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High-Throughput Analysis of  
in-vitro LFP Electrophysiological 
Signals: A validated workflow/
software package
P. Tsakanikas, C. Sigalas, P. Rigas & I. Skaliora

Synchronized brain activity in the form of alternating epochs of massive persistent network activity 
and periods of generalized neural silence, has been extensively studied as a fundamental form of 
circuit dynamics, important for many cognitive functions including short-term memory, memory 
consolidation, or attentional modulation. A key element in such studies is the accurate determination 
of the timing and duration of those network events. The local field potential (LFP) is a particularly 
attractive method for recording network activity, because it allows for long and stable recordings from 
multiple sites, allowing researchers to estimate the functional connectivity of local networks. Here, we 
present a computational method for the automatic detection and quantification of in-vitro LFP events, 
aiming to overcome the limitations of current approaches (e.g. slow analysis speed, arbitrary threshold-
based detection and lack of reproducibility across and within experiments). The developed method is 
based on the implementation of established signal processing and machine learning approaches, is fully 
automated and depends solely on the data. In addition, it is fast, highly efficient and reproducible. The 
performance of the software is compared against semi-manual analysis and validated by verification of 
prior biological knowledge.

Electrical brain activity recordings provide important diagnostic and research tools. Brain signals vary widely in 
their spatiotemporal characteristics and means of acquisition. Since the development of the electroencephalo-
gram (EEG), electrical signals have been obtained by gradually more invasive methods and at increasingly higher 
spatial resolution: from recording electrical activity from the top of the skull (EEG) or the surface of the cerebral 
cortex (i.e. electro-corticogram, ECoG), to recordings within brain tissue: local field potentials (LFPs), or action 
potentials from individual cells (Multi- and Single-unit activity).

Among these, field potential activity represents the slow voltage fluctuations (<200 Hz) that are caused by 
ionic currents in the vicinity of the recording electrode1, 2. LFPs have become increasingly popular over the 
last decade as they offer multiple insights into the mechanisms underlying cortical processing1. Their differ-
ent band-limited components (e.g. delta, theta, alpha, beta and gamma bands) enable scientists to observe the 
integrative excitatory and inhibitory synaptic processes at the network level. Also LFPs carry information about 
the state of the cortical network, local intra-cortical processing and the effect of neuro-modulatory pathways3, 4. 
Another reason for the scientific interest in LFPs is that they typically contain a broad spectrum of neural oscilla-
tors ranging from under 1 Hz to over 100 Hz and reflecting the activity of several neural processing pathways5–8. 
Additionally, LFP signals allow the empirical examination of distinct and potentially independent information 
channels in neural processing9–11, while in combination with spike recordings, can give insight into circuit mecha-
nisms generating neuronal activity12. Finally, information extracted from LFP signals is used for the development 
of in silico models of neuronal activity13, 14, which are then compared to in-vivo experiments. In systems neuro-
science there is a requirement for massively parallel data from multi-electrode arrays, implying a tremendous 
increase of analysis load. Therefore, for all the aforementioned reasons, the need for reliable, automated and high 
throughput tools for detecting and quantifying neural events in LFP recordings is of critical importance.
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Currently, several software packages (commercial and academic) are available for analysis of neuronal signals, 
such as EEGLAB15, CHRONUX16, OSort17, and Spike218. While all those packages are very efficient in terms of 
time-frequency and spike-train analysis, none allows for an automatic detection and quantification of the irreg-
ular and variable voltage bursts inherent in field potential recordings. Several lab-based studies came up with 
diverse solutions. For instance, Volgushev et al.19 and Seamari et al.20 performed LFP event detection by combin-
ing intracellular and extracellular recordings. They used the intracellular recordings in order to detect the events 
and applied the detection results on the LFP signal. Other groups developed, methods for event detection based 
on multiunit activity21, 22, which, however, has different properties compared to LFPs, including higher acquisi-
tion frequencies and event detection based on neuronal spikes. Another common approach employs arbitrary 
user-defined global thresholds (Sanchez-Vives et al.23; Compte et al.24), any value above which is considered an 
event. Since those methods are not data driven and are applied globally, they can easily lead to either overesti-
mation or underestimation of LFP events both in terms of occurrence and onset/offset values. In addition, they 
are highly time consuming (since they involve extensive trial and error in order to set the threshold and possibly 
also subsequent manual verification of the detection accuracy), and subjective since the determination of an 
appropriate threshold can vary significantly between studies with different or even the same experimental models.

A significant development in this direction was provided in 2007 by Mukovski and colelagues25 for event 
detection from LFP signals in-vivo. Their method applied an automatically estimated global threshold on a 
pre-processed LFP signal. The threshold is guided by defining several justified, albeit user-defined, assumptions 
(e.g. limit set of 50% of data sorted by amplitude). Although this approach provides a data-driven automati-
cally defined threshold for event detection, it has certain features that limit its widespread use: (i) it requires a 
pre-processing step that removes the low frequency fluctuations (<20 Hz); and (ii) the estimated threshold is 
applied globally to the entire recording. These features could be problematic in cases where the lower frequencies 
are an integral part of the signal (e.g. add ref), or in recordings that exhibit dynamic baseline changes and/or 
events with low periodicity.

Hence, in most studies investigating activity in the LFP domain (e.g. Up states, network oscillations, K com-
plexes, spindle bursts), the detection is either performed on signals other than LFP19–22, or employs global thresh-
olds (whether arbitrary or data-derived), that are insufficient for accurate detection of the events’ onset and offset 
in dissimilar datasets. With this in mind, and considering the increasing interest in LFP signal exploitation, as 
well as the technological advances in multiple simultaneous field potential recordings (e.g. multi electrode arrays -  
MEAs) employed both in vitro and in vivo, we have developed a novel workflow for the automatic detection 
and quantification of spontaneous activity bursts in LFP recordings, employing and adapting methods from the 
fields of Signal Processing, Speech Analysis and Machine Learning. From the user’s point of view, our method-
ology (which we call LFPAnalyzer) does not require knowledge of the aforementioned scientific areas, nor prior 
assumptions on the recorded signal from the user. All processing and decisions are data driven, thereby allowing 
a direct comparison of the results obtained by different users within and across laboratories. Moreover, and in 
contrast to the previous attempts (e.g. Mukovski et al.)25, the presented methodology is locally adaptive, enabling 
a more accurate threshold estimation and thus more precise estimation of onsets and offsets. In addition, the 
analysis is applied to the full (unfiltered) signal, and is fully automated in terms of the detection of recurring 
events and the estimation of a plethora of their properties, as presented in detail in the Methods Section. Here 
we provide a three-fold assessment of the efficiency and robustness of the proposed workflow by: (a) comparing 
its accuracy and reproducibility against manual processing, (b) validating the obtained data against already pub-
lished pharmacological results; and (c) comparing the efficiency of the local vs. global thresholding schemes on 
the same datasets. To the best of our knowledge this is the first attempt in the field of computational neuroscience 
towards a high throughput and fully automated software package, with local and adaptive threshold estimation 
based solely on the data.

Results
Outline of Signal processing and event detection system.  The developed workflow for automatic 
analysis and event detection in LFP signals, is implemented in MATLAB© environment. A brief description is 
outlined in Fig. 1 (Panel1): (1) Signal pre-processing: DC offset is subtracted and the trace is low-pass filtered 
to isolate the LFP-related component (frequency range <200 Hz); (2) Computation of two complementary fea-
ture sequences, each based on a different transformation process: namely Hilbert transform26 and Short time 
energy transform27. Both feature sequences are used for the efficient separation of the LFP signal events from 
the baseline; (3) Estimation of a dynamic data-driven threshold for each feature sequence (based on Gaussian 
Mixture Models28), ensuring no a priori assumptions about the particular shape or absolute size of the event; and 
(4) post-processing the event-containing segments from each feature sequence with an OR logical function and 
extraction of the final detected LFP events. Please refer to Methods Section for more details.

Evaluation of LFPAnalyzer.  Accuracy.  In order to validate the developed methodology, we first com-
pared the results obtained by LFPAnalyzer to those obtained by manual analysis. This comparison provides a cru-
cial indication of our method’s efficiency to deal with real data. The manual analysis consisted of the same logical 
steps, i.e. pre-processing (DC subtraction and low-pass filter), Hilbert transform, and global threshold setting at 
40% of the standard deviation of the input signal in order to help the users identify the active states and refine the 
boundaries of the events. The detected events were then inspected by an experienced user so as to define their 
onset and offset. At this point we should state that, as with any method that employs a threshold setting, events 
with amplitude below the user-defined threshold value were omitted.

Figure 2a illustrates the comparison of measurements concerning event duration. Mean values obtained 
with the two methods showed an average difference of ∼0.26 s (Fig. 3a), statistically significant with t-test and 
p ≪ 10−7, while the standard deviation was similar (0.73 and 0.72 for the LFPAnalyzer and the manual analysis 
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Figure 1.  Panel 1: Workflow schematic presentation, including four distinct steps: (a) the input data is pre-
processed (removal of DC offset and low pass filtering), (b) two feature sequences are extracted for each 
segment, based on two complementary mathematical transformations (Hilbert and Short Energy; blue 
rectangle); (c) a dynamic threshold is estimated for each feature sequence (orange rectangle), and used to 
create a mask; (d) the two masks are combined using a logical OR operator (green rectangle) and used for the 
detection of the onset and offset of the LFP events. Panel 2: Illustration of the successive processing of the LFP 
signal (a) Original signal; (b) preprocessed signal, after DC offset subtraction and low-pass filtering at 200 Hz; 
(c) Hilbert transformed signal; (d) short time energy transformed signal; (e) Hilbert transformed signal (black 
line) with estimated threshold levels (red line); (f) short time energy transformed signal (black line) with 
estimated threshold levels (red line); (g) detected events (red line) on the Hilbert signal; (h) detected events (red 
line) on the short time energy signal; (i) final result with the detected events (red line).

Figure 2.  Comparison of LFPAnalyzer vs. manually extracted results. (a) Average duration values obtained 
with the manual (black bar) and the LFPAnalyzer (grey bar), error bars indicate the SEM, (b) Scatter-plot of the 
differences in individual values of event duration (LFPAnalyzer minus manual detection). (c) Scatter-plot of the 
differences in individual values of event onset (LFPAnalyzer minus manual detection). (d) Scatter-plot of the 
differences in individual values of event offset (LFPAnalyzer minus manual detection).
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respectively). Interestingly, the coefficient of variation (CV), which is a standardized measure of the dispersion 
of a probability distribution, is smaller for the LFPAnalyzer compared to the manual approach, reflecting the 
precision and repeatability of the analysis method. In order to further explore the source of the moderate (15%) 
deviation between the two methods, we calculated the differences in duration, onset and offset values for each 
event (Fig. 2b–d).

Figure 3b presents the values for α and b, as well as R-square values, showing the goodness-of-fit (e.g. 
R-square = 1, indicates a perfect fit of the regression function to the data). As can be seen from Figs 2 and 3b, in 
the case of event duration the gradient value is almost zero (−0.022) with a bias of 0.271 s; in close agreement to 
the difference in average values (∼0.26 s). The regression lines for Onset and Offset differences are also parallel to 
the x-axis, and the ‘bias’ introduced by the LFPAnalyzer is −0.03 and 0.24 s for the onset and the offset, respec-
tively. Hence we can conclude that the LFPAnalyzer produces a consistent ‘overestimation’ of event duration 
compared to the user, which is almost entirely due to the detection of event offset. It should be noted that the 
characterization of over- or under-estimation is based on the assumption that the user-defined measurements are 
taken as the “ground” truth. The consistent overestimation on the event offset is a systematic bias since the same 
properties (detection conditions) are satisfied by including the slow slope of the event at its end (when the bursts 
return the baseline level and rests there).

Reproducibility.  Any automated method is by definition highly reproducible. In order to obtain a quantification 
of LFPAnalyzer’s advantage we examined the results obtained by two independent experts using the manual 
approach on the same dataset (18 recordings), and examined the onset, offset and duration of detected LFP 
events. A linear regression applied on the duration values, presented in Fig. 3c, revealed a good correspondence 
between the two users (α = 1.098), but an 11.4% difference in values (b = 0.281 s), a value almost equal to the 
average duration difference (Fig. 3d).

Hence, although we have a one-to-one relationship between duration values computed by each user, there is a 
significant discrepancy in absolute values (see Fig. 4a). This precludes the direct comparison of data analyzed by 
different users, since this difference (the bias) is not the same for each event (see Fig. 4b), but is instead a regres-
sion bias.

In order to further explore the basis for this difference between the two users, we performed the same 
analytic comparison on the onset and offset timings. Regression fits for both onset and offset values are illus-
trated in Fig. 4c,d and reveal a perfect one to one relationship (αonset = 1 and αoffset = 1). Interestingly, although 
there is a practically non-existent bias in onset values (bonset = −0.06 s), the bias for offset values was significant  
(boffset = −0.411 s), suggesting that user1 tends to overestimate (or user2 tends to underestimate) the precise point 
where an event ends (Supplementary Material 1). Taken together, we can conclude that, unlike the automated 
LFPanalyzer presented here, the manual approach is prone to the users’ random bias. It is also noteworthy that 
the discrepancy in event duration between the two users is similar to the discrepancy between the two methods 

Figure 3.  Tables’ display item. (a) Average values of duration, and the corresponding standard deviation, 
standard error of means, and coefficient of variation, for the two analysis methods. (b) Linear Regression 
parameters. Line 1 shows α, b and R-Square values for the duration, line 2 for the onset and line 3 for the 
offset. (c) Average values of duration, and the corresponding standard deviation, standard error of means, and 
coefficient of variation (CV) obtained with manual and automatic processing. (d) Linear Regression parameters. 
Line 1 shows α, b and R-Square values for the duration, line 2 for the onset and line 3 for the offset. (e) Number 
of events detected by LFPAnalyzer and manual approaches. (f) Average values of parameters for the additional 
events (n = 217) detected by LFPAnalyzer vs. the common events (n = 762) detected by both manual and 
automated methods.
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(11.4% vs. 15%), and both are accounted by the different estimation of event offset. This indicates that the termi-
nation of an LFP event is more prone to subjective assessment when performed manually, and that this subjectiv-
ity is eliminated by the automatic evaluation of the recorded events.

Efficiency.  Finally, we examined the efficiency of the two approaches in terms of numbers of event detected. As 
can be seen in Fig. 3e, LFPAnalyzer successfully detects 98% of the LFP events detected by the manual analysis, 
indicating that practically all events detected by the users are also detected by the software. At the same time, 
the automated method detects 217 (∼30%) additional events. In order to locate the source of this discrepancy, 
we examined the parameters of these ‘extra’ 217 events in terms of average duration, max/min amplitude and 
rectified area (Fig. 3f). We find that the additional events are overall significantly smaller (p ≪ 10−4) compared 
to the average size of the shared detected events, in terms of duration (0.98 vs. 1.69 s); rectified area (i.e. the sum 
of absolute voltage values within an event) (0.069 vs. 0.224 V*s); minimum and maximum amplitude (−38 vs. 
−68 µV and 24 vs. 49 µV, respectively). On the other hand, the spectra power content across the five frequency 
bands (Delta, Theta, Alpha, Beta, and Gamma) are similar, i.e. not statistically different (unpaired t-test > 0.05 for 
each band), to the events shared by the two detection methods (Supplementary Material 2).

Validation against previously published pharmacological manipulations.  A further assessment of 
our method was to compare the results obtained from LFPAnalyzer against previously published biological find-
ings. Up states are spontaneous epochs of persistent depolarizations that occur in a highly synchronized manner 
and can therefore be detected both in intracellular and in LFP recordings29. These network events are maintained 
by recurrent excitation within local circuits and can be turned on and off by synaptic input30, 31. Previous studies 
have shown that GABAergic inhibition is essential for stabilizing persistent activity by balancing excitation and 
terminating the Up state. Furthermore, GABAA and GABAB receptor-mediated inhibition have complementary 
roles in regulating persistent activity: blockade of GABAB receptors increases32–34, while suppression of GABAA 
receptors decreases33 the duration of spontaneous Up states. In these studies the effect of GABAB receptors on 
Up state duration was studied with both intracellular and extracellular (LFP) recordings. Here, we relied exclu-
sively on LFP recordings of spontaneous Up states while using the same experimental conditions. Since it is 
already established that the correspondence between extracellularly and intracellularly recorded Up states is 
very strong34, 35, we expected to find a similar effect of GABAB receptor blockade using the developed package. 
Following the published experimental protocol32, 34, we examined spontaneous cortical events in the presence 
of 1 μM CGP5584536. Events were detected and quantified with LFPanalyzer and the results are compared to 
the published effect regarding their duration (Fig. 5). As illustrated in Fig. 5a, the results in both sample groups 
(control and CGP-treated) are fully compatible to the literature: event duration is increased from 1.32 ± 0.15 s in 
the control group to 1.87 ± 0.18 s in the CGP-treated group (or ∼42% increment, p < 0.01, student’s t-test), in 
agreement to the findings reported both by Mann et al.32, and Sigalas et al.34.

In addition, we further investigated the differences between control and CGP-treated samples, by estimating 
the corresponding probability density functions (pdfs). Gaussian Mixture Models28 applied to duration values 
revealed a bimodal distribution, as shown in Fig.  5b,c. Those mixture pdfs are defined as: 

λ µ Σ= ∑ ι ι=p x w g x( ) ( , )i
M

i1 , where x is the 1-dimensional observations of duration, wi, i = 1, …, M the mixture 
weights with ∑ == w 1i

M
i1 , g is the Gaussian function, μ and Σ the mean and covariance, and λ the full set of 

parameters λ µ Σ= w{ , , }i i i . Here we used a two component GMM (M = 2) since the corresponding distributions 
are clearly bimodal, and the resulting parameters are shown in Fig. 5d. This analysis indicates that each biological 
state (control, CGP) is best described by 2 populations of events, with different average durations. Hence, in the 
control state there is one population with a shorter average duration (μ1 = 0.74 s), which represents about a third 

Figure 4.  Reproducibility assessment: (a) average duration times on the same dataset by two users, the 
error bars corresponds to SEM. Average duration difference is ∼0.21 s. (b) Duration values for each event, 
and the corresponding regression line. Scatter plots of onset (c) and offset (d) values for each event, and the 
corresponding regression lines.
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of the sample (w1 = 0.37); and a second population with a longer average duration (μ2 = 1.65 s), which accounts 
for the remaining two thirds of the total sample (w2 = 0.63). In contrast, in the CGP state, the first population 
exhibits an increased mean duration (μ1 = 0.82 s), but now accounts for only a fourth of the total dataset com-
pared to the corresponding control (w1 = 0.25); while the second population also exhibits longer mean duration 
(μ2 = 2.21 s) and also account for a greater percentage of the dataset (w2 = 0.75) compared to control samples. The 
aforementioned analysis can be applied to any of the additional properties quantified by the developed method 
(as mentioned in the Methods) in order to quantify and compare different aspects of LFP events.

Anticipated Application.  Finally, we present a prospect application of the developed software towards sys-
tems neuroscience since, as a high-throughput methodology, it can lead to the production of massive data via 
event modelling. On that basis, we estimated the probability density functions for 10 distinct event properties 
extracted from the control samples presented above. In addition to event duration, these include the time between 
two consecutives LFP events (inter-event interval), min and max values, rectified area, power in the five frequency 
bands: i.e. delta, theta, alpha, beta and gamma (presented in Supplementary Material 3). Those pdfs provide a 
complete description of the LFP signal obtained from a given sample and embed all the stochasticity involved in 
the phenomenon. We suggest that such information is necessary in order to create synthetic LFPs recordings that 
exhibit all the features of a population and can be applied to a number of pharmacologically and/or genetically 
treated samples in order to detect subtle but significant differences that might be missed in more traditional 
analysis methods. This way various hypotheses can be tested faster, while reducing the effort and cost required for 
biological validation/evaluation.

Discussion
The developed automated Local Field Potential (LFP) signal analysis pipeline was designed in order to provide 
reliable, reproducible and high-throughput analysis to experimental neuroscientists and computational/system 
biologists. Its implementation relies on solid, well established methods from scientific areas such as machine 
learning, sound/speech engineering and signal processing. Proper adaptation and refinement of these tools to 
neurophysiological signals allowed us to generate an unbiased methodology to extract massive amount of infor-
mation from large datasets.

Given that our methodology is data-driven and fully automated, it is by definition both rapid and highly 
reproducible, so that analysis by different users will produce the same results. These attributes are crucial for 
computational high throughput methods. In addition, we demonstrate that the developed package is superior to 
manual analysis in terms of efficiency, as it can detect the smaller events that are close to the noisy baseline of the 
recording. This is due to the fact that it relies on locally implemented data-driven criteria, which are based on the 
energy fluctuations of the signal. Hence, it not only overcomes the arbitrariness of imposed thresholds, but it also 
allows efficient identification of all events that are qualitatively distinct from baseline, irrespective of their size, or 
the particular conditions of each experiment (e.g. electrode resistance, temperature, flow rate etc.) which could 
affect the signal-to-noise-ratio of the recording. In this way, it avoids biasing the detection against the smaller 
events, which could conceal potentially significant biological results.

Figure 5.  Effect of CGP (1 μΜ) on events in LFP recordings. (a) Event duration is significantly increased 
(1.32 ± 0.15 vs 1.87 ± 0.18 s, or ∼42%). Error bars indicate SEM, p < 0.001, student’s t-test. (b) GMMs fit on 
duration measurements for the control samples. (c) GMMs fit on duration observations for the CGP samples. 
(d) Tables showing the values presented in Fig. 5a,b and c. μ is the mean value, Σ is the covariance matrix and w 
the proportion of each distribution in the whole distribution model.
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Furthermore, we also show that, on average, the estimated LFP signal property values agree well with the 
“ground” truth, as measured by expert users. Accuracy was evaluated by how well the results compare to those 
obtained by manual analysis by an expert user, which is the traditional and most common way to analyze the 
data. In this comparison, LFPAnalyzer proved to be highly accurate with a [98% accuracy in event occurrence 
values] and a 15% ‘overestimation’ in event duration compared to the manual approach. It is noteworthy that this 
overestimation was highly consistent across data files and we hypothesize that it may be due to the low frequency 
component that is usually contained in the final segment of the events and is not easily detectable by eye.

In order to evaluate the robustness of our method in terms of biological validation, we compared the estab-
lished effect of GABAB receptor blockade in the regulation of Up state duration (events validated with com-
plementary intracellular recordings24). This evaluation revealed a close match to the literature, verifying the 
application of our methodology in practice. The additional attributes of brain bursts activity that are automatically 
quantified with our method, further demonstrate the usefulness of having “easily” extracted information from 
large LFP datasets that can lead to novel hypotheses for biological evaluation.

Hence, we can conclude that the proposed methodology is a useful and trustworthy tool for analyzing LFP 
signals. This is particularly important because although LFP recordings are routinely used in the study of network 
function, their analysis has remained largely ad hoc. This lack of generalizability is at least partly due to the nature 
of the LFP signal, which is highly variable and noisy, requiring a data based/driven analysis method.

Methods
Figure 1 Panel 2a demonstrates a typical LFP recording consisting of recurring epochs of persistent activity. The 
analysis and quantification of these events requires their accurate and unbiased detection and feature extrac-
tion, both of which are problematic when manually performed: event detection is extremely time-consuming, 
while their quantification, which pre-supposes the definition of their onset and offset, is highly subjective. This 
reality urges for an automated and precise method for event analysis. Furthermore, even data-driven automated 
approaches can have significant shortcomings if they employ global thresholding schemes. Specifically, global 
approaches do not account to the local properties of the signal. The disadvantage of the globally defined thresh-
old is due to the very nature of the estimation itself, as the threshold level will depend not only on the size of the 
events, but also on their occurrence. In other words, in recordings with events of similar amplitude, the estimated 
threshold will be shifted towards higher or lower values depending on whether the recording contains more or 
fewer events, respectively. Thus, in order to surpass this limitation and be applicable to recordings of different 
characteristics, a method needs to be adaptive in time (please refer to SM5 for a demonstration of the benefits of 
a local over a global thresholding scheme).

The workflow chart (Fig. 1 Panel 1) highlights the main steps of the proposed methodology, including (a) 
pre-processing of the LFP signal, (b) creation of the feature signals, (c) estimation of the data-driven threshold, 
and (d) detection and quantification of the LFP events.

LFP Signal preprocessing.  The input signal is first transformed to analog, i.e. any inherent DC offset due to 
the acquisition process and the amplifier is subtracted; and the time-series is filtered with a 3rd order Butterworth 
low-pass filter at 200 Hz, since higher frequencies do not contain LFP related information. The choice of the filter 
is justified considering the optimal tradeoff between phase shift and minimum signal distortion. An example of 
the signal before and after the preprocessing step is illustrated in Fig. 1 Panel 2b.

Feature signal creation.  Due to the non-stationary nature of the LFP signal, existing processing methods 
are not directly applicable. In order to overcome this issue, we divide the preprocessed signal into non-overlapping 
segments, which can be considered stationary. Each frame is 11 s long, to ensure the inclusion of sufficient base-
line, apart from event(s). The choice of 11 s frame length is justified by the empirical knowledge that an event is 
not expected to be more than 8 s long, and that apart from events, baseline information is required in order to 
estimate the appropriate threshold. Subsequently, two complementary transformations are applied in order to 
create two feature signals, which will both be used for optimal event detection since they supply complementary 
information:

Hilbert Transform is a linear operation that takes a signal u(t) and transforms it to H(u(t)), in the same domain, 
i.e. time domain21. Hilbert Transform is a basic tool in Fourier analysis, and provides a concrete means for real-
izing the harmonic conjugate of a given function or Fourier series. It is also implemented in the field of signal 
processing where it is used to derive the analytic representation of a signal u(t). When u(t) is narrow-banded, 
|H(u(t))| can be regarded as a slow-varying envelope of u(t) while the phase derivative ∂t[tan−1(y/x)] represents 
the instantaneous frequency. Thus, Hilbert Transform can be interpreted as a way to represent a narrow-band 
signal in terms of amplitude and frequency modulation, rendering it well suited for the LFP signal. Additionally, 
it has been successfully applied for latency analysis in neurophysiological signals37, 38. By employing the Hilbert 
Transform, we create the first feature sequence that corresponds to the signal’s envelope (Fig. 1 Panel 2c).

Short Time Energy Transform is a method broadly used in the field of speech processing. It has been proved 
very effective for detecting silent periods in audio signals and also for discriminating between audio classes27. The 
LFP signal is very similar to speech signal since both are produced from a time varying electrical burst/vocal tract 
system, with time varying excitation and therefore both are non-stationary in their nature. Short Time Energy is 
defined as: Let ui(n), n = 1, 2, …, N the signal samples of the i-th segment with length equal to N. Then, as shown 
in Fig. 1 Panel 2d, the energy is calculated for each frame as:

∑= =E i
N

u n( ) 1 ( ) (1)n
N

i1
2
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The two feature signals are used in order to estimate two thresholds (one for each signal; Fig. 1 Panel 2e,f) and 
their combination will exhibit the final detected events. Both are needed since each one on its own has potential 
drawbacks: the Hilbert transform is not sensitive to the low amplitude periods of signal leading to the erroneous 
exclusion of parts of events, while short time energy is very sensitive to small “pauses” within an event leading to 
over-segmentation.

Dynamic Threshold Estimation.  For estimating the threshold that will be used to separate event from 
non-event signal segments, we employ the Gaussian Mixture Model (GMM), a data driven approach borrowed 
from machine learning28. The thresholds, one for each feature signal, are dynamically defined by the nature of the 
input data. Here GMMs have been modified in order to be used in an unsupervised manner39, i.e. requiring no 
pre-training. The final number of classes present in the data is defined by the algorithm itself, using an informa-
tion criterion discussed below. Mixture models are a very flexible and powerful tool in modern pattern recogni-
tion. The presented application consists in fitting Gaussian Mixtures to the observations, i.e. the voltage traces, 
without a priori knowledge of the optimal number of components needed.

For each segment of the transformed signal (feature signal), a histogram of the voltage values is created. The 
maximum number of classes is defined as two, which is the “natural” number, following the rationale that the high 
(absolute) voltage values are part of LFP events, and low values are part of the baseline signal.

The categorization into ‘event’ or ‘baseline’ is performed based on the histogram of object pixel intensities 
using 1-D GMM and a modified Expectation–Maximization (EM) algorithm39, 40. The signal segments can have 
two distinct patterns: a segment will either contain both baseline and event signal (partial or whole event), or 
only baseline. In the first case the histogram should exhibit two peaks (a model of two Gaussians explains the 
data distribution), whereas in the second case there would be only one peak (one Gaussian function suffices to 
account for the data distribution). Hence, the developed algorithm should have the ability to automatically define 
the number of Gaussians in either case and set the threshold accordingly. In order to do that, we employ the 
Minimum Message Length (MML) criterion for automatic model selection. The MML criterion41 is incorporated 
into the EM in order to determine the mixture model with the optimal number of components (either 1 or 2 in 
our case) that best fits the voltage histogram. In cases where two classes are adequate to represent the data, then 
the threshold is determined automatically under the Bayes rule41. If one class is a better representative for the data, 
then no threshold is determined and the signal is considered as baseline. This is an important novel feature com-
pared with previous studies that use a fixed 2 component GM28, as it provides the required flexibility for accurate 
threshold estimation in recordings with different properties, such as event occurrence and stability of baseline.

At the end of this procedure, we end up with two adaptive thresholds for each recorded trace, one for each 
feature signal (Hilbert and Short Time Energy transformed signals), indicated as red lines in Fig. 1 Panel 2e,f. 
When the threshold is above the maximum of the signal then the underlying period is by default considered as 
event free.

Mask derivation and event detection.  Each threshold is applied to the corresponding feature signal 
and a mask is created. The mask consists of a signal of segments of zeros and ones (Fig. 1 Panel 2i; red line which 
is scaled to the maximum amplitude value for visualization purposes), where the periods of ones define the 
presence of a prospective event (i.e. above threshold), while periods of zeros indicate the baseline (i.e. below 
threshold). Then, the two masks are combined using a logical OR operator. In order to avoid the false detection of 
mechanical and/or electric noise artifacts with fluctuations of size and duration similar to the spontaneous brain 
activity, an additional post-processing step is applied in order to exclude small artifacts: events with standard 
deviation (SD) smaller than the standard deviation of the whole signal are excluded. The rationale behind this 
step is that LFP events will exhibit higher SD values compared to the overall signal which contains large segments 
of baseline with small amplitude variability. Finally, simultaneously to the LFP burst detection, a segment of stable 
baseline is also automatically detected, as optimal baseline representative. This is achieved by selecting the longest 
event-free period so as not to include periods with voltage fluctuations.

Additional features of the analysis workflow.  After detection of the LFP events, a number of their 
properties are calculated and stored in Excel and MATLAB data files (please refer to https://zenodo.org/
record/59254 for an output example). These include: (a) onset, (b) offset, (c) event duration, (d) inter-event inter-
val (time interval between the offset of one event and the onset of the next), (e) time point for maximum peak 
amplitude, (f) maximum peak amplitude, (g) time point for minimum peak amplitude, (h) minimum peak ampli-
tude, and (i) rectified area (the sum of absolute voltage values of the events). Furthermore, the power spectrum 
of each LFP event is calculated for several frequency ranges, including the continuous power spectrum, as well 
as the delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz and 30–120 Hz) 
bandwidths, using the conventional Fourier analysis and multi-taper method42. Additionally, two types of the 
calculated power spectra are also computed: the power spectra of the LFP bursts before and after the removal of 
the baseline power spectrum. For the above power estimation, we calculate three additional types of spectra for 
each event: absolute, normalized to the total power of the event and normalized to the maximum value of power 
coefficient. The normalization procedure allows the direct comparison of the % differences, since LFP bursts 
within or between recordings can differ significantly in both amplitude and duration, and consequently in their 
absolute power values.

The developed software package is a full suite that provides the user a large variety of useful properties. At 
the beginning of the pipeline the user is asked to insert information on the experiment performed, i.e. animal 
genotype, age and sex, its pharmacological manipulations etc. All this information is registered in a separate excel 
sheet for user’s future reference and downstream statistical processing of the results.

https://zenodo.org/record/59254
https://zenodo.org/record/59254
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Implementation and performance.  The signal processing was implemented in MATLAB 2012a, where 
known methods have been adapted and tailored to the present application. The final GUI (Graphical User 
Interface) is platform-independent and currently is compiled for Win x64 environment. It does not require the 
MATLAB environment to be installed, but it requires the MATLAB Component Runtime installer. The compu-
tational time for the whole analysis for each single channel, with the time for user to pass the results from a rough 
quality check (i.e. remove artifacts), is less than 2 minutes. The largest portion of this time accounts to the final 
result saving into excel files (.xlsx).

Software and data availability.  The GUI is available at https://zenodo.org/record/59254, along with an 
input file (contains 4 channels, i.e. 4 recordings). This file contains the raw recordings of one from control sample 
and holds 4 simultaneous recordings. As stated earlier, the GUI does not require installation of MATLAB suite 
and the only prerequisites are: (1) a windows x64 operating system, and (2) an installed MATLAB Runtime 
compiler. MATLAB runtime is freely available at http://www.mathworks.com/products/compiler/mcr/ (version 
R2012a (7.17)).

Animals.  C57Bl/6J mice were bred in the animal facility of the Center for Experimental Surgery of the 
Biomedical Research Foundation of the Academy of Athens. The facility is registered as a breeding and exper-
imental facility according to the Presidential Decree of the Greek Democracy 160/91, which harmonizes the 
Greek national legislation with the European Council Directive 86/609/EEC on the protection of animals used for 
experimental and other scientific purposes (reference number 2834/08-05-2013). Mice were weaned at postnatal 
day 21, housed in groups of 5–9, in 267 × 483 × 203 mm cages supplied with bedding material and kept at a 12-12 
dark-light schedule. Food was provided ad libitum.

Brain slice preparation.  Coronal brain slices (400 μm) from the primary somatosensory (S1) cortex were 
prepared from adult (3–9 months old) and aged (20–27 months old) male mice, as previously described29, 30. 
After the animal was sacrificed the brain was removed and placed in an oxygenated (95% O2–5% CO2) ice-cold 
dissection solution containing, in mM: KCl 2.14; NaH2PO4.H2O 1.47; NaHCO3 27.0; MgSO4 2.2; D-Glucose 
10.0; Sucrose 200; and CaCl2.2H2O 2.0; osmolarity (mean ± sd): 298 ± 5 mOsm, pH: 7.4. Slices were cut using a 
vibratome (VT 1000 S, Leica), placed in a holding chamber with artificial cerebrospinal fluid (aCSF) containing, 
in mM: NaCl 126; KCl 3.53; NaH2PO4.H2O 1.25; NaHCO3 26.0; MgSO4 1.0; D-Glucose10.0 and CaCl2.2H2O 2.0 
(osmolarity (mean ± sd): 317 ± 4 mOsm, pH: 7.4), and left to recover at room temperature (RT: 24–26 °C) for at 
least one hour before use.

In vitro electrophysiology.  Slices were transferred to a submerged chamber (Luigs and Neumann), where 
they were constantly perfused at high flow rates (10–15 ml/min) to ensure optimal oxygenation of the cortical 
tissue43, 44. Recordings were performed in “in vivo like” aCSF (composition as above but with 1 mM CaCl2), since 
this ionic solution is thought to better mimic cerebrospinal fluid in vivo44, 45. Recordings were performed at RT, 
after at least 30 min of incubation in 1 mM [CaCl2] aCSF. Spontaneous network activity was assessed by means of 
local field potential (LFP) recordings (sampled at 5 or 10 kHz, band-passed filtered at 1–3000 Hz) obtained from 
cortical layers II/III using low impedance (∼0.5 MΩ) glass pipettes filled with aCSF. Signals were acquired and 
amplified (MultiClamp 700B, Axon Instruments), digitized (Instrutech, ITC-18) and viewed on-line with appro-
priate software (Axograph X, version 1.3.5).

Pharmacology.  Recordings were also obtained in the presence of the GABAB-receptor- antagonist, 
CGP55845 (1 μM, Tocris). After recording baseline activity in the absence of any drugs, CGP55845 was added to 
the perfusion medium and the LFP signal was monitored for 30 minutes.

Electrophysiological data summary.  Coronal brain slices (400 μm) from the primary somatosensory 
cortex were prepared from adult (3–9 months old) and aged (20–27 months old) male mice and spontaneous 
network activity was assessed by means of local field potential (LFP) recordings, as previously described34, 35. 
Recordings were also obtained in the presence of the GABAB-receptor-antagonist, CGP5584536 (1 μM, Tocris). 
In total, the dataset consisted of 36 paired recordings (6 animals) before and after the application of the GABAB 
antagonist.

Statistical Analysis and Linear Regression.  Statistical analysis (t-test) was performed in Matlab envi-
ronment using t-test function from Statistics Toolbox. For the values resulted for the Accuracy and 
Reproducibility subsections of the Results Section, we applied linear regression using the linear model 

= +⁎f x a x b( ) , where α is the gradient of the fitted line and b is the bias, i.e. the estimated difference between 
the two methods (see also Supplementary Material 4). Linear Regression was also performed in Matlab using the 
Curve Fitting Toolbox (cftool). Data were scaled and centered, and LAR46 robust method was used. Least absolute 
residuals (LAR) method finds a curve that minimizes the absolute difference of the residuals, rather than the 
squared differences. Therefore, extreme values have a lesser influence on the fit.
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