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Abstract: Undoped Y2Sn2O7 and Eu3+ doped Y2Sn2O7 samples with doping concentrations 7%, 8%,
9%, and 10% are successfully synthesized by the co-precipitation method. A complete structural,
morphological, and spectroscopic characterization is carried out. XRD measurements reveal that
samples crystallize in the pure single pyrochlore phase and Eu3+ ions occupy sites with D3d symmetry.
After mechanical grinding, the average crystallite size is less than 100 nm for all compositions. Optical
characterization shows emission from the 5D0 level towards the lower lying 7F0,1,2,3,4 levels. The CIE
color coordinates of all the pyrochlore phosphors are very close to those of the ideal red light. For
the visualization of latent fingerprints, different surfaces are tested, including difficult ones (wood
and ceramic), with excellent results. All three levels of fingerprint ridge patterns are visualized:
core (Level 1), bifurcation and termination (Level 2), and sweat pores (Level 3). Moreover, our
nano-powders are used to prepare a stable fluorescent ink.

Keywords: nano-powder; Europium; luminescence; latent fingerprints

1. Introduction

Fingerprints are valuable information in forensic science because they provide unique
and immutable features for human identification [1]. However, at crime scenes fingerprints
are not apparent to the naked eye. For this reason, they are called latent fingerprints
(LFPs) and need to be made sufficiently visible with specific techniques [2] like single-metal
deposition methods [3], fuming, and powder-dusting techniques [4–6]. The details that
form the ridge pattern are called loops, arches, and whorls and are organized in different
levels. While it is easy to detect the first and the second level ridge details, the third level is
quite difficult to be identified, especially on some difficult surfaces like wood and ceramic,
and this makes the pattern recognition more difficult and time consuming [7–10]. Moreover,
traditional methods for developing fingerprints have some drawbacks, especially low
detection efficiency and high toxicity and very few of them permit the visualization of the
third level, i.e., sweat pores.

Among the various methods, power dusting is one of the most used thanks to its
extreme simplicity and effectiveness [11]. In this case, the use of fluorescent nanoparticles
greatly increases the types of surfaces from which a LFP can be detected and the level of
details that can be identified. For this reason, the quest for new materials that can enable the
efficient visualization of LFPs is still lively. For example, quantum dots have been proposed
as fluorescent powders [12]. They show a good contrast, high selectivity, and sensitivity,
but they have relatively high toxicity levels. Organic nanophosphors have some advantages
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in detecting the LFPs, like long luminescence lifetime, narrow emission, and large Stokes
shifts [13]; however, they develop weak prints under ultraviolet light or laser light. Rare
earth upconversion fluorescent nanomaterials show bright visible emission under infrared
pumping and low toxicity values, but the upconversion efficiency is usually low.

Down-converting rare earth doped nanoparticles overcome this limitation. Among the
Lanthanide family Europium (Eu3+), Terbium (Tb3+), Erbium (Er3+), Dysprosium (Dy3+),
Ytterbium (Yb3+), and Praseodymium (Pr3+) ions have been identified as the most effective
down-converting materials that convert ultraviolet light to visible emission and have been
proposed for fingerprint visualization. Moreover, pyrochlore nanoparticles, having the
chemical compositions of A2B2O7 [14] doped with lanthanide ions, are one of the most
promising powder materials to enhance the development of the LFPs due to their high
fluorescence capability, chemical stability, and ease of production in nanometric size [15,16].
These crystal nano-powders are expected to work particularly well on raw surfaces such
as household woodwork and multi-colored non-porous items where traditional methods
are not so efficient. Among the rare earth ions, Europium in Y2Sn2O7 can generate intense
red emission under UV excitation [17–19] and has already been proposed as an excellent
phosphor for while light LED emission [20], display devices [21], and radioluminescence
detection [22]. In this work we analyzed the possibility of using Eu-doped pyrochlores for
fingerprint detection as well as for the production of luminescent inks.

2. Materials and Methods
2.1. Synthesis of Phosphor Samples

Undoped Y2Sn2O7 and Eu3+ doped Y2Sn2O7 samples with doping concentrations
of 7%, 8%, 9%, and 10% were successfully synthesized by co-precipitation method [17]
using Yttrium oxide (99.99%), Europium (III) oxide (99.99%), Tin (II) chloride dihydrate
(99.99%), ethylene glycol, and chloridric acid purchased from Merck KGaA (Darmstadt,
Germany). Stoichiometric amounts of SnCl2.2H2O, Eu2O3, and Y2O3 were dissolved in 1 M
HCl solution and stirred for 2 h. Then, 40 mL of ethylene glycol was added and the solution
was slowly heated up to 100 ◦C. Afterwards, 2 g of urea was added and the solution was
stirred 2 h at 150 ◦C. After being cooled to room temperature, the precipitate was collected
by centrifugation at 2500 rpm for 15 min, washed two times with acetone, and dried at
room temperature. The samples thus prepared were finally calcined at 900 and 1300 ◦C in
air at a heating rate of 10 ◦C per minute for 5 h. The undoped Y2Sn2O7 nanoparticles were
synthesized by similar method taking only the yttrium and tin precursor.

2.2. Ball Milling

As-grown samples were ground using FRITSCH (Idar-Oberstein, Germany) Planetary
Ball Milling. Samples were put in a zirconium jar with zirconium balls. Samples were
ground at 500 rpm speed for 60 min including 5 min for resting.

2.3. Characterization

The phase structure of the samples was analyzed using a Panalytical Pro X’Pert MPD
(40 kV, 30 mA) diffractometer (Malvern Panalytical, Malvern, United Kingdom) with a Cu
Kα (λ = 1.5406 and 1.5444 Å) radiation at room temperature in the range of 10◦–70◦ with a
step size of 2θ = 0.02. The crystallographic phases were identified by comparison with the
X-ray patterns of the JCPDS database. The crystallographic parameters were refined using
the Rietveld-fit program FullProf [23]. The average crystallite size was calculated from the
diffraction line width, based on Scherrer’s equation:

D =
Kλ

β cosθ

where D is the crystallite size for the (hkl) plane, λ indicates the wavelength of the incident
X-rays, and β is the corrected full width at half maximum in radians. Angle θ is the
diffraction angle for the (hkl) plane. The error on calculated XRD crystallite size is 0.4 nm.
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The hydrodynamic diameter of the powder was measured with the Dynamic Light
Scattering technique (DLS) with a Zetasizer Nano series (Malvern Panalytical, Malvern,
United Kingdom). Just before the measurement, the powder was dispersed into deionized
water and sonicated to separate aggregates of nanoparticles. The sizing was produced in
a glass cuvette with round aperture at room temperature. The average particle size was
calculated from the autocorrelation function of the intensity of scattered light from the
nanoparticles by Malvern Zetasizer nano software.

The morphology of the samples was observed by high resolution field emission
scanning electron microscopy performed with a FEI (Hillsboro, Oregon, USA) Quanta 450
FEG system operating in low vacuum.

Photoluminescence (PL) spectra were measured at room temperature under diode laser
pumping at 450 nm as an excitation source. Detection was accomplished using a compact
spectrometer (AvaSpec-ULS2048L-SPU2, Avantes, Apeldoorn, The Netherlands) equipped
with a 600 line/mm holographic grating and a 10 µm slit working in the 390–900 nm range
with a resolution of 0.4 nm. All the spectra were corrected for the spectral response of the
system using a halogen lamp as blackbody source.

3. Results
3.1. Structure of the Prepared Samples

The powder XRD patterns at room temperature of the undoped and doped Y2Sn2O7
samples are depicted in Figure 1a.
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Figure 1. (a) Powder XRD patterns of the undoped and doped Y2Sn2O7 samples compared to the
JCPDS card for pure pyrochlore structure. (b) Crystal structure of doped Y2Sn2O7. (c) Fitting results
on one of the spectra.

Y2Sn2O7 compounds can crystalize in the three different types of crystalline struc-
tures, pyrochlore, defect-fluorite, and monoclinic, that can be easily differentiated by XRD
analysis [24]. In our case, diffraction peaks are in accordance with the Joint Committee
on Powder Diffraction Standards (JCPDS) card No. 01-088-0508, as depicted in Figure 1a.
According to these results, Y2Sn2O7 crystallized in pure single pyrochlore phase, and the
crystal structure belongs to the cubic crystal system with the Fd-3m space group [21,24–27].
Moreover, no additional peaks of unreacted SnCl2·2H2O, Eu2O3, and Y2O3 were observed
in the XRD-data, indicating that the reaction among the raw materials was complete. The
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incorporation of Eu3+ ions did not modify the XRD-pattern and this, together with the
good fitting results, demonstrates that doping with Eu3+ does not affect the crystalline
structure of the phosphor (Figure 1b). This is not unexpected because the ionic radius of the
Eu3+ ions (r = 0.95 Å) is similar to that of Y3+ ions (r = 0.92 Å); therefore, Eu3+ ions can be
effectively incorporated into the Y2Sn2O7 host lattice, replacing Y3+ ions without distorting
the crystal structure.

The cell parameters and the atomic coordinates obtained from a least-square fitting
procedure are shown in Table 1. Figure 1c shows an example of the result of the fitting
procedure.

Table 1. Atomic coordinates and site occupancy fraction for Y2Sn2O7:9%Eu.

Atom Site Symmetry X Y Z

Y/Eu 16d D3d 0.5 0.5 0.5
Sn 16c D3d 0 0 0
O 48f C2v 0.337 0.125 0.125
O’ 8b Td 0.375 0.375 0.375

The occupancy probability of Y and Eu atoms present in Site A and the Sn atoms
present in Site B was refined in such a way that the total occupancy of each site was equal
to 1.0000. Five unique crystallographic positions are available in the Wyckoff notation: Y
and Eu are disturbed at 16d (1/2, 1/2, 1/2) Wyckoff sites. Sn occupies a single position at
16c (0, 0, 0) Wyckoff sites and there are two positions possible for O at 48f (O) and 8b (O’),
while 8a sites are vacant [21]. O’ are in an undisturbed position (3/8, 3/8, 3/8) with respect
to the fluorite structure and are tetrahedrally coordinated by Y/Eu cations (Figure 1b). In
contrast, O (3/8, 1/8, 1/8) are displaced toward the neighboring vacant 8a sites and are
bonded to Y/Eu and Sn. The Y/Eu cations occupy an axially compressed scalenohedron
coordinated by six O’ and two O atoms. The cubic crystal structure of the new compound
is constructed. The second layer is constructed of one oxygen followed by one Sn atom.
The Y and Eu atoms in Site A are coordinated by eight oxygen atoms while the Sn atoms
in Site B show a six-fold coordination in which the oxygen atoms occupy the corners of a
regular octahedron. The valence values of both cations localized in Site B were calculated
from six B-O bond lengths in BO6 octahedra, according to Nigham’s work [27]. The two
bond-valence with both atoms present in Site B is reported in Table 1.

From the Scherrer equation, we calculated the average crystallite size before mechan-
ical grinding. Results are depicted in Table 2 and compared with the average crystallite
size obtained with the DLS technique. The average crystallite size of the samples before
grinding was found to be in between 311 and 384 nm with XRD and between 387 and
503 nm with DLS. In all cases, the DLS size is slightly larger than that measured with XRD.
This is expected since DLS measures the hydrodynamic diameter that can be slightly larger
than the physical dimension of the particle and that can be affected by possible aggregation
of the particles.

Table 2. Average crystallite size.

Composition Crystallite Size from XRD
(nm)

Crystallite Size from DLS
(nm)

Y2Sn2O7:7%Eu 384.5 405
Y2Sn2O7:8%Eu 311.6 487
Y2Sn2O7:9%Eu 360.5 503

Y2Sn2O7:10%Eu 326.5 387

3.2. SEM Characterization

SEM analysis was performed on the samples after grinding. A representative SEM
image of the ground Y2Sn2O7:10%Eu sample is shown in Figure 2 together with the
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corresponding histogram. The formation of very small particles with diameters below
100 nm can be clearly seen. We performed a statistical analysis on the visible particles.
Table 3 shows the average mean diameter and standard deviation obtained from the image
analysis of the SEM images of the various compositions after grinding. In all cases, the
analysis was performed on more than 100 particles and the average diameter obtained was
below 100 nm.
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Table 3. Measured length of the samples.

Sample Size (nm) Standard Deviation (nm)

Y2Sn2O7 56 31
Y2Sn2O7:7%Eu 99 57
Y2Sn2O7:8%Eu 57 34
Y2Sn2O7:9%Eu 70 50

Y2Sn2O7:10%Eu 82 39

3.3. Optical Characterization

Figure 3 presents the typical room temperature photoluminescence (PL) spectra of
Y2Sn2O7:x%Eu (x = 7, 8, 9, 10) nanophosphors together with the transition assignment. The
measured emission spectra are in good agreement with the literature [17,19,21,28,29]. The
Eu3+ emission comes from several transitions.
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All emission channels start from the 5D0 level towards the lower lying 7F0,1,2,3,4 levels.
Starting from high energy the first transition is the 5D0
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J = 0 are strictly forbidden in the standard Judd-Ofelt theory. Nevertheless, the occurrence
of this transition is a well-known example of the breakdown of the selection rules of the
Judd–Ofelt theory due to J-mixing or to mixing of low-lying charge-transfer states into the
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it is only visible at the highest-doping level, namely 10%Eu with the appearance of a weak
peak at 579 nm. The 5D0
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can only split this level into two components, one of which is doubly degenerate. In fact,
we only observed two emission lines at 589.3 nm and 597.5 nm. Moreover, this transition is
magnetic dipole in nature, and this means that it is particularly insensible to changes of
the environment. For this reason, the intensity of this transition is often considered to be
constant and can be used to calibrate the intensity of Eu3+ luminescence spectra. We used
this line as a probe for the luminescence behavior as a function of the doping level. The
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level. The 5D0
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transition is strongly influenced by the symmetry and chemical environment of the Eu3+

ions [30].
Color coordinates of the phosphors were calculated using The Commission Interna-

tionale de l’Eclairage (CIE) 1931 color chromaticity diagram. Figure 4 represents the CIE
diagram of Y2Sn2O7:x%Eu (x = 7, 8, 9, 10) nanophosphors. The CIE color coordinates of all
the pyrochlore phosphors lie in the range (0.64 ± 0.02, 0.36 ± 0.02), which is very close to
that of the ideal red light (0.67, 0.33) [31,32].
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3.4. Visualization of Latent Fingerprints

In order to test our nanophosphors as LFP development agents, we selected different
kinds of surfaces, including porous and non-porous, such as a compact disk, aluminum
foil, wood, and ceramic, as shown in Figure 5. After washing and cleaning the donor hands,
the fingerprint donor pressed their finger on the different surfaces. Afterwards, the Eu3+

doped Y2Sn2O7 nano-powders were stained smoothly over the full area of the LFPs using
a feature brush. Then, the excess powder was removed by brushing. Figure 5 shows the
fingerprint images developed under a UV lamp at 256 nm, onto a CD, aluminum foil, wood,
a banknote, and a credit card. A clear visualization of LFPs was observed on all surfaces;
in fact, thanks to the small size of the nanophosphors, the fingerprint ridges are very
clear. The finer details of the fingerprints such as the pores were successfully developed,
especially on wood and ceramic surfaces, thanks to the shiny red color emitted by these
nano-powders. Moreover, Figure 5 also presents a comparison between the fingerprint
development on a credit card with luminescent and nonluminescent powder. It can be
seen that the nonluminescent powder under ambient light cannot effectively develop the
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fingerprint pattern on some of the card details, while the whole pattern is clearly visualized
under UV illumination.
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Figure 5. Developed fingerprint images obtained with Eu:Y2Sn2O7 on different surfaces: (a) compact
disc, (b) aluminum foil, (c) wood, (d) banknote, (e) credit card, (f) credit card with nonluminescent
powder. (g) Enlargement of (c) with the three levels of fingerprint ridge patterns visualized: (h) core
(Level 1); (i) bifurcation and termination (Level 2); (l) sweat pores (Level 3).
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Figure 5 also shows the enlarged fingerprint pictures developed on wood under
UV light. The figure clearly shows that all three levels of fingerprint ridge patterns are
visualized: core (Level 1), bifurcation and termination (Level 2), and sweat pores (Level 3).
In fact, Level 1 details provide general morphological information such as orientation field,
ridge pattern, and fingerprint ridge flow. Level 2 details give information about pattern
agreement of the ridges of individual fingerprints. Level 3 details are defined as fingerprint
ridge dimensional features, including sweat pores, curvature, and dots [33].

Since the ridges were clearly observed, our new fluorescent samples showed clear
patterns with high brightness and contrast to the naked eye on top of the wood, which is
considered as a difficult surface. In fact, the red color can be clearly distinguished between
brightness of ridges and darkness of furrows.

3.5. Application of Luminescent Ink for Detection of Counterfeiting

In recent years, much attention has been devoted to performing fluorescent inks
using nanomaterials. However, as far as we know, no serious attempts have been re-
ported to synthesize these transparent and stable Y2Sn2O7: Eu3+ colloids for use as flu-
orescent ink, but the synthesis of stable and transparent luminescent NP colloids in an
aqueous medium is a challenging task [34–36]. We prepared a luminescent aqueous ink for
anti-counterfeiting applications.

In our work, we adapted an encapsulation method in order to produce a transparent
and stable Y2Sn2O7: Eu3+ colloidal solution from the nano-powders. Initially, 3 g of
poly(vinyl alcohol) PVA was dissolved in de-ionized water followed by agitation at 90 ◦C
for half an hour. Then, we added different amounts (10, 20, and 40 mg) of our nano-
powders into the previous solution followed by vigorous stirring at room temperature for
around 20 min. Finally, we kept the solution under sonification for about 15 min followed
by centrifugation to produce highly transparent (>80% in the visible region) luminescent
ink. Under ambient conditions, our ink remained stable for about one week without any
precipitation. The ink was transparent under visible light but became pink-red in color
under UV irradiation. Figure 6 shows the letter L written with the florescent ink on tissue.
Under ambient light the ink is invisible, but it becomes visible under UV irradiation, with
increasing visibility at increasing amount of nano-powder dispersed.
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4. Conclusions

In this work, Eu:Y2Sn2O7 nanophosphors were successfully synthesized via the co-
precipitation method followed by a further grinding treatment. XRD confirmed the cubic
single phase pyrochlore structure of the phosphors. After mechanical grinding, all the
samples showed an average dimension of less than 100 nm. Bright red light is emitted by
the nanophosphors after UV illumination. This led to an efficient visualization of LFPs on
different surfaces like a compact disk, aluminum foil, wood, and ceramic. Moreover, we
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prepared a stable luminescent ink for anti-counterfeiting applications. We believe these
findings can be useful both in forensic science and in anti-counterfeiting applications.
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