kit (Illumina, Inc, San Diego, CA). Multiplexed library pools were then pooled

and sequenced as 75bp paired-end Illumina reads utilizing the NextSeq 500 High Output Kit

v2.

The Smart-seq2 cDNA synthesis efficiency was determined by dividing the number of wells

in the PCR micro-plates processed that produced any cDNA profile (including both good-

quality cDNA profiles and degraded cDNA profiles) by the putative number of cells success-

fully sorted by FACS. It should be noted that this measure could be an underestimate if the

gates contain other cellular debris that have the same scattering and fluorescence profiles

as the cell lines. However, negative control experiments comprising 50 μL of healthy donor

blood without any spiked cells showed no positive signals from gates that were similarly

drawn.

Data analysis

The reads were preprocessed using Prinseq [prinseq.sourceforge.net/] to filter away short

reads shorter than 30, followed by trimming of the first 10 bp on the 5’-end and trimming of

reads with low quality on the 3’-end. Low complexity reads are then removed using

(-lc_method entropy \-lc_threshold 65).

We then used FASTQC [http://www.bioinformatics.babraham.ac.uk/projects/fastqc] to

determine overrepresented sequences and removed those using cutadapt [https://cutadapt.

readthedocs.org/en/stable/]. Next, we used Prinseq to remove orphan pairs less than 30bp

in length before removal of Nextera adapters via Trim Galore [http://www.bioinformatics.

babraham.ac.uk/projects/trim_galore/].

Remaining reads were aligned to the hg19 genome with TOPHAT. After alignment of the

reads, read sequences were analyzed for gene expression levels by Cufflinks (expression level

data in FPKM) and HT-seq (expression level data in counts/gene) [60, 61].

Mutational analysis was done via the bam-readcount package from https://github.com/

genome/bam-readcount. A list of SNPs was obtained from COSMIC and base counts for rele-

vant genome locations were obtained via the bam-readcount package.

The mRNA-Seq data from this study has been deposited in the NCBI sequence read archive

under the study accession number SRP107036, with the bam files spanning accession numbers

SRR5556747-SRR5556840.

Supporting information

S1 Table. List of SNPs observed in the H1650 cells sequenced. Genes are listed in the same

order as per the axis in Fig 4 when read from left to right.

(DOCX)

S2 Table. List of SNPs observed in the H1650 cells sequenced. Genes are listed in the same

order as per the axis in Fig 5 when read from left to right.

(DOCX)

S3 Table. List of SNPs observed in the H1650 and H1975 cells sequenced. Genes are listed

in the same order as per the axis in Fig 7 when read from left to right.

(DOCX)
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