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Abstract: The intelligent identification and classification of plant diseases is an important research
objective in agriculture. In this study, in order to realize the rapid and accurate identification of
apple leaf disease, a new lightweight convolutional neural network RegNet was proposed. A series
of comparative experiments had been conducted based on 2141 images of 5 apple leaf diseases
(rust, scab, ring rot, panonychus ulmi, and healthy leaves) in the field environment. To assess the
effectiveness of the RegNet model, a series of comparison experiments were conducted with state-
of-the-art convolutional neural networks (CNN) such as ShuffleNet, EfficientNet-B0, MobileNetV3,
and Vision Transformer. The results show that RegNet-Adam with a learning rate of 0.0001 obtained
an average accuracy of 99.8% on the validation set and an overall accuracy of 99.23% on the test
set, outperforming all other pre-trained models. In other words, the proposed method based on
transfer learning established in this research can realize the rapid and accurate identification of apple
leaf disease.

Keywords: RegNet; apple leaf disease identification; complex environment; imbalanced dataset

1. Introduction

China is the largest fruit-producing country in the world, with the total area planted
and the total yield of apples ranking first in the world. However, the apple leaf is easily
affected by diseases and pests, such as ring rot, rust, early defoliation, scab, and so on. In
most cases, it is not only subjective but also time-consuming, laborious, and inefficient to
rely on agricultural and forestry experts for field identification or farmers to identify apple
leaf diseases according to their experience. Farmers with less experience are more likely to
misjudge and use pesticides blindly, which not only can fail to prevent the diseases, but can
also affect the quality and yield of apples and cause environmental pollution, thus causing
unnecessary economic losses. Therefore, it is of great significance to realize intelligent, fast,
and accurate apple leaf disease identification.

In recent years, with the development of machine learning technology and the en-
hancement of computer data processing capabilities, researchers use image processing,
machine learning, and other methods to automatically identify crop diseases, such as
those in rice [1,2] corn [3], wheat [4], cotton [5], tomato [6] and cucumber [7,8]. By using
color, shape, texture, and other information to establish feature vectors, and then using an
artificial neural network (ANN) [9], support vector machine (SVM) [10] or other methods to
classify feature vectors, a certain classification effect can be achieved. For example, Furferi
et al. [11] clearly demonstrated the feasibility of a hybrid machine vision-ANN-based ap-
proach for the predictive purposes of an olive ripening index. However, traditional image
processing methods need to extract disease features through manual design according to
the feature of the disease, which has some problems, such as unstable feature extraction
and poor adaptability. In particular, the influence of plant type, growth stage, disease type,
environmental aspects, and other factors leads to the difficulty of feature extraction.
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With the development of deep learning technology, convolutional neural networks,
which can realize end-to-end detection by learning features in different fields, different
scenes, and different scales, has become the research hotspot of the automatic identification
of plant diseases and insect pests in agriculture.

The author Zhou et al. [12] proposed a disease identification model based on “image-
text” multimodal collaborative representation and knowledge assistance (ITK-Net) and
achieved an identification accuracy of 99.63% on a dataset of tomato and cucumber dis-
eases. Wang et al. [13] proposed a two-stage model that fuses DeepLabV3+ and U-Net for
cucumber leaf disease severity classification (DUNet) in complex backgrounds and reached
an average accuracy of 93.27% and 92.85% for leaf segmentation and disease severity
classification, respectively. Li et al. [14] used the VGGNet-16 and Inception V3 models to
classify the different degrees of ginkgo leaf disease. Results showed that the VGGNet-16
model achieved an average accuracy of 98.44% and 92.19% under laboratory conditions
and field conditions, respectively, while the Inception V3 achieved average accuracies of
92.3% and 93.2%, respectively.

Although the deep network model performs well in the task of plant leaf disease recog-
nition, considering that some application scenarios need to be transplanted to embedded
or mobile devices with limited hardware resources, this model still faces many constraints,
such as a large number of model parameters, long training time and need for a large storage
space [15,16]. Therefore, the present research tends to the miniaturization and practicability
of the model structure. Sun et al. [17] proposed a variety of improved AlexNet models by
using batch normalization, dilated convolution, and global pooling, which reduced the
parameters of the model and improved the recognition accuracy. Guo et al. [18] proposed
a multiscale receptive field recognition model for a mobile platform based on AlexNet,
in which different sizes of convolution kernels were set for the first layer of the model,
and various features were extracted to characterize the dynamic changes of the disease.
Liu et al. [19] proposed two kinds of lightweight convolutional neural network models
based on MobileNet and InceptionV3 for plant disease classification, which considered
the recognition precision, operation speed, and model size, and realized plant leaf disease
detection in the mobile phone terminal.

Instead of starting the training from scratch by randomly initializing weights, transfer
learning initializes the weights using a pre-trained network on large labeled datasets, such
as the public image datasets ImageNet, etc. Thus, the transfer learning method can reduce
the amount of data needed in the training process and shorten the time spent in the training
process, allowing a fewer number of images to be utilized to yield highly accurate trained
networks [20].

Considering that the apple leaf disease dataset is a small dataset, the pre-trained
lightweight network RegNet [21] was applied to the classification of apple leaf disease
images with complex backgrounds for the first time and compared with the state-of-the-art
models MobileNetV3 [22], ShuffleNet [23], EfficientNet-B0 [24], and Vision Transformer
(ViT) [25].

The remainder of this paper is organized in the following manner. Section 2 introduces
the collection of the image dataset and discusses the methodology to accomplish the task
of apple leaf disease identification, along with related concepts of the proposed approach.
Section 3 presents the arrangement of experiments, and multiple experiments are conducted.
The experimental results are evaluated and a comparative analysis is performed, which is
discussed in Section 4. Finally, this paper is concluded in Section 5.

2. Materials and Methods
2.1. Image Dataset
2.1.1. Image Dataset Acquisition

The diseased apple leaf images were collected using smartphones (iPhone 7 plus) un-
der real conditions from the planting base of the Pomology Institute of Shanxi Agricultural
University and farmers’ orchards, and the resolution of the images were 3024 × 4032. The
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disease images were captured between May and September 2020. The original dataset was
prepared with 2141 images, which included 597 images of healthy leaves, 592 images of
scab, 622 images of rust, 153 images of ring rot, and 177 images of leaves with panonychus
ulmi. These images were captured with uneven illumination intensities and heterogeneous
field in wild scenarios. All the images collected in this paper are defined according to their
disease categories and have been saved in the JPEG format. Each image contains only one
apple leaf, and the leaf occupies the main position in the picture. We chose to cooperate
with plant protection experts to establish a more reliable apple leaf disease dataset. Five ma-
jor diseases due to pests and pathogens include rust, scab, ring rot, and panonychus ulmi;
these are shown in Figure 1, along with a healthy sample. The characteristic symptoms of
the above-mentioned apple leaf diseases are given as follows.

Sensors 2022, 22, x FOR PEER REVIEW 3 of 15 
 

 

2. Materials and Methods 
2.1. Image Dataset 
2.1.1. Image Dataset Acquisition 

The diseased apple leaf images were collected using smartphones (iPhone 7 plus) 
under real conditions from the planting base of the Pomology Institute of Shanxi Agri-
cultural University and farmers’ orchards, and the resolution of the images were 
3024×4032. The disease images were captured between May and September 2020. The 
original dataset was prepared with 2141 images, which included 597 images of healthy 
leaves, 592 images of scab, 622 images of rust, 153 images of ring rot, and 177 images of 
leaves with panonychus ulmi. These images were captured with uneven illumination 
intensities and heterogeneous field in wild scenarios. All the images collected in this 
paper are defined according to their disease categories and have been saved in the JPEG 
format. Each image contains only one apple leaf, and the leaf occupies the main position 
in the picture. We chose to cooperate with plant protection experts to establish a more 
reliable apple leaf disease dataset. Five major diseases due to pests and pathogens in-
clude rust, scab, ring rot, and panonychus ulmi; these are shown in Figure 1, along with a 
healthy sample. The characteristic symptoms of the above-mentioned apple leaf diseases 
are given as follows. 

     
(a) (b) (c) (d) (e) 

Figure 1. Example of apple leaf images: (a) rust; (b) scab; (c) ring rot; (d) Panonychus ulmi; (e) 
healthy. 

Rust: In the early stage of the disease, small orange-red spots appear on the front of 
the leaves, gradually expanding to form an orange-yellow spot with red edges. When the 
disease is serious, dozens of disease spots appear on one leaf. The surface of the spot 
becomes dense with small bright yellow dots 1~2 weeks after the onset of disease, indi-
cating sexual sporozoite. 

Scab: In the early stage of the disease, spots are yellow-green round or radial, then 
turn brown to black, with obvious edges. When the disease is serious, the leaf becomes 
smaller and thicker, curled or twisted. Disease spots will merge with one another and 
leafs will show big spots. 

Apple ring rot: Lesions are concentric whorls which are mostly concentrated in the 
leaf margin. In the early stage of the disease, the spot is brown to dark brown, round, and 
small; as the disease advances, the spots enlarge. The spots on the leaf margin are semi-
circular, and on the middle of the leaf are round or nearly round. The central part of the 
old disease spot is gray-brown to gray-white, and the disease spot is often broken or 
perforated. 

Panonychus ulmi: The affected leaf is covered with yellow-white spots on the front, 
and ultimately, the whole leaf withers and yellows. 

2.1.2. Image Pre-Processing 
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Figure 1. Example of apple leaf images: (a) rust; (b) scab; (c) ring rot; (d) Panonychus ulmi;
(e) healthy.

Rust: In the early stage of the disease, small orange-red spots appear on the front
of the leaves, gradually expanding to form an orange-yellow spot with red edges. When
the disease is serious, dozens of disease spots appear on one leaf. The surface of the
spot becomes dense with small bright yellow dots 1~2 weeks after the onset of disease,
indicating sexual sporozoite.

Scab: In the early stage of the disease, spots are yellow-green round or radial, then
turn brown to black, with obvious edges. When the disease is serious, the leaf becomes
smaller and thicker, curled or twisted. Disease spots will merge with one another and leafs
will show big spots.

Apple ring rot: Lesions are concentric whorls which are mostly concentrated in the leaf
margin. In the early stage of the disease, the spot is brown to dark brown, round, and small;
as the disease advances, the spots enlarge. The spots on the leaf margin are semicircular,
and on the middle of the leaf are round or nearly round. The central part of the old disease
spot is gray-brown to gray-white, and the disease spot is often broken or perforated.

Panonychus ulmi: The affected leaf is covered with yellow-white spots on the front,
and ultimately, the whole leaf withers and yellows.

2.1.2. Image Pre-Processing

Image pre-processing helps to enhance the quality of data to promote the extraction of
meaningful insights from the data. It includes a redefinition of image size, normalization of
each batch of samples, normalization processing, image de-averaging, data augmentation,
and automatic denoising [26,27].

The normalization processing method for a sample is shown in Equations (1) and (2):

µ =
1
n

n

∑
i=1

xi (1)

σ2 =
1
n

n

∑
i=1

(xi − µ)2 (2)
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where xi represents the value of the i-th pixel of the sample, n is the total number of pixels of
the sample, µ represents the mean value and σ2 represents the variance. The normalization
formula is shown in Equation (3)

∧
xi =

xi − µ√
σ2 + ε

(3)

where
∧
xi is the normalization of the i-th pixel value of the sample, and ε is a tiny value

greater than 0 to ensure that the denominator is greater than 0.
In the normalization processing image de-averaging, the R, G and B values of the

images were respectively subtracted from their mean values R_MEAN, G_MEAN B_MEAN,
where R_MEAN is the pixel mean of the R channel of all images, G_MEAN is the pixel
mean of the G channel of all images, and B_MEAN is the pixel mean of the B channel of
all images.

Due to the fact that the apple leaf disease dataset collected is not balanced among
classes, data enhancement techniques, such as image rotation, horizontal translation, verti-
cal translation, brightness adjustment, and image scaling, were used to further expand the
image data set and finally obtain a balanced data set. The balanced data set was randomly
divided into a training set, validation set, and test set according to the ratio of 7:2:1.

Although deep learning neural networks are very powerful, if there are not enough im-
ages, overfitting will occur, which cannot achieve the desired results [28]. Many researchers
have done a lot of work on this topic. Therefore, in order to avoid overfitting, data augment
of the training set and validation set is carried out. The data distributions of the original
dataset, balanced dataset, training set, validation set, and test set are shown in Table 1.

Table 1. The data distributions.

Classes Original
Dataset

Balanced
Dataset

Training
Set

Validation
Set

Augmented
Dataset

Test
Set

Healthy 597 597 429 119 1644 49
Scab 592 592 428 118 1638 46
Rust 622 622 444 124 1704 54

Ring rot 153 612 441 122 1641 49
Panonychus ulmi 177 708 505 141 1883 62

Total 2141 3131 2247 624 8510 260

2.2. Lightweight Convolutional Neural Network Models

In this part, we describe in detail the lightweight convolutional neural network model,
RegNet, used in our work.

2.2.1. RegNet

In recent years, NAS [29] (neural architecture search) network search technology
has been very popular, but it also has high requirements for computing resources. The
traditional NAS method, which is based on individual network instances (sampling one
network at a time), has the following defects: (1) it is very inflexible (various parameter
adjustment methods), (2) it has a poor ability to generalize, and (3) it has poor interpretabil-
ity. Therefore, scholars have put forward the overall estimation of network design space
(population estimation, which means that the optimal design space relationship, such as
depth and width, is estimated). Intuitively, if we can identify the functional relationship
between a series of network design elements such as depth and width on the network
design goal, then we can easily know how deep and wide of a network is the best choice.
The design idea of EfficientNet is to use a simple and efficient composite coefficient to
enlarge the network from the three dimensions of depth, width, and resolution. This
method will not arbitrarily scale the dimensions of the network like the traditional method.
NAS can obtain the best set of parameters (composite coefficient) based on the neural
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structure search technology, and explore how to search for the best model under a certain
computational cost.

RegNet also uses NAS technology, but differently from some previous NAS (such as
MobileNetV3, EfficientNet). Some of the previous NAS used search algorithms to find
the best combination of parameters in a given designed search space. However, what
RegNet aims to explore is how to design spaces and find some network design principles,
rather than just searching for a set of parameters. RegNet is not a single network, nor
even an extended family of networks like the EfficientNets. It is a design space limited by
quantized linear rules. With the same training design and FLOPs, RegNet is more accurate
than the current state-of-the-art (SOTA) EfficientNet and is five times faster on GPU than
EfficientNet. The structural framework of the RegNet network is shown in Figure 2.
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Figure 2a shows that the RegNet network is mainly composed of three parts: stem,
body, and head. This network keeps the backbone and head network as simple as possible,
mainly focusing on the structure of the network body.

The stem is an ordinary convolution layer (including BN and Relu by default). The
size of the convolution kernel is 3 × 3, the step length is 2, and the number of convolution
cores is 32.

The structure of the body, shown in Figure 2b, is made up of four stages, like a stack.
After each stage, as shown in Figure 2c, the height and width of the input characteristic
matrix will be reduced to half of the original. Each stage is composed of a series of block
stacks. In the first block of each stage, there are group convolutions (on the main branch)
and ordinary convolutions (on the shortcut branch) with a step of 2, and the step of
convolutions in the remaining blocks are 1.

Head is a common classifier in the classification network and is composed of a global
average pooling layer and a full connection layer.

Figure 3 shows the structure of the block, in which Figure 3a shows the case of step
stripe = 1 and Figure 3b shows the case of step stripe = 2. As can be seen from Figure 3,
the block in RegNet is basically the same as the block in ResNext. The main branches are a
1 × 1 convolution (including BN and ReLU), a 3 × 3 group convolution (including BN and
ReLU), and a 1 × 1 convolution (including BN). On the shortcut branch, when stripe = 1,
no processing is performed. When stripe = 2, downsampling, is performed through a
1 × 1 convolution (including BN). The r in Figure 3 represents the resolution, which can
be simply understood as the height and width of the characteristic matrix. When the step
distance s equals 1, the input and output r remains unchanged; when s equals 2, the output
r is half of the input. W is the channel of the characteristic matrix (note that when s = 2, the
input is Wi-1 and the output is Wi; that is, the channel will change), g represents the group
width of each group in the group convolution, and b represents the bottleneck ratio; that is,
the channel of the output characteristic matrix is reduced to 1/b of the input characteristic
matrix channel.
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2.2.2. Ranger

The current state-of-the-art optimizer Ranger was proposed by Dang [30]. The Ranger
optimizer combines the two emerging achievements of RAdam [31] and Lookahead [32]
to build a set of optimizers for deep learning. Among them, Radam (Rectified Adam),
a variant of Adam, can be said to be a better foundation for the optimizer at the begin-
ning of training. RAdam uses a dynamic rectifier to adjust Adam’s adaptive momentum
based on variance and effectively provides an automatic warm-up mechanism that can
be customized based on the current data set, which can ensure that training takes a solid
first step. LookAhead can provide a robust and stable breakthrough throughout training.
Additionally, Lookahead can reduce the need for hyperparametric fine-tuning and achieve
faster convergence between different deep learning tasks. Therefore, higher accuracy can
be obtained by combining the two.

2.3. Transfer Learning

Transfer learning is a machine learning technique where knowledge gained during
training in one type of problem is used to train other related tasks or domains [33]. First,
the structure of the convolution layers is kept unchanged, and then the pre-trained weights
and parameters are loaded into the convolution layers. Then, a new fully-connected layer
is designed for the new task, which replaces the original fully-connected layer and forms
a new convolution network model with the previous convolution layers. This model is
then fine-tuned on the target data set. There are two ways to fine-tune; one is freezing the
convolutional layers and fine-tuning the fully connected layers only, while the other is to
fine-tune the entire layers of the network.

The training of a deep convolutional neural network requires a huge dataset. Con-
sidering that the apple leaf disease dataset is not huge enough, the pre-trained RegNet,
MobileNetV3, ShuffleNet, and EfficientNet-B0 models are applied to the classification of ap-
ple leaf disease images with complex backgrounds by using the transfer learning method.

2.4. Experiment Setup

The experiments were conducted in the environment of Ubuntu18.04 with an Intel
Core i9 9820X, 64 G memory, and a GeForce RTX 2080Ti 11 G DDR6 using the deep learning
framework TensorFlow and Cuda10.1 for training.

In order to avoid memory overflow, a batch training method was adopted to compare
the RegNet model with EfficientNet-B0, MobileNetV3, and ShuffleNet on the training
set and validation set. Each batch was trained with 16 images, and the batch size of the
validation set was also 16 images. In this paper, the number of iterations was set to 50, and
the categorical-cross entropy in Keras was used as the cost function. Batch normalization
was introduced to standardize the input of the hidden layer.

In order to save the optimal model parameters, after each iteration, whether the loss
function of the validation set was reduced or not was observed to decide whether to save
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the current model parameters. Finally, the saved model structure and parameters were
used for the prediction of apple leaf disease on the test set.

3. Experiments and Analysis

However, we note that the model performance may be affected not only by the archi-
tecture choice but also by other parameters, such as the training schedule, optimizers, and
learning rate. We perform three series of experiments to evaluate the learning capabilities
of ShuffleNet, MobileNetV3, EfficientNet-B0, and RegNet with different transfer learning
methods, different optimizers, and different learning rates. To keep the parameters of the
RegNet model at the same level as MobileNetV3 and EfficientNet-B0, in this section we
used the RegNet model with a 400 million flops (400 MF) regime and pre-trained each
sampled model for 10 epochs on the ImageNet dataset.

3.1. Comparison of Two Transfer Learning Methods

Two transfer learning strategies were considered as follows. In the first one, the
weights of different deep learning network models were initialized by using the model
parameter files which were pre-trained on the ImageNet dataset instead of the original ran-
dom initialization operation, and the global fine-tuning was carried out. The other utilized
pre-trained neural network architectures such as ShuffleNet, MobileNetV3, EfficientNet-B0,
and RegNet as feature extractors and fine-tuned the higher dimensional layers (fully con-
nected layers) to learn features corresponding to the target dataset. For all the models, the
learning rate was set to 0.0001 and the optimizer was Adam.

Figure 4 summarizes the average accuracy and loss function value using different
kinds of transfer learning methods on the validation set. In Figure 4, the solid line represents
the use of transfer learning strategy one, and the dotted line represents the use of transfer
learning strategy two. Several interesting observations can be drawn from the results.
From the contrast in Figure 4, we can draw a conclusion that for all models, fine-tuning
the parameters of a pre-trained neural network architecture achieved higher classification
accuracy and lower loss values as compared to using the neural network architecture
with feature extraction only. The reason is that the image features can be extracted by the
convolution layer module with the weight of the transfer parameters, but there are great
differences between the apple leaf disease images in this study and the ImageNet image
data. Only training and changing the full connection module cannot achieve the ideal
effect, and transfer learning training all layers can significantly improve the accuracy of the
test set. This showed that the training classification layers alone cannot make the model
adapt to our data well.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 15 
 

 

achieve the ideal effect, and transfer learning training all layers can significantly improve 
the accuracy of the test set. This showed that the training classification layers alone can-
not make the model adapt to our data well. 

  
(a) (b) 

Figure 4. Comparison of two transfer learning methods: (a) the average accuracy curve; (b) the 
loss function curve. 

Therefore, it is necessary to adopt the transfer learning method that fine-tunes the 
whole layers on our apple leaf disease image dataset. 

3.2. Evaluation of the Optimizers 
Convenient deep learning architectures such as ShuffleNet, MobileNet, EfficientNet, 

and RegNet are typically trained with SGD, and we tried using other optimizers, such as 
Adam, RAdam, and Ranger. Namely, we compared the fine-tuning performance of the 
four models pre-trained on ImageNet with SGD, Adam, Radam, and Ranger. For all the 
models, we used a learning rate of 0.0001 and used transfer learning of fine-tuning on the 
whole models. The results are presented in Table 2, where the average accuracy is the 
average accuracy on the validation set. 

Table 2. Performance comparison of different optimizers for four network models. 

Model Optimizers Params Average Accuracy (%) 

ShuffleNet 

SGD 

2.3 M 

62.3 
Adam 90.2 

RAdam 77.9 
Ranger 72.1 

MobileNetV3 

SGD 

5.4 M 

89.9 
Adam 93.4 

RAdam 93.1 
Ranger 93.2 

EfficientNet-B0 

SGD 

5.3 M 

86.4 
Adam 94.3 

RAdam 94 
Ranger 93.4 

RegNet 

SGD 

5.2 M 

98.2 
Adam 99.8 

RAdam 99.8 
Ranger 99.9 

As can be seen from Table 2, from the perspective of the model, ShuffleNet had the 
smallest number of parameters and the lowest classification accuracy compared with the 

Figure 4. Comparison of two transfer learning methods: (a) the average accuracy curve; (b) the loss
function curve.

Therefore, it is necessary to adopt the transfer learning method that fine-tunes the
whole layers on our apple leaf disease image dataset.



Sensors 2022, 22, 173 8 of 14

3.2. Evaluation of the Optimizers

Convenient deep learning architectures such as ShuffleNet, MobileNet, EfficientNet,
and RegNet are typically trained with SGD, and we tried using other optimizers, such as
Adam, RAdam, and Ranger. Namely, we compared the fine-tuning performance of the four
models pre-trained on ImageNet with SGD, Adam, Radam, and Ranger. For all the models,
we used a learning rate of 0.0001 and used transfer learning of fine-tuning on the whole
models. The results are presented in Table 2, where the average accuracy is the average
accuracy on the validation set.

Table 2. Performance comparison of different optimizers for four network models.

Model Optimizers Params Average Accuracy (%)

ShuffleNet

SGD

2.3 M

62.3
Adam 90.2

RAdam 77.9
Ranger 72.1

MobileNetV3

SGD

5.4 M

89.9
Adam 93.4

RAdam 93.1
Ranger 93.2

EfficientNet-B0

SGD

5.3 M

86.4
Adam 94.3

RAdam 94
Ranger 93.4

RegNet

SGD

5.2 M

98.2
Adam 99.8

RAdam 99.8
Ranger 99.9

As can be seen from Table 2, from the perspective of the model, ShuffleNet had the
smallest number of parameters and the lowest classification accuracy compared with the
other three models, and the performance of the four optimizers was quite different from
each other. This showed that the model was sensitive to the choice of the optimizers. The
best optimizer is the Adam optimizer, which had a recognition accuracy of 90.2%, and the
SGD optimizer had the lowest recognition accuracy of 62.3%. The other two optimizers,
RAdam and Ranger, also had much lower identification accuracy than the Adam optimizer.
For MobileNetV3, EfficientNet-B0, and RegNet, the recognition accuracy of the optimizer
SGD was also the worst, while the other three optimizers, Adam, RAdam, and Ranger,
were almost at the same level. This showed that the model was insensitive to the choice of
these three optimizers.

The above analysis showed that the model trained by the SGD optimizer had the
worst performance; it may be that the SGD optimization algorithm adjusts the weights for
each data point, and the performance of the network fluctuates significantly during the
training process, which was consistent with the research results in the literature. Therefore,
the SGD optimizer will not be considered later.

The accuracy curves of the Adam, RAdam, and Ranger optimizers on the validation
set for the four models are shown in Figure 5a–c, respectively.
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According to Figure 5, from the sensitivity of the models to the optimizers, the four
models trained by the Adam optimizer all showed good performance. The average accuracy
of the RegNet model trained by the Adam optimizer is as high as 99.8%. When Figure 5b,c
are compared with Figure 5a, it can be seen that the convergence rate of the four models is
slower when using the Radam and Ranger optimizers than when using Adam, and there is
a great difference between the best accuracy of the models. When the Adam optimizer is
used, the four models achieve the best convergence state, and the differences between the
best accuracy of the models are small. This showed that the models trained by the Adam
optimizer can obtain a better classification performance; that is, the optimizer Adam had
better universality to the models.

The analysis of these results concluded that RegNet outperformed all other lightweight
pre-trained models under the three optimizers, and ShuffleNet performed worst. Therefore,
the RegNet model, with its good performance, and the Adam optimizer, with its good
universality, will be selected for follow-up studies.

3.3. Effect of Learning Rate on Model Performance

The learning rate is a very important hyperparameter in the training process of a
convolutional neural network. It represents the range of parameters updated each time,
and a suitable learning rate can accelerate the convergence speed of model training. The
RegNet model with the Adam optimizer was used to select the most appropriate learning
rate for the apple leaf disease dataset among 6 groups of learning rates of 0.0001, 0.0005,
0.001, 0.005, 0.01, and 0.05.

Figure 6a,b shows the accuracy and loss function curves of the model on the validation
set under different learning rates. The accuracy of the model on the validation set and test
set under different learning rates is shown in Table 3.
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Table 3. The average accuracy of the model with different learning rates.

Pre-Trained Models Accuracy on Validation Set (%) Accuracy on Test Set (%)

RegNet-Adam-0.0001 99.8 99.23
RegNet-Adam-0.0005 99.8 99.20
RegNet-Adam-0.001 99.8 98.07
RegNet-Adam-0.005 99.2 98.84
RegNet-Adam-0.01 98.9 98.07
RegNet-Adam-0.05 96.1 94.61

It can be seen from Figure 6 that when the learning rates were 0.05, 0.01 and 0.005,
the curve oscillated seriously, converged slowly, and the loss values of the model were
higher and the accuracies were lower. When the learning rate was 0.05, the curve oscillated
most severely, and the model had not converged when it reached the maximum number of
iterations, indicating that the learning rate was too high; the parameters that need to be
optimized will fluctuate without convergence. According to Table 3, the accuracy of the
model was as low as 94.61% when the learning rate was 0.05.

When the learning rates were 0.001, 0.0005, and 0.0001, the oscillation of the curve was
not obvious, and each model could obtain higher accuracy and lower loss value. When
the learning rate was 0.0001, the loss value curve and average accuracy curve of the model
are more stable, with lower loss value and higher accuracy than those of the model when
the learning rates were 0.001 and 0.0005. According to Table 3, when the learning rate was
0.0001, the model achieved the highest recognition accuracy of 99.23%.

In summary, in the fine-tuning training stage of the model, when the initial learning
rate was set to a small value, the performance of the training model was better. The reason
was that under the transfer learning mode, all layers at the front-end layer of the network
had been well trained, and the weight parameters of the model were close to the optimal
solution. If a large learning rate was used in the fine-tuning training stage, it was easy
to cause the model to skip the optimal solution and produce a large oscillation, so as to
increase the loss function value and reduce the accuracy value. As the RegNet-Adam-0.0001
model had the highest test accuracy of 99.23% and the lowest loss value on the test set of
apple leaf disease, this showed that the performance of the model was the best.

To further observe the performance of the improved model on the test set, the confu-
sion matrix of RegNet-Adam-0.0001 on the test set is shown in Figure 7.
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Each column in Figure 7 represents the predicted labels, and its total number indicates
the number of samples predicted for that category. Each row represents the real labels, and
the total number indicates the number of samples of the true data belonging to the category.
The value at the intersection of the row and column represents the number of data predicted
as the corresponding row category, and the sum of the values in the diagonal line is the
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predicted correct results. The deeper the color in the visualization results, the higher the
prediction accuracy of the model in the corresponding class. Based on the confusion matrix,
three metrics, precision, recall, and specificity, were used to evaluate the performances of
the methods, and the results were shown in Table 4.

Table 4. The results of different metrics.

Category Precision Recall Specificity

Rust 0.982 1.000 0.995
Scab 1.000 0.978 1.000

Ring rot 1.000 1.000 1.000
Panonychus ulmi 1.000 1.000 1.000

Healthy 0.980 0.980 0.995
Average value 0.9924 0.9916 0.9980

According to the confusion matrix in Figure 7, the predicted categories are consistent
with the true categories of these images, and most apple leaf diseases are correctly classified
by the proposed approach with a high probability except for two images. That is, 48 sample
images are correctly identified in the class of “Healthy”, except for 1 misclassified sample.
For the classification of “scab” in 46 samples, 45 were correctly classified, and the other
three categories were correctly classified. Thus, there are a total of 258 apple leaf disease
images that are correctly classified by the proposed approach in 260 samples.

From the results in Table 4, we can see that the precision values were between 0.98
and 1.0, with an average value of 0.9924. The recall values were between 0.978 and 1.0,
with an average of 0.9916. The specificity values were between 0.995 and 1.0 with an
average of 0.9980, and the average accuracy of the model was 99.23%. This indicates that
the proposed RegNet-Adam-0.0001 approach had a significant capability to recognize the
apple leaf diseases.

3.4. Comparison with State-of-the-Art CNNs

In this section, we will compare RegNet with SOTA CNNs (Vision Transformer) on
our apple leaf disease dataset.

Inspired by the Transformer scaling successes in NLP, the Google team published
a paper in October 2020: “An Image is Worth 16 × 16 Words: Transformers for Image
Recognition at Scale”, and the ViT was first proposed in the paper. ViT applies a standard
transformer directly to images with the fewest possible modifications. To do so, they split
an image into patches and provide the sequence of linear embeddings of these patches as
an input to a transformer. As ViT has nothing to do with the structure of input elements,
the authors added a learnable location embedding in each patch to enable the model to
understand the image structure. Therefore, image patches are treated the same way as
tokens (words) in an NLP application. ViT attained excellent results compared to state-of-
the-art CNNs on ImageNet, CIFAR-100, and VTAB.

Due to the large number of parameters and calculations of the existing ViT model, it is
difficult to train it directly. Therefore, the transfer learning method of fine-tuning all layers
on our apple leaf disease images dataset was used. For all models, the Adam optimizer
was used, and the learning rate was set to 0.0001.

The average accuracy and loss function curves of the models ViT-B/16 and RegNet
on the training set and validation set were shown in Figure 8. The black curve was the
performance curve of the RegNet model, and the red curve and the blue curve were
the performance curves of ViT model on the training set and validation set, respectively.
ViT-B/16 means the “Base” variant with a 12 × 12 input patch size.
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By comparing the accuracy curves of the two models in Figure 8 on the validation set,
it can be seen that the two models have reached a stable convergence state at the maximum
iterative training, indicating that the models had been fully trained. The verification
accuracy of RegNet and ViT-B/16 were 99.8% and 93.3%, respectively, and the verification
losses were 0.023 and 0.33, respectively. The RegNet model had the highest accuracy
and the lowest loss value, which indicated that the performance is best. By comparing
the accuracy curves of the ViT-B/16 model on the training set and the validation set in
Figure 8a, we find that the accuracy on the training set was higher than the validation
set, indicating that there is overfitting. There may be two reasons for this phenomenon.
On the one hand, the ViT model still directly applies the transformer structure in natural
language processing (NLP), there is no special design for the image, and there is not enough
image-related knowledge built in. On the other hand, the information of an image is much
greater than that of the text, resulting in a large number of parameters and calculations of
the ViT model. The parameters of the ViT-B/16 model are close to four times those of the
RegNet model, and our data set is relatively small, so we cannot train the model enough,
resulting in slow convergence and serious overfitting. Therefore, it is necessary to further
optimize the ViT model in the future to make it better serve the field of computer vision.

4. Discussion

In order to realize the rapid and accurate identification of apple leaf disease, a new
lightweight convolutional neural network, RegNet, was proposed to identify five apple
leaf diseases (rust, scab, ring rot, panonychus ulmi, and healthy leaves) in the field complex
environment. At present, some scholars have applied convolutional neural networks to
recognize apple leaf disease images and achieved good results [34–36]. However, there are
some shortcomings. For example, Liu et al. [34] detected apple leaf diseases with simple
backgrounds. It is difficult generalize this ability to complex backgrounds. The shortcoming
is that only two kinds of apple leaf diseases were studied [35]. The deep learning models
used by Jiang et al. [36] are large and require large memory, which is difficult to deploy on
embedded or mobile devices with limited hardware resources.

Compared with the research on apple leaf diseases mentioned above, the object of
our work was to detect five kinds of apple leaf diseases with complicated backgrounds
in the field, and the test accuracy was as high as 99.23%. In addition, the RegNet used
was a lightweight network model that can be well embedded into mobile devices. The
RegNet model still had the highest accuracy and the lowest loss value compared with the
state-of-the-art ViT-B/16 model.

Overall, our model had good general performance and high identification accuracy
for apple leaf diseases. Since this model is a lightweight network model, it can realize
apple leaf disease detection in the mobile phone terminal. Thus, this work has practical
application value.
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5. Conclusions

In this work, the lightweight deep learning model RegNet was developed and com-
pared to different lightweight CNN architectures such as MobileNetV3, ShuffleNet, ViT-
B/16, and EfficientNet-B0 for the efficient classification of apple leaf diseases based on
collected apple leaf images of healthy leaves and four categories of diseases with complex
backgrounds. The effects of different training mechanisms, learning rates, and optimizers
on the performance of the model were discussed. The conclusions are as follows:

1. Fine-tuning the parameters of a pre-trained neural network architecture achieved
higher classification accuracy as compared to using the neural network architecture
with feature extraction only;

2. We compared the performance of the four models with SGD, Adam, RAdam, and
Ranger. This comparison showed that the models trained by the Adam optimizer can
obtain a better classification performance, and the average accuracy of the RegNet
model trained by the Adam optimizer reached as high as 99.8% on the validation set;

3. Comparative experiments of different learning rates were carried out on RegNet-
Adam, and the results showed that when the initial learning rate was set to 0.0001,
and the effect is better than 0.05, 0.005, 0.0005, 0.001, and 0.01, the accuracy reached
99.23% on the test set. Comparing RegNet-Adam-0.0001 with the ViT-B/16 model led
to the same conclusion that the RegNet model had the best performance.

Thus, the proposed approach efficiently accomplished apple leaf disease identification
and presented a superior performance relative to other SOTA methods. In future develop-
ments, we intend to deploy this model on mobile devices to monitor and identify the wide
range of apple leaf disease information automatically.
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