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Abstract

Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death in the world owing to
limitations in its prognosis. The current prognosis approaches include radiological examination and detection of
serum biomarkers, however, both have limited efficiency and are ineffective in early prognosis. Due to such
limitations, we propose to use RNA-Seq data for evaluating putative higher accuracy biomarkers at the transcript
level that could help in early prognosis.

Methods: To identify such potential transcript biomarkers, RNA-Seq data for healthy liver and various HCC cell
models were subjected to five different machine learning algorithms: random forest, K-nearest neighbor, Naïve
Bayes, support vector machine, and neural networks. Various metrics, namely sensitivity, specificity, MCC,
informedness, and AUC-ROC (except for support vector machine) were evaluated. The algorithms that produced
the highest values for all metrics were chosen to extract the top features that were subjected to recursive feature
elimination. Through recursive feature elimination, the least number of features were obtained to differentiate
between the healthy and HCC cell models.

Results: From the metrics used, it is demonstrated that the efficiency of the known protein biomarkers for HCC is
comparatively lower than complete transcriptomics data. Among the different machine learning algorithms,
random forest and support vector machine demonstrated the best performance. Using recursive feature elimination
on top features of random forest and support vector machine three transcripts were selected that had an accuracy
of 0.97 and kappa of 0.93. Of the three transcripts, two were protein coding (PARP2–202 and SPON2–203) and one
was a non-coding transcript (CYREN-211). Lastly, we demonstrated that these three selected transcripts
outperformed randomly taken three transcripts (15,000 combinations), hence were not chance findings, and could
then be an interesting candidate for new HCC biomarker development.

Conclusion: Using RNA-Seq data combined with machine learning approaches can aid in finding novel transcript
biomarkers. The three biomarkers identified: PARP2–202, SPON2–203, and CYREN-211, presented the highest
accuracy among all other transcripts in differentiating the healthy and HCC cell models. The machine learning
pipeline developed in this study can be used for any RNA-Seq dataset to find novel transcript biomarkers.
Code: www.github.com/rajinder4489/ML_biomarkers

Keywords: Hepatocellular carcinoma, Machine learning, Biomarkers, RNA-Seq, Transcript expression

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: florian.caiment@maastrichtuniversity.nl
Department of Toxicogenomics, School of Oncology and Developmental
Biology (GROW), Maastricht University, Maastricht, The Netherlands

Gupta et al. BMC Cancer          (2021) 21:962 
https://doi.org/10.1186/s12885-021-08704-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-021-08704-9&domain=pdf
http://www.github.com/rajinder4489/ML_biomarkers
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:florian.caiment@maastrichtuniversity.nl


Introduction
The liver, one of the largest organ in the body, performs vari-
ous important functions, such as filtering harmful substances
from the blood to be then excreted from the body, producing
bile to help in the digestion of fats from food, or storing
glycogen (sugar) that will be used for energy. Due to its con-
tinuous exposure to harmful substances, it is prone to the
amplitude of diseases that can eventually cause liver failure
and/or liver cancer. Cirrhosis, long-term infection with hepa-
titis B virus, and hepatitis C virus, alcoholic liver disease, and
nonalcoholic fatty liver disease (NAFLD) are leading risk fac-
tors for primary liver cancer [1]. Moreover, cancer can de-
velop in the liver at any stage in the progression of various
liver diseases. As published in independent reports by World
Health Organization (WHO) [2] and the US Center for Dis-
ease Control and Prevention (CDC) [3], liver cancer is
among the top causes for cancer death worldwide, of which
hepatocellular carcinoma (HCC) is the most common type
of primary liver cancer, accounting for ~ 80% liver cancers.
Reducing the global burden of HCC is, therefore, a pri-

mary concern and it can be achieved by improving early
detection and management [4]. Currently, the employed
prognosis for HCC includes radiological examinations and
assessment of serum markers. Radiological examinations
are limited for early diagnosis as the performance of the
imaging techniques begins to degrade substantially below
a lesion size of 2 cm and have only modest accuracy below
a lesion size of 1 cm [5]. In the case of biomarkers, cur-
rently, there are ~ 20 biomarkers (Table 1) in research,
and out of these only α-fetoprotein (alpha-fetoprotein or
AFP) has a clinical application; even though it is ineffect-
ive for detecting early lesions [1, 24–26]. Of the other
markers used in research, none have reached the standard
level of clinical practice so far [24, 27]. However, in vari-
ous studies, it has also been demonstrated that a combin-
ation of different biomarkers provides higher accuracy in
predicting HCC [6, 11, 20–23].
Though the combinations of various biomarkers are

better predictors than the individual biomarkers, sensi-
tivity or specificity is still low for all biomarker combina-
tions [6, 11, 20–23]. While proteins are the major
functional element, the corresponding transcripts can be
an easier surrogate to detect and quantify. The cancer-
specific mRNAs can leak into the serum as a result of
passive processes (such as necrosis) and active processes
(such as tumor cell apoptosis and active release in
microvesicles by tumor cells) [28–31]. Though non-
invasive, the lack of transcriptomics data for circulating
cell-free mRNAs for HCC poses a limitation in under-
taking a comprehensive in silico study to find novel bio-
markers in serum. Only one study was found where the
extracellular mRNAs for three HCC cell models, namely
HepG2, Huh7, and immortalized normal liver PH5CH
cells were profiled [32]. On the other hand, exhaustive

transcriptomics data is available for HCC tissue/cell
models (c.f. Methods) and hence, we concentrated on
such data to find novel HCC biomarkers.
Using RNA-Sequencing (RNA-Seq), the whole tran-

scriptome can be quantified. Moreover, different types of
transcripts (protein coding and non-coding) can also be
identified. Most transcriptomics analyses focus on gene
expression by aggregating the expression of all tran-
scripts for the given gene. However, in this study, we will
focus on the transcripts because alternative-splicing de-
fects in cancer are well documented [33–35] and dysreg-
ulation of splicing variants’ expression has recently
emerged as a novel cancer hallmark [35]. Moreover,
using the RNA-Seq data at the transcript level will also
allow us to investigate the potency of non-coding tran-
scripts to be used as biomarkers.
Machine learning (ML) is a multidisciplinary field that

makes use of computer science, artificial intelligence,
computational statistics, and information theory to build
algorithms that learn from existing data and make predic-
tions on new data [36]. It has found application in diverse
domains of biomedicine, including, but not limited to,
image analysis [37], cancer prediction from heterogeneous
data [38], robust phenotyping [39], gene discovery [40],
differential network analysis [41], biomarker discovery
[42], and transcriptional regulated genes [43]. The appli-
cation of machine learning for the biomarker discov-
ery from the RNA-Seq data is mainly focused on
genes, however, recent studies have demonstrated that
transcript-based analyses outperformed gene-based
analyses using ML [44, 45]. To assess if transcript
biomarkers have better prediction accuracy, we ana-
lyzed various HCC cell models and healthy liver
RNA-Seq data. Several HCC cell models were taken
for this study (Table 2) to ascertain that their bio-
logical heterogeneity is accounted for while building
the ML models. Various ML algorithms, namely ran-
dom forest (RF), K-nearest neighbors (KNN), support
vector machines (SVM), Naïve Bayes (NB), and
Neural networks (NNET), which are extensively used
in the field of biomedicine, were applied to build the
models and identify novel putative transcript bio-
markers for HCC.
From the transcriptomics data, three datasets were as-

sembled: all transcripts, protein coding only, and non-
coding only. The goal of making these three datasets
was to see if one of them provides a better prediction.
Consecutively, the efficiency of the known protein bio-
markers (Table 1) was also assessed by taking the
transcripts for their corresponding genes. The mapped
genes also comprised protein coding and non-coding
transcripts and they were also made into three data-
sets (as given above). The results from the complete
transcriptomics data and known protein biomarkers
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(for all datasets) were compared to establish which
dataset(s) performs better.

Methodology
The overview of the methodology is presented in Fig. 1
and detailed steps are given below.

1. Data collection

a. HCC cell models: The list of all HCC human cell
models was obtained from Cellosaurus [46] (Suppl.
Table 1).

b. RNA-Seq data: Using the names and synonyms of
these cell models, RNA-Seq datasets were searched

on the European Nucleotide Archive (ENA) and were
filtered for baseline expression, instrument model
(Illumina HiSeq 2000 or HiSeq 2500 or NovaSeq
6000), and paired-end library layout (Table 2). The
samples were also taken from the Horizon 2020 EU-
ToxRisk project, as listed in Table 2.

c. Known biomarkers: Concurrently, a list of all
known biomarkers for HCC was collected through
an exhaustive literature review (Table 1). These
biomarkers were mapped to their corresponding
Ensembl gene ids using Biomart and manual
curation. In instances where there was more than

Table 1 Currently used serum biomarkers in the prognosis of hepatocellular carcinoma (HCC)

Used as Biomarker(s) Name Comments

Individual
biomarkers

AFP [6] Alpha-fetoprotein Increased, a sign of liver cancer

DCP [6] des-gamma-carboxy prothrombin Increased, a sign of liver cancer

GPC3 [7] Glypican-3 GPC3 is overexpressed in HCC

GP73 [8] Golgi glycoprotein 73 High expression of GP73 in primary HCC

MDK [9] Midkine Overexpressed in tumors

OPN [10] Osteopontin Overexpressed

SCCA [11] Squamous cell carcinoma antigen SCCA1, SCCA2 overexpressed

ANXA2 [12] Annexin A2 Increased in HCC

Annexin A7
[13]

Annexin A7 Increased expression inhibits HCC lymph node metastasis

CD44 [14] Cluster Differentiation 44 Increased

CD90 [14] Cluster Differentiation 90 Increased

CD133 [15] Cluster Differentiation 133 or prominin-1 CD133 protein expression levels of HCC in both the cytoplasm
and nucleus were significantly higher than adjacent normal
liver tissue.

EpCAM [16] Epithelial cell adhesion molecule Tumor size, intrahepatic metastasis, and EpCAM positivity were
associated with tumor recurrence

TGF-β (1,2,3)
[17]

Transforming growth factor beta Highly activated

FGF [18] Fibroblast growth factor Expression was only detected in the liver tissues of patients
with chronic hepatitis type C and HCC

HGF/SF [19] Hepatocyte growth factor receptor HGFA and Matriptase convert pro-HGF/SF to mature HGF/SF

Combination
of biomarkers

AFP, AFP-L3,
DCP [6]

Alpha-fetoprotein, L. culinaris agglutinin-reactive frac-
tion of alpha-fetoprotein, des-gamma-carboxy
prothrombin

Increased, a sign of liver cancer

CK19, GPC3,
AFP [20]

Cytokeratin 19, Glypican-3, Alpha-fetoprotein GPC3 with CK19 and AFP

GPC3, HSP70,
GS [21]

Glypican 3, Heat shock protein 70, Glutamine
synthetase

All increased, show a better diagnosis

TLN1, MDK
[22]

Talin-1, Midkine Talin-1 decreased, MDK increased in serum

SCCA-AFP
[11]

Squamous cell carcinoma antigen, Alpha-fetoprotein Overexpressed

HIF-1α, VEGF
(A-D) [23]

Hypoxia-inducible factor-1α, vascular endothelial
growth factor

HIF-1α and VEGF showed higher expression
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Table 2 HCC cell models and healthy liver samples were taken for this study from various studies

ENA Instrument Cell model Type Number
of
replicates

Study Id Run accession

PRJDB2882 DRR018792 HiSeq 2500 Huh7.5.1 HCC 1

PRJEB27210 ERR2619174, ERR2619175, ERR2619176, ERR2619177 HiSeq 2500 Hep3B HCC 4

ERR2619178, ERR2619179, ERR2619180, ERR2619181 HepG2 HCC 4

ERR2619182, ERR2619183, ERR2619184, ERR2619185 HuH-7 HCC 4

PRJEB27210 ERR2619186, ERR2619187, ERR2619188, ERR2619189,
ERR2619190, ERR2619191

HiSeq 2500 PHH Healthy
liver

6

PRJNA357266 SRR5104155 HiSeq 2500 LM3 HCC 1

PRJNA386625 SRR5576264, SRR5576288 HiSeq 2500 HepaRG HCC 2

PRJNA523380 SRR8615310 HiSeq 2500 SNU-398 HCC 1

SRR8615311 SNU-387 HCC 1

SRR8615387 Li-7 HCC 1

SRR8615471 SNU-878 HCC 1

SRR8615472 SNU-886 HCC 1

SRR8615483 JHH-1 HCC 1

SRR8615650 SNU-475 HCC 1

SRR8615654 SNU-423 HCC 1

SRR8615655 SNU-449 HCC 1

SRR8615661 HuH-7 HCC 1

SRR8615664 HuH-1 HCC 1

SRR8615682 SK-HEP-1 HCC 1

SRR8615914 JHH-7 HCC 1

SRR8615918 JHH-2 HCC 1

SRR8615919 JHH-4 HCC 1

SRR8615920 JHH-5 HCC 1

SRR8615921 JHH-6 HCC 1

SRR8615932 SNU-182 HCC 1

SRR8615968 PLC/PRF/5 HCC 1

SRR8616023 SNU-761 HCC 1

SRR8616130 Hep 3B2.1–7 HCC 1

SRR8616135 HLF HCC 1

PRJNA206422 SRR873426 HiSeq 2000 HKCI-1 HCC 1

SRR873427 HKCI-4 HCC 1

SRR873428 HKCI-7 HCC 1

SRR873429 HKCI-9 HCC 1

SRR873430 HKCI-11 HCC 1

SRR873836 HKCI-5B HCC 1

EU-
ToxRisk

PRJEB35350 ERR3668587, ERR3668588, ERR3668589, ERR3668591,
ERR3668592, ERR3668593, ERR3668594, ERR3668595,
ERR3668596, ERR3668597, ERR3668598, ERR3668600,
ERR3668601, ERR3668602, ERR3668603, ERR3668604,
ERR3668605, ERR3668606, ERR3668607, ERR3668609,
ERR3668610, ERR3668611, ERR3668612, ERR3668613

NovaSeq
6000

Healthy in vivo liver Healthy
liver

24a

PRJEB24482 ERR2259771, ERR2259772, ERR2259773, ERR2259774,
ERR2259775, ERR2259776, ERR2259777, ERR2259778,
ERR2259779

HiSeq 2500 Liver microtissues 3D Healthy
liver

9

PRJEB23590 ERR2203448, ERR2203449, ERR2203450, ERR2203451, HiSeq 2500 Primary human Healthy 11b
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one gene mapping to the protein biomarker, all
instances were taken. For all the Ensembl genes
that were mapped to the biomarkers, all of them
had multiple isoforms/transcripts, comprising of
both protein coding and non-coding transcripts.

2. Data preprocessing: The raw RNA-Seq data (fastq
files) were first trimmed of their adapter sequences

using Trimmomatic [47], mapped onto the human
genome (version 84) from Ensembl [48] using Bow-
tie2 [49], and quantified using RSEM [50]. Isoform
read counts were then normalized for different
studies using DESeq2 [51].

3. Machine learning:
a. Preparing different datasets: We analyzed the

known protein biomarkers and complete data

Table 2 HCC cell models and healthy liver samples were taken for this study from various studies (Continued)

ENA Instrument Cell model Type Number
of
replicates

Study Id Run accession

ERR2203452, ERR2203453, ERR2203455, ERR2203456,
ERR2203457, ERR2203458, ERR2203459

hepatocytes (PHH) liver

PRJEB24484 ERR2259780, ERR2259781, ERR2259782, ERR2259783 HiSeq 2500 Human precision-cut liver
slices from HCC patients
(hPCLiS)

HCC 4

PRJEB24487 ERR2260002, ERR2260003, ERR2260004, ERR2260005 HiSeq 2500 HepaRG 3D HCC 4

PRJEB24466 ERR2259111, ERR2259112, ERR2259113 HiSeq 2500 HepG2 HCC 7

PRJEB24464 ERR2259092, ERR2259093, ERR2259094, ERR2259095
aThere were a total of 27 samples but three samples from children or infants were removed
bThere were a total of 12 replicates for PHH, one was removed for low library depth during filtration for quality

Fig. 1 Overview of the workflow: Steps followed to find the least number of features (transcripts) required to identify the transcriptomics
biomarkers. Various machine learning algorithms were used, namely random forest (RF), K-nearest neighbor (KNN), Naïve Bayes (NB), support
vector machine (SVM), and neural networks (NNET)
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(named as all data) separately. Furthermore, the
transcriptomics data consists of protein coding
and non-coding transcripts and it provided the
opportunity to investigate the efficiency of dif-
ferent types of transcripts in identifying healthy
and HCC cell models. We made three datasets,
namely all transcripts (protein coding and non-
coding), protein coding only, and non-coding
only for both – all data and known protein bio-
markers (Fig. 1).

b. Machine learning algorithms: On these six
datasets (Fig. 1), machine learning algorithms
from the caret package in R [52] were applied.
We used five different algorithms, namely
random forest (RF), K-nearest neighbors (KNN),
support vector machines (SVM), Naïve Bayes
(NB), and Neural networks (NNET) with ten-
fold cross-validation for ten times. All further
steps are applied to all six datasets individually.
The seed was fixed to have reproducible results.
The data was first divided into 70:30 for training
and testing, respectively. A separate validation
set was not created because we used k-fold
cross-validation to tune the model’s hyper-
parameters. In the case of datasets (all tran-
scripts, protein coding only, and non-coding
only) from all data, all transcripts that had a
total expression for all samples below 10,000
were removed. This expression filter was applied
to take into account only the highly expressed
transcripts. However, in the case of known bio-
markers, no such filter was used since we
wanted to retain all information. Furthermore,
using the ‘findCorrelation’ feature from the
Caret library, highly correlated transcripts (>
0.75) were identified and removed, except one
(the first, a random transcript). Each algorithm’s

performance is assessed on all datasets by evalu-
ating various metrics, namely sensitivity, specifi-
city, accuracy, Matthew’s correlation coefficient
(MCC), and informedness (eqs. 1–4) using R li-
brary ‘MLeval’ [53] (Table 3). All metrics were
calculated using the transcript expression. Add-
itionally, the time taken by each algorithm to
run is also provided.
Based on the results from these metrics, the
best algorithm and dataset were selected and
the top 20 important features (transcripts) were
extracted using “varImp” from the Caret library.
Then to find the minimum set of features to
differentiate between healthy and HCC cell
models, “RFE” (Recursive Feature Elimination)
from the Caret library was applied using the
method cross-validation (CV).

Sensitivity or TPR ¼ TP
TP þ FN

ð1Þ

Specificity or TNR ¼ TN
TN þ FP

ð2Þ

MCC ¼ TP:TN−FP:FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þp

ð3Þ
Informedness ¼ Sensitivityþ Specificity−1 ð4Þ

where.
TP is true positive.
TN is true negative.
FP is false positive.
FN is false negative.
MCC is Mathew’s correlation coefficient

4. Re-training the model: The features (transcripts)
selected using RFE were used to train the final
model. Taking these features, exhaustive k-fold
cross-validation was run by setting the repeats to

Table 3 Number of transcripts after steps of filtration and time to run ML algorithms on them

Datasets

Known protein biomarkers All data

Steps All transcripts Protein coding Non-coding All transcripts Protein coding Non-coding

Number of transcripts after expression filter; biomarkers no
filter, all data > 10,000

410 262 149 16,173 13,688 2724

Number of highly correlated features (transcripts);
correlation cutoff > 0.75

177 98 37 12,047 9866 1970

Number of transcripts after removing highly correlated
features

234 165 113 4127 3823 755

Time to run (in seconds) RF 10.77 8.09 6.44 196.25 169.31 32.60

NB 12.34 9.38 6.63 297.81 280.27 46.05

KNN 1.03 1.10 1.11 5.63 5.62 1.78

SVM 2.25 1,07 1.05 7.51 7.48 2.72

NNET 72.37 35.84 20.12 71,044.53 56,114.75 3125.74
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100 and number to 10; implying 1000 instances will
be evaluated.

5. Chance findings: There were a total of ~ 200 k
transcripts and to establish that the features
(transcripts) selected using RFE were not chance
findings, 15,000 iterations were performed taking
three random transcripts out of the highly
expressed transcripts to compare their prediction
accuracy. The results from randomly taken
transcripts were compared to the selected features
(transcripts from RFE).

Results
To obtain an exhaustive list of all HCC in vitro cell
models, Cellosaurus [46] was used (accessed on 27/
08/2019). It houses data for 250 HCC cell models for
humans (Suppl. Table 1). RNA-Seq data for all 250
cell models were searched on ENA using the applica-
tion programming interface (API), taking the data
generated using Illumina’s HiSeq platforms or newer
and library layout as paired-end. Furthermore, it was
manually checked if the data were obtained at base-
line. A total of 51 samples from 6 studies comprising
of 33 cell models from ENA passed the filters and
manual curation (Table 1). Samples from the EU-
ToxRisk project were also taken; healthy in vivo liver
(24 samples) and all other samples (32 samples from
5 cell models) were sequenced on NovaSeq 6000 and
HiSeq 2500, respectively (Table 1).
The samples’ quality was assessed using FastQC, and it

was observed that all samples passed the “Per base se-
quence quality” metric. However, one sample (PHH_
024_1) did not pass the library size filter and was dis-
carded. The samples passing the filters were then proc-
essed and the transcript expression was normalized
using DESeq2 for different studies.
We first investigated the expression patterns of the

known biomarkers at the transcript level to see if the
protein coding transcripts demonstrate a similar expres-
sion pattern as known protein biomarkers. Each gene
can have multiple protein coding transcripts, only the
ones mapped to manually annotated and reviewed Uni-
prot identifiers were considered and their expression
pattern was examined (Suppl. Fig. 1). VEGFA-223,
HSP90AB1–203, FGF5–201, ANXA7–201, and SPP1–
201 were the most down-regulated and CD44–206,
HSP90AB1–201, SPP1–202, ANXA2–202, and CD44–
209 were the most upregulated transcripts.
We then investigated the accuracy of the known bio-

markers (all three datasets, namely all transcripts, pro-
tein coding only, non-coding only) and all data (all three
datasets), in predicting the correct labels for the cell
models. We focused only on highly expressed transcripts
and hence, to remove the lowly expressed ones, an

expression filter was introduced (total expression across
all samples > 10,000 reads) (Table 3). However, in the
case of known biomarkers, no such filter was used be-
cause we wanted to preserve any information, if present,
held by even the lowly expressed transcripts. Further-
more, all transcripts having a high correlation (> 0.75)
were discarded to remove redundancy except the first
(random) transcript in the list. To the remaining tran-
scripts in each dataset, ML algorithms were applied, in-
dividually. While KNN and SVM were the fastest to run
(a few seconds), NNET took the longest time for all
datasets (most for all data-all transcripts: ~ 19 h 44min)
(Table 3).
The results obtained from the algorithms show that

the area under the curve-receiver operating characteris-
tics (AUC-ROC) values was the highest for RF and the
lowest for KNN, across all datasets (Fig. 2). AUC-ROC
values for SVM cannot be obtained because it is a
discrete classifier. For other metrics (sensitivity, specifi-
city, informedness, and MCC) for all datasets, SVM illus-
trated the highest values (Fig. 3). In the case of known
biomarkers, RF demonstrated high values comparable to
SVM in some cases for all datasets. NB also illustrated
high values for all metrics for all data-all transcripts. We
were also interested to see if protein coding or non-
coding individually could give a better prediction. How-
ever, it was noted that predictions were less accurate
when using them separately, as compared to all tran-
scripts. The confidence intervals for sensitivity and spe-
cificity were the smallest in the case of all data-all
transcripts for all algorithms and particularly for RF and
NB (Fig. 4).
Based on the values of different metrics used to assess

the performance of the algorithms on various datasets,
RF and SVM performed the best for all datasets; primar-
ily for all transcripts, protein coding transcripts, and
non-coding transcripts datasets for all data. To further
get the least number of features required to differentiate
between the healthy and HCC cell models, the top 20
important features (transcripts) from RF and SVM when
applied to all data-all transcripts were taken (Fig. 5A).
There was a total of 32 unique features (transcripts),
with an overlap of eight features between the two algo-
rithms (Suppl. Fig. 2). Furthermore, recursive feature
elimination (RFE) was applied to this list to extract the
least number of features required to differentiate be-
tween healthy and HCC samples. With the application
RFE, three features (transcripts) were identified (Fig. 5B),
namely PARP2–202 (protein coding transcript),
SPON2–203 (protein coding transcript), and CYREN-
211 (non-coding transcript) with an accuracy of 0.97
and kappa of 0.93. These three transcripts were present
in both algorithm’s top important features. While
PARP2–202 was upregulated (log2 fold change: 2.368),
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Fig. 2 AUC-ROC: The area under the ROC (receiver operating characteristic) curve for all datasets analyzed using different machine learning
algorithms, namely K-nearest neighbors (KNN), Naïve Bayes (NB), neural network (NNET), and random forest (RF). Known biomarker (A: all
transcripts, B: protein coding transcripts, and C: non-coding transcripts) and all data (D: all transcripts, E: protein coding transcripts, and F: non-
coding transcripts). For all the calculations, transcript expression was used

Fig. 3 Machine learning (ML) metrics values. The values for different metrics calculated for all datasets using different machine learning
algorithms, namely K-nearest neighbors (KNN), Naïve Bayes (NB), neural network (NNET), random forest (RF), and support vector machine (SVM).
Known biomarker (A: all transcripts, B: protein coding transcripts, and C: non-coding transcripts) and all data (D: all transcripts, E: protein coding
transcripts, and F: non-coding transcripts). For all the calculations, transcript expression was used
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SPON2–203 and CYREN-211 were both down-regulated
(− 5.421 and − 2.771, respectively) (Fig. 5C).
The PARP2–202 transcript is the second-largest pro-

tein coding transcript from the PARP2 gene. It shares
97.8% coding sequence (CDS) identity and similarity
with the longest protein coding transcript (PARP2–201)
from the same gene. In the case of SPON2–203, it is the
largest protein coding transcript from the SPON2 gene
[54]. Lastly, CYREN-211 is an 844 bp long non-coding
transcript. As PARP2–202 is highly similar and identical
to the longest protein coding transcript of the PARP2
gene, it can be assumed that the annotations from the
PARP2 gene can be used for PARP2–202. For SPON2–
203, it being the longest protein coding transcript for
the gene it is the primary gene product. However, for
CYREN-211, no annotations could be derived as it is a
non-coding transcript and no functional properties are
yet defined for it.

An investigation of the gene ontology terms (biological
process) obtained using DAVID [55] highlighted that
CYREN is involved in double-strand break repair via
non-homologous end-joining (GO:0006303) and PARP2
had a known function in DNA repair (GO:0006281),
base-excision repair (GO:0006284) and DNA ligation in-
volved in DNA repair (GO:0051103). In the case of
SPON2, multiple ontologies for immune responses were
obtained – GO:0002448 (mast cell mediated immunity),
GO:0008228 (opsonization), GO:0032755 (positive regu-
lation of interleukin-6 production), GO:0032760 (posi-
tive regulation of tumor necrosis factor production),
GO:0043152 (induction of bacterial agglutination), GO:
0045087 (innate immune response), GO:0050832
(defense response to fungus), GO:0051607 (defense re-
sponse to virus), GO:0060907 (positive regulation of
macrophage cytokine production), GO:0071222 (cellular
response to lipopolysaccharide), GO:0001530

Fig. 4 Confidence interval: Confidence interval for sensitivity and specificity across all machine learning algorithms, namely K-nearest neighbors
(KNN), Naïve Bayes (NB), neural network (NNET), and random forest (RF). Known biomarker (A: all transcripts, B: protein coding transcripts, and C:
non-coding transcripts) and all data (D: all transcripts, E: protein coding transcripts, and F: non-coding transcripts). For all the calculations,
transcript expression was used
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(lipopolysaccharide binding), and GO:0003823 (antigen
binding). The aberrant activation of the DNA repair
pathways is linked to various cancers [56, 57] and in re-
cent studies, immune dysfunction in HCC and immuno-
modulation have been highlighted as a major factor in
HCC development [58, 59].
To assess the strength of the model, it was re-trained

using the three predicted features (transcripts) but with
an increased number of cross-validations (repeats = 100,

number = 10; implying 1000 iterations). High values for
all metrics were observed with RF and SVM (sensitivity:
0.968 and 0.944 (RF and SVM), specificity: 1 and 1,
MCC: 0.973 and 0.936, informedness: 0.968 and 0.944,
and AUC-ROC: 0.99 (RF only)). Moreover, the confi-
dence interval for sensitivity and specificity in the case
of RF was 0.84–0.99 and 0.92–1, respectively. Finally, to
establish that these transcripts (PARP2–202, SPON2–
203, and CYREN-211) were not chance findings, random

Fig. 5 A Top 20 important features extracted from all data-all transcripts dataset obtained using (i) SVM and (ii) RF. B Recursive feature
elimination (RFE) was used with the top 20 features from (A) to extract a list of the least number of features required to differentiate between
healthy and HCC cell models. Three features were selected having an accuracy of 0.97 and kappa of 0.93 (C) Average expression of three features
(transcripts), across healthy liver and HCC cell models, chosen in (B)
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combinations of three transcripts (highly expressed)
were made and their efficiency was assessed and com-
pared to the three transcripts selected using RFE. It was
observed that out of 15,000 combinations created, none
of the combinations exhibited higher or equal values for
the metrics for RF and only 0.12% cases (18 cases) dem-
onstrated higher or equal value for the metrics in the
case of SVM (Suppl. Table 2).

Discussion
Hepatocellular carcinoma (HCC) has a huge global bur-
den and the challenge lies primarily in its early detection
owing to the limited accuracy of serum biomarkers and
inefficiency of radiological examinations. With advance-
ments made in machine learning over the last few years,
we investigated if it can assist in finding better bio-
markers for HCC. We took RNA-Seq data from HCC
and healthy liver cell models and used various machine
learning algorithms to highlight key features that can
differentiate between the healthy and HCC cell models
with high accuracy. A set of three transcripts were iden-
tified, namely PARP2–202, SPON2–203, and CYREN-
211; proposed as novel putative transcript biomarkers.
Though widely studied, RNA-Seq data for HCC at

baseline is not abundantly available. Out of 250 HCC
cell models listed in Cellosaurus, data could only be ob-
tained for 33 cell models. Many studies were discarded
in the process of selection due to single-end library lay-
out, low coverage, exposure to drugs various treatments,
and insufficient metadata. For the 33 cell models taken
in this study, 28 had only one replicate. This could have
been a limiting factor if these were to be analyzed per
cell model, however, in this study the focus was on HCC
and all cell models were combined to define the tran-
scriptome profile of HCC. Using the transcriptome pro-
file, the cell type and/or condition (healthy/disease/
treatment) can then be accurately assessed [60] and then
comparing these profiles, distinct features for these pro-
files can be established.
For HCC, many biomarkers are extensively studied

(Table 1), AFP being one of the most studied bio-
markers. Although these biomarkers have been estab-
lished through studies of serum, most of them are
predominantly secreted by the liver [61]. In an attempt
to compare the efficiency of these known biomarkers
and all data with respect to their ability to discriminate
between the healthy and HCC cell models, we observed
that all data out-performed known biomarkers’ datasets.
The comparatively lower accuracy obtained using known
biomarkers can be attributed to fewer features (tran-
scripts) in the dataset. While all data constituted of ~
200 k transcripts, known biomarkers amounted for ~ 400
features only. The transcriptomics data also provided an
opportunity to investigate if protein coding or non-

coding transcripts could individually be enough to clas-
sify healthy and HCC cell models. A loss of information
can be witnessed in both instances compared to both
types of transcripts taken together (all transcripts data-
sets) in the case of known biomarkers and all data. This
exhibits that the non-coding transcripts are equally im-
portant as the protein coding transcripts. Moreover, in
recent studies, the dysregulation of long non-coding
RNA in HCC has been studied [62] and their use as bio-
markers has also been investigated [63].
Multiple machine learning algorithms (RF, NB, SVM,

KNN, and NNET) were used to analyze the data, and all
exhibited high efficiency. It was surprising to see how
well these algorithms performed, despite significant
variations in the sample and library preparation by
different labs. Though all exhibited high efficiency, we
observed some differences among them across all
datasets as illustrated by various metrics calculated
for them (Figs. 2 and 3). The reason for the varying
performance of these algorithms on the same datasets
can be explained by how their hyper-parameters are
set. For instance, in the case of RF, the hyperpara-
meters can be the number of samples required to
split a node or tree depth; for KNN it can be the
number of iterations to form k-groups or clusters; for
NNET it can be node weights.
The highest values for all metrics were demonstrated

by RF and SVM on all data-all transcripts dataset and
the confidence intervals were smallest for RF for the
mentioned dataset. NB also exhibited high values for all
metrics for all data-all transcripts dataset however it per-
formed poorly for other datasets and hence was not con-
sidered for further analyses. Hence top 32 important
features were extracted from the algorithm-dataset com-
bination (RF and SVM with all data-all transcripts) to
find the least number of features using RFE. RFE em-
ploys a backward selection of the predictors, starting
with all and removing the ones with the least importance
in the model. Three transcripts were identified with
maximum accuracy and kappa (Fig. 5B). None of these
three transcripts were the ones that were taken ran-
domly from correlated transcripts (c.f. Methodology 3b)
and hence no transcript was discarded (correlation >
0.75) that could have provided the same prediction ac-
curacy. One of the chosen transcripts was a non-coding
transcript (CYREN-211). While many studies have em-
phasized the role of non-coding transcripts in the initi-
ation, progression, and metastasis of HCC [64–67], their
identification as key features to differentiate HCC and
healthy liver is highlighted in only a handful of recent
studies [68, 69].
Re-training the model using the three selected tran-

scripts by applying exhaustive cross-validation helped in
establishing their potency in discriminating the healthy
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from the HCC cell models. A final comparison with ran-
domly selected highly expressed transcripts further
established that these three transcripts were not chance
findings; with values for all metrics always higher than
the random combinations for RF and only 6 cases exhib-
ited higher values for SVM.
The catalytic activity of PARP2, one of the poly-ADP-

ribose polymerase (PARP) enzymes, has been shown to be
induced by DNA-strand breaks. This provides evidence
for its cellular response to DNA damage [70]. Further-
more, the expression of the PARP enzymes is upregulated
in HCC and other tumors [71]; also shown in our results
(Fig. 5C). The higher expression of the PARP2 is signifi-
cantly correlated with larger tumor size, capsular or vascu-
lar invasion, lymph node metastasis, and high histological
grade [72]. Moreover, high PARP2 expression is correlated
with a low 5-year survival rate, however, given the design
of the study (cell-models) survival rates could not be de-
termined. In recent years, immune response and modula-
tion of the innate immune system have also been linked to
PARP2 [73]. The role of PARP2 in thymocyte develop-
ment and B-cell lymphopenia are some of the well-studied
processes [74, 75]. A reduction in tumor growth in
PARP2-deficient host-mice, compared to wild-type speci-
mens (C57 and Balb/c) has also been associated with the
immunomodulatory role of PARP2 [76, 77].
While SPON2 knockdown cell lines exhibit higher

hepatoma cell migration and invasion, overexpression
repressed them [78]. At the immune system level, it pro-
motes infiltration of M1-like macrophages and inhibits
tumor metastasis by activating the SPON2-α5β1 integrin
signaling that in turn inactivates RhoA and prevents F-
actin assembly [79]. SPON2 levels correlated positively
with HCC prognosis; it should be mentioned here that
the expression of SPON2–203 (Fig. 5C) is for the tran-
script and not gene/protein. The role of CYREN-211 in
HCC could not be evaluated due to the unavailability of
the functional annotation of the non-coding transcripts.
However, at the gene/protein level, its role in DNA re-
pair by inhibiting classical non-homologous end-joining
and thereby promoting error-free repair by homologous
recombination in cell cycle phases where sister chroma-
tids are present are well studied [80].
Though these transcripts are validated through in silico

approaches and their role in HCC are defined in the litera-
ture, an extensive validation in the HCC patients still
needs to be done. If established, such an approach can also
be used to identify transcript-level biomarkers for various
diseases and conditions, thus providing us an opportunity
to look beyond proteins and maybe help in the identifica-
tion of the disease or the condition at an early stage. One
drawback of the current study was that the data was taken
from the liver and to predict HCC, an invasive approach
has to be taken to extract the sample. To look for

transcript biomarkers for HCC that are non-invasive, data
from HCC patient’s blood serum/plasma will be required.
At this moment, the scarcity of such data limits us from
exploring the circulating mRNAs from HCC to find novel
and potent biomarkers through in silico approaches. A
thorough follow-up study would be required to look for
non-invasive/circulating transcript biomarkers in the
blood of the HCC patients, by generating and analyzing
the data as discussed in this study.

Conclusion
In our investigation of the healthy liver and various
HCC cell models to find novel biomarkers, we analyzed
RNA-Seq data using machine learning. Comparing the
known HCC biomarkers with all other possible tran-
scripts, we first concluded that using the exhaustive
transcript list displayed better accuracy, thus implying
that better biomarkers exist. Similarly, between all
existing transcripts, protein coding transcripts only, or
non-coding transcripts only, it was illustrated that all
transcriptomics data improved also the overall accuracy.
From this observation, it can be concluded that both
protein coding and non-coding transcripts hold import-
ant information and are regulated under internal and/or
external stimuli. This is further supported by the identi-
fication of two protein coding (PARP2–202 and
SPON2–203) and one non-coding (CYREN-211) tran-
script as novel and potent biomarker for HCC. However,
the findings would have to be validated in vivo.
The pipeline developed in this study to identify tran-

script level biomarkers for HCC can be applied to other
RNA-Seq datasets as well.
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