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Abstract: Our knowledge of the evolution and the role of untranslated region (UTR) in SARS-CoV-2
pathogenicity is very limited. Leader sequence, originated from UTR, is found at the 5′ ends of all
encoded SARS-CoV-2 transcripts, highlighting its importance. Here, evolution of leader sequence
was compared between human pathogenic and non-pathogenic coronaviruses. Then, profiling of
microRNAs that can inactivate the key UTR regions of coronaviruses was carried out. A distinguished
pattern of evolution in leader sequence of SARS-CoV-2 was found. Mining all available microRNA
families against leader sequences of coronaviruses resulted in discovery of 39 microRNAs with a
stable thermodynamic binding energy. Notably, SARS-CoV-2 had a lower binding stability against
microRNAs. hsa-MIR-5004-3p was the only human microRNA able to target the leader sequence of
SARS and to a lesser extent, also SARS-CoV-2. However, its binding stability decreased remarkably
in SARS-COV-2. We found some plant microRNAs with low and stable binding energy against SARS-
COV-2. Meta-analysis documented a significant (p < 0.01) decline in the expression of MIR-5004-3p
after SARS-COV-2 infection in trachea, lung biopsy, and bronchial organoids as well as lung-derived
Calu-3 and A549 cells. The paucity of the innate human inhibitory microRNAs to bind to leader
sequence of SARS-CoV-2 can contribute to its high replication in infected human cells.

Keywords: COVID-19; biomarker; drug repurposing; microRNA; SARS-CoV-2 replication; microRNA
vaccine; nanoparticle vaccine; variant discovery

1. Background

Coronavirus genomes are single-stranded mRNAs, containing both coding and un-
translated regions (UTRs). The 5′UTR and 3′UTR are crucial for coronavirus RNA replica-
tion, transcription, and dominating host systems biology [1]. However, their exact roles
and their evolutions, specifically in the new SARS-CoV-2, are mainly unknown.
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There are some 5′UTR regions that are vital for virus replication (Figure 1). A specific
region of 70 nucleotides at the 5′ end of the genome, referred as the ‘leader’ sequence,
has been found at the 5′ ends of all encoded transcripts, highlighting its importance. A
conserved cis-acting element, named transcription regulatory sequence (TRS), immediately
follows the leader sequence, representing a unique feature of coronaviruses.
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Figure 1. The 5′UTR is the Achilles’ heel of SARS-CoV-2. Disruption of specific regions in 5′UTR, including leading
sequence, transcription regulatory sequence, or loops (L) can stop the virus replication.

Compared to the other positive-strand RNA viruses, coronaviruses have a unique
and complicated pattern of continuous and discontinuous RNA synthesis (Figure 2). Like
the other positive-strand RNA viruses, continuous RNA synthesis happens for genome
replication to yield multiple copies of the genomic RNA. In continuous RNA synthesis, a
full-length complementary negative-strand RNA is utilized as the template for generation
of progeny virus genomes [2]. In discontinuous transcription, during the synthesis of
sub-genomic negative-strand RNAs, a premature termination and template switch occur
to add copies of the leader sequence [2]. The presence of the 5′ leader sequence provides
an efficient strategy for the efficient accumulation of coronaviruses mRNAs and proteins
during infection because of the protection of viral mRNAs from endonucleolytic cleavage
of the capped mRNAs [3]. Furthermore, the complement of the leader sequence supports
initiation of positive-strand RNA synthesis, generating negative-strand sub-genomic RNAs
as templates for further productions of positive-strand sub-genomic mRNAs [2].

Whereas UTR is a non-coding region, another unique structure of coronaviruses is
the existence of a short open reading frame (ORF) on one of the 5′UTR stem loops. In
bovine coronavirus, maintenance of the short ORF is positively correlated with viral RNA
accumulation [4]. The other non-coding region, 3′-UTR folds into a unique stem-loop two
motif secondary structure that is required for virus viability.
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Figure 2. In both continuous and discontinuous RNA synthesis patterns, SARS-CoV-2 virus segments need to visit the
5′UTR, particularly their transcription regulatory sequence (TRS) and leader sequence (L). The 5′UTR is a good target to
reduce virus load in the host cell.

UTRs are also important in the context of host microRNA interaction. MicroRNAs play
their negative regulatory roles via sequence-specific interactions with the 3′ or 5′UTRs [5].
Consequently, sequence variation in the viral UTR regions can prevent the binding of
human microRNAs, so preventing microRNA-based immunity [6,7]. The problem is
more serious in case of SARS-CoV-2 which originated recently from bat, such that human
microRNAs have not evolved to interact with their UTRs.

Here, we hypothesize that the TRS and leader sequences of 5′ UTRs are crucial for
coronavirus RNA replication. Moreover, microRNAs can bind to the TRS and leader
sequences of the 5′UTR to reduce SARS-CoV-2 replication. The first aim of this study was
to unravel the evolution of the TRS and leader sequences in 5′UTR regions of SARS-CoV-
2. The second aim was to identify inhibitory microRNAs, present in human and other
organisms, that can bind to the key regulatory regions of SARS-CoV-2 sequences.

2. Methods
2.1. Data Collection

Complete genomes of SARS-COV-2, SARS, MERS, bat coronavirus, and bovine coro-
navirus, including complete sequences of non-coding regions, were downloaded from
The National Center for Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov). The
sequences were: Severe acute respiratory syndrome coronavirus 2 isolate Wuhan-Hu-1
(NC_045512), SARS coronavirus Tor2 (NC_004718), Tylonycteris bat coronavirus HKU4
isolate CZ01 (MH002337), Middle East respiratory syndrome-related coronavirus isolate
NL13892 (MG987420), and bovine coronavirus isolate BCoV-ENT (NC_003045).

2.2. Inhibitory MicroRNA Prediction

Available microRNA information of human and other organisms, deposited in Tar-
getScan [8], were downloaded. In total, the information of 9994 microRNAs, including
sequences of seed region and mature sequences, were obtained. The seed region is a
conserved sequence with the average length of 6–8 bp [9]. The seed region is critical for

www.ncbi.nlm.nih.gov
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binding and hybridization of the microRNA to its target. Supplementary 1 represents the
seed region, mature sequence, microRNA family, and the associated MiRBase IDs of the
9994 microRNAs.

Then, the reverse complement sequence of UTR regions of SARS-COV-2, SARS, MERS,
and bovine coronavirus were searched against the known seed sequences to find the mi-
croRNAs with affinity binding to the specific regions in 5′UTR, TRS, and leader sequences
by TargetScan.

Based on the MiRBase IDs, obtained from the TargetScan, fasta format of mature
sequences of microRNAs were retrieved from the miRBase database [10]. Using the
RNAhybrid v2.2 database, the binding probability of mature microRNAs against TRS
and leader sequences of coronaviruses were evaluated through calculating of a minimum
free energy hybridization [11]. The thermodynamic binding energy of −15 kcal/mol was
used as the minimum cut-off, and binding energy of −25 kcal/mol pointed the stable
binding [12].

2.3. Sequence Alignment between 5′UTR of Coronavirus and MicroRNA Seed Regions and
Phylogenetic Trees

Multiple sequence alignment was performed using CLUSTALW algorithm by CLC
Genomics Workbench 20 (QIGEN, Venlo, The Netherlands). Phylogenetic trees, based on
the maximum likelihood phylogeny approach, were constructed using UPGMA method,
nucleotide substitution model of Jukes Cantor, gamma distribution parameter of 1.0, and
bootstrap of 1000.

2.4. Literature-Mining Based Drug Repurposing

Pathway Studio Database (Elsevier) was employed to find the drugs, food supple-
ments, and chemicals (small molecules) with promoting effects on 5′ UTR inhibitory
microRNAs, as described recently [13]. To perform literature mining, MedScan tool was
used that employs the NLP algorithm to mine extract relations from biomedical texts,
mainly PubMed [14]. In addition to the mined sentences of relations, Medscan also records
the title of literature, authors, the year of publication, Medline (PubMed) reference number,
and type of relation. The results are deposited in Mammalian + ChemEffect + DiseaseFx
database of Pathway Studio which is enriched by a range of extra systems biology informa-
tion like the subcellular location and protein class (such as receptor, ligand, transcription
factor, small RNA, small molecule, etc.), from Gene Ontology Consortium, as well as
KEGG pathways. The database updates using cloud technology by addition of new mined
relationships and entities from recent publications. Statistics of Mammalian + ChemEffect
+ DiseaseFx database used for literature mining is presented at Table 1.

In short, a highly enriched database with more than one million chemicals, 138,000
proteins, and 12 million protein interactions were employed for drug repurposing.

2.5. Multivariate Analysis

Thermodynamic binding energy values (kcal/mol) between microRNAs and 5′UTR
regions of coronaviruses were used as input for PCA and clustering analysis. Analysis
was performed in MINITAB 18 (https://www.minitab.com). Graphs were visualized by
GraphPad Prism 7 (GraphPad Software, Inc. California, CA, USA). Correlation matrix was
used for PCA analysis. Clustering was performed based on Euclidean distance matrix and
average linkage method.

https://www.minitab.com
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Table 1. Statistics of Mammalian + ChemEffect + DiseaseFx database used for literature mining in this study
(September 2020).

Entities Number Relations Number

Small molecules (including drugs) 1,053,259 Binding 1,123,702
Protein 138,106 Biomarker 120,448

Cell process 9771 Cell expression 1,213,035
Cell Object 607 Chemical reaction 58,888

Cells 4155 Clinical trial 109,386
Clinical parameters 5126 Direct regulation 766,707

Complex 998 Expression 832,784
Diseases 20,855 Functional associations 1,775,463

Functional class 5489 Genetic change 379,261
Genetic Variant 127,872 Molsynthesis 160,178

Organ 3839 Moltransport 251,347
Treatments 78 Promoter binding 44,619

Tissue 574 Protein modification 73,859
Total number of entities 1,370,729 Quantitative change 421,884

Regulation 5,193,796
State change 128,112

MicroRNA effects 57,743
Total number of relations 12,653,469

2.6. MIR-5004 Expression Analysis in Response to SARS-CoV-2 Infection: Meta-analysis
Approach

In a comprehensive study, the expression of MIR-5004 was evaluated in COVID-
infected samples compared to non-infected ones in human and ferret. The raw RNA-seq
reads in FASTQ format were downloaded from NCBI SRA (https://www.ncbi.nlm.nih.
gov/sra) using CLC Genomics Workbench v.20.0 (QIAGEN, Venlo, The Netherlands). In
total, 42 infected and non-infected samples of trachea, lung biopsy, bronchial organoids,
lung-derived Calu-3 cells, lung alveolar A549 cells, and lung epithelium NHBE cells, from
GSE150819, GSE147507, and GSE159522 were utilized (Table 2).

FastQC tool (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used
to assess quality raw. MIR-5004 genomic sequence, NR_049800, was downloaded from
NCBI. Mapping of short reads to MIR-5004 reference genome was performed using CLC
Genomics Workbench based on the following mapping parameters: Mismatch cost = 2,
Insertion cost = 3, Deletion cost = 3, Length fraction = 0.1, Similarity fraction = 0.6, and
Maximum number of hits for a read = 10. Mapped reads to MIR-5004 reference genome
(mapped reads per million) were used as expression measurement.

Comprehensive Meta-analysis (CMA) software Version 3.3.070 (Biostat Inc., Englewood,
NJ, USA) [15] was used for meta-analysis of MIR-5004 expression in response to SARS-CoV-
2 infection in different studies and different tissue types (trachea, lung biopsy, bronchial
organoids, Calu-3 cells, and A549 cells, and NHBE cells). Fixed standardized effects model
was employed for meta-analysis [16].

2.7. Variant Discovery on Genomic Sequence of Hsa-MIR-5004-3p, 5′UTR Inhibitory MicroRNAs,
as COVID-19 Risk Factors

The human genetic variation genetic variation database of NCBI (dbSNP database) [17]
was employed as the main resource for variants gathering. The Pathway Studio tool was
used for retrieving hsa-MIR-5004-3p genomic variants by mining more than two hundred
million deposited variants in dbSNP and 1000 Genomes project. Genomic locations of
variants were recorded (CDs, 3′UTR, 5′UTR, intergenic, or intronic variants). Then, transla-
tional impact of the identified hsa-MIR-5004-3p variants including missense, splice disrupt,
CDs indel, nonsense, misstart, and non-stop were determined. Finally, the proportion of
each type of variant was calculated.

https://www.ncbi.nlm.nih.gov/sra
https://www.ncbi.nlm.nih.gov/sra
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Table 2. Samples (n = 42) used for MIR-5004 expression analysis against SARS-CoV-2 infection.

Experiment
ID

Sample ID
(NCBI) Organism Tissue/Cell Line

SARS-CoV-2
Infected/Non-

Infected

Total Number of
Reads SARS-CoV-2 Strain

GSE150819

SRR11811019 Human Lung bronchial
organoids Non-infected 32,214,210 Non-infected (mock)

SRR11811020 Human Lung bronchial
organoids Non-infected 32,443,162 Non-infected (mock)

SRR11811021 Human Lung bronchial
organoids Non-infected 33,310,500 Non-infected (mock)

SRR11811022 Human Lung bronchial
organoids Infected 31,662,278 SARS-CoV-

2/Hu/DP/Kng/19-020

SRR11811023 Human Lung bronchial
organoids Infected 35,953,491 SARS-CoV-

2/Hu/DP/Kng/19-020

SRR11811024 Human Lung bronchial
organoids Infected 32,416,198 SARS-CoV-

2/Hu/DP/Kng/19-020

GSE147507

SRR11517725-28 Human human lung
biopsies Non-infected 57,660,692 Non-infected (mock)

SRR11517729-32 Human human lung
biopsies Non-infected 40,524,836 Non-infected (mock)

SRR11517733-36 Human human lung
biopsies Infected 10,561,476 USA-WA1/2020

SRR11517737-40 Human human lung
biopsies Infected 9,514,219 USA-WA1/2020

SRR11412215-18 Human Lung epithelium
NHBE cells Non-infected 17,003,573 Non-infected (mock)

SRR11412219-22 Human Lung epithelium
NHBE cells Non-infected 16,311,121 Non-infected (mock)

SRR11412223-26 Human Lung epithelium
NHBE cells Non-infected 24,286,949 Non-infected (mock)

SRR11412227-30 Human Lung epithelium
NHBE cells Infected 15,032,096 USA-WA1/2020

SRR11412231-34 Human Lung epithelium
NHBE cells Infected 15,108,090 USA-WA1/2020

SRR11412235-38 Human Lung epithelium
NHBE cells Infected 44,210,735 USA-WA1/2020

SRR11412239-42 Human Lung alveolar
A549 cells Non-infected 27,013,945 Non-infected (mock)

SRR11412243-46 Human Lung alveolar
A549 cells Non-infected 14,744,844 Non-infected (mock)

SRR11412247-50 Human Lung alveolar
A549 cells Non-infected 11,683,707 Non-infected (mock)

SRR11412251-54 Human Lung alveolar
A549 cells Infected 34,141,057 USA-WA1/2020

SRR11412255-59 Human Lung alveolar
A549 cells Infected 29,681,064 USA-WA1/2020

SRR11412260-63 Human Lung alveolar
A549 cells Infected 20,603,153 USA-WA1/2020

SRR11517744 Human Lung-derived
Calu-3 cells Non-infected 9,324,151 Non-infected (mock)

SRR11517745 Human Lung-derived
Calu-3 cells Non-infected 17,436,078 Non-infected (mock)

SRR11517746 Human Lung-derived
Calu-3 cells Non-infected 37,787,485 Non-infected (mock)
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Table 2. Cont.

Experiment
ID

Sample ID
(NCBI) Organism Tissue/Cell Line

SARS-CoV-2
Infected/Non-

Infected

Total Number of
Reads SARS-CoV-2 Strain

SRR11517747 Human Lung-derived
Calu-3 cells Infected 23,623,325 USA-WA1/2020

SRR11517748 Human Lung-derived
Calu-3 cells Infected 13,583,713 USA-WA1/2020

SRR11517749 Human Lung-derived
Calu-3 cells Infected 28,688,015 USA-WA1/2020

SRR11517699 Ferret Trachea Non-infected 328,105,259 Non-infected (mock)

SRR11517700 Ferret Trachea Non-infected 5,210,254 Non-infected (mock)

SRR11517701 Ferret Trachea Non-infected 4,746,327 Non-infected (mock)

SRR11517702 Ferret Trachea Non-infected 5,163,699 Non-infected (mock)

SRR11517703 Ferret Trachea Infected 9,169,859 USA-WA1/2020

SRR11517707 Ferret Trachea Infected 14,124,547 USA-WA1/2020

SRR11517711 Ferret Trachea Infected 12,933,325 USA-WA1/2020

SRR11517715 Ferret Trachea Infected 14,644,347 USA-WA1/2020

GSE159522

SRR12828440-43 Human Lung alveolar
A549 cells Non-infected 19,152,790 Non-infected (mock)

SRR12828444-47 Human Lung alveolar
A549 cells Non-infected 19,381,530 Non-infected (mock)

SRR12828448-51 Human Lung alveolar
A549 cells Non-infected 16,483,541 USA-WA1/2020

SRR12828428-31 Human Lung alveolar
A549 cells Infected 17,644,925 USA-WA1/2020

SRR12828432-35 Human Lung alveolar
A549 cells Infected 19,504,193 USA-WA1/2020

SRR12828436-39 Human Lung alveolar
A549 cells Infected 19,491,861 USA-WA1/2020

To evaluate the possible functional impact of the identified hsa-MIR-5004-3p variants,
the Genomic Evolutionary Rate Profiling (GERP)++ conservation score was used. GERP
is an evolutionary conservation score which have a good correspondence with clinical
significance and pathogenicity level [18]. GERP++ demonstrates the constrained elements
in multiple alignments by quantifying substitution deficits. These deficits identify substi-
tutions that would have happened if the element were neutral DNA but did not happen
as the element has been experienced functional constraint. Low values of GERP++ score
stand for low level of conservation and high values for high level of conservation.

3. Results
3.1. Comparative Analysis of the 5′UTR of Human Pathogenic and Non-Pathogenic Coronaviruses

Our primary analysis of reference sequences distinguished a pattern of evolution in
the leader sequence and TRS of SARS-CoV-2, by comparison with MERS and the bovine
coronavirus (Figure 3). Interestingly, the TRS sequence is identical in all coronaviruses that
infect human (SARS-CoV-2, SARS, and MERS) which differs in non-human pathogens,
such as bovine coronavirus (Figure 3). In other words, TRS can explain the host range of
a coronavirus.

3.2. Identifying the MicroRNAs that Can Bind to the Leader Sequence and TRS of SARS-CoV-2
(5′UTR Inhibitory MicroRNAs)

Mining microRNAs against the leader sequence of SARS-CoV-2 resulted in the discov-
ery of 39 microRNAs with an acceptable thermodynamic binding energy (cut-off of less
than minus 15 kcal/mol). Table 3 presents a list of microRNAs and their thermodynamic
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binding energy that potentially bind to at least one type of coronavirus (SARS-COV-2, SARS,
MERS, bat coronavirus, or bovine coronavirus). ptc-MiR474b, ptc- MiR474a, csa-let-7d, cin-
let-7d-5p, csi-miR3953, and gga-MiR-6608-3p were microRNAs with stable thermodynamic
binding energy (lower than −22 kcal/mol) against leader sequence of SARS-CoV-2.
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(SARS, MERS, and SARS-CoV-2) and non-human pathogens (bovine). We found a significant evolution pattern in SARS-
CoV-2 compared with the other coronaviruses.

hsa-MIR-5004-3p was the only human microRNA able to target the leader sequence of
SARS and SARS-CoV-2. However, its binding stability decreased remarkably in SARS-COV-
2 (−19.4 kcal/mol), compared with SARS-COV-2 (−25.9 kcal/mol) (Table 3 and Figure 4).
Notably, our analysis showed that the leader sequence of SARS-COV-2 is mutated (insertion
type mutation, CA), thus escaping microRNA-RNA hybridization (Figure 5). Lack of
innate human inhibitory microRNAs able to bind to SARS-COV-2 contributes to the high
replication of SARS-CoV-2 in infected human cells.

Table 3. MicroRNAs potentially able to bind to the leader sequence of the coronavirus 5′ untranslated region (5′UTR) and
their binding energy. Lower binding energy demonstrates higher binding stability between microRNA and leader sequence.

MicroRNA Organism
Thermodynamic Binding Energy against Leader Sequence (kcal/mol)

SARS-COV-2 SARS MERS Bat
Coronavirus

Bovine
Coronavirus

ptc-miR474b Populus trichocarpa −27.3 −24.5 −21.6 −21.5 −17

ptc-miR474a Populus trichocarpa −27.3 −22.2 −22.8 −22.2 −18.1

csa-let-7d Ciona savignyi −25.1 −22.7 −24.6 −24.6 −19

cin-let-7d-5p Ciona intestinalis −25.1 −22.7 −24.6 −24.6 −19

gga-miR-6608-3p Gallus gallus −25 −23.6 −30.1 −14.6 −17.1

eca-miR-9080 Equus caballus −23.4 −27.7 −15.9 −15.9 −16.5
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Table 3. Cont.

MicroRNA Organism
Thermodynamic Binding Energy against Leader Sequence (kcal/mol)

SARS-COV-2 SARS MERS Bat
Coronavirus

Bovine
Coronavirus

csi-miR3953 Citrus sinensis −22.5 −22.4 −27.2 −14.1 −16.8

ame-miR-3741 Apis mellifera −21.9 −20.9 −35.2 −16 −21.7

cel-miR-8207-3p Caenorhabditis elegans −20.5 −22 −25.6 −12.2 −22.6

ppy-miR-1273a Pongo pygmaeus −20.1 −21.1 −23.4 −18.7 −19.5

hsa-miR-5004-3p Homo sapiens −19.4 −25.9 −17.7 −17.7 −14.1

bta-miR-2284ab Bos taurus −19.3 −21.6 −16.8 −19.9 −13.8

oan-miR-1395-5p Ornithorhynchus anatinus −19.3 −27.8 −17.5 −15.3 −13.4

mdo-miR-137b-5p Monodelphis domestica −17.7 −26.8 −19.4 −15.1 −16.8

dme-miR-4949-3p Drosophila melanogaster −17.7 −17.4 −13.2 −12.6 −24.4

ssc-miR-9833-5p Sus scrofa −17.1 −16.3 −15.9 −15.9 −15.7

ptc-miR6464 Populus trichocarpa −16.2 −15.4 −13.7 −13.7 −13.1

mtr-miR2629g Medicago truncatula −15.1 −21.7 −13.1 −13.1 −14.1

mtr-miR2629f Medicago truncatula −15.1 −21.7 −13.1 −13.1 −14.1

mtr-miR2629e Medicago truncatula −15.1 −21.7 −13.1 −13.1 −14.1

mtr-miR2629d Medicago truncatula −15.1 −21.7 −13.1 −13.1 −14.1

mtr-miR2629c Medicago truncatula −15.1 −21.7 −13.1 −13.1 −14.1

mtr-miR2629b Medicago truncatula −15.1 −21.7 −13.1 −13.1 −14.1

mtr-miR2629a Medicago truncatula −15.1 −21.7 −13.1 −13.1 −14.1

bmo-miR-3293 Bombyx mori −13.9 −14.8 −15.7 −12.7 −16

dsi-miR-986-3p Drosophila simulans −12.4 −16.5 −25.1 −25.1 −19.7

dme-miR-986-3p Drosophila melanogaster −12.4 −16.5 −25.1 −25.1 −19.7

dsi-miR-986-3p Drosophila simulans −12.4 −16.5 −25.1 −25.1 −19.7

dme-miR-986-3p Drosophila melanogaster −12.4 −16.5 −25.1 −25.1 −19.7

mmu-miR-6957-3p Mus musculus −11.6 −13.5 −12.2 −12.2 −12.1

ppc-miR-83-5p Pristionchus pacificus −11.4 −14.7 −10.9 −11.4 −17.6

cme-miR1863 Cucumis melo −11.3 −10.5 −12.5 −12.5 −15.2

cel-miR-2211-5p Caenorhabditis elegans −10.7 −10.6 −10.5 −10.3 −12.2

ath-miR5638a Arabidopsis thaliana −9.8 −7.8 −10.9 −10.9 −16.6

bdi-miR5065 Brachypodium distachyon −9.7 −11.8 −23.6 −23.6 −16.9

bdi-miR5065 Brachypodium distachyon −9.7 −11.8 −23.6 −23.6 −16.9

oan-miR-1421l-2-3p Ornithorhynchus anatinus −9.7 −10.8 −12.6 −11.1 −21.2

mghv-miR-M1-2-3p Mouse gammaherpesvirus
68 −9.4 −8.8 −8.3 −5.7 −7.5

dps-miR-2535-3p Drosophila pseudoobscura −9.3 −10.6 −17.1 −17.1 −19.6

Average −16.33 −18.58 −18.34 −16.35 −16.61
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demonstrate higher binding stability between microRNA and leader sequence.
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viral leader sequence and seed region of hsa-miR-5004-3p. (A) Alignment of hsa-miR-5004-3p with SARS. (B) Alignment of
hsa-miR-5004-3p with SARS-CoV-2.

3.3. The Leader Sequence of SARS-CoV-2 Has a Unique Pattern of MicroRNA Binding, Compared
with SARS, MERS, Bat, and Bovine Coronaviruses

Multivariate analysis of thermodynamic binding energy values of mined inhibitory
microRNAs (Table 3) demonstrates a unique pattern of SARS-CoV-2 evolution (Figure 6).

PCA discriminated efficiently between SARS-CoV-2 and other types of coronaviruses
where PCA1 and PCA2 described 71.9% of variation in the data (Supplementary 2). SARS-
CoV-2 had negative values of both PCA1 and PCA2 (Figure 6). Interestingly, hsa-miR-5004-
3p is one of the top five important microRNAs in PCA1 with an absolute coefficient > 0.2
(Supplementary 2). ptc-miR474b, cme-miR1863, bta-miR-2284ab, and bdi-miR5065 were
the top microRNAs in PCA2. Consistent with this finding, in comparison with the other
human pathogens (SARS and MERS), the leader sequence of SARS-COV-2 has a remarkably
higher binding energy against microRNAs (−16.33 kcal/mol against 18.58 kcal/mol and
−18.34 kcal/mol, respectively) (Table 3). Higher binding energy results in lower stability
of microRNA-5′UTR binding and provides this opportunity for SARS-COV-2 to escape the
inhibitory microRNAs.

Clustering shows that SARS-CoV-2 has only 41.6% similarity with SARS in its pattern
of binding to microRNAs (Supplementary 2 and Figure 6).

3.4. Drug Repurposing to Induce 5′UTR Inhibitory MicroRNAs

As presented in Figure 7, we developed a literature mining-based drug repurposing
approach to identify inhibitory microRNAs against the leader sequence of SARS-CoV-2. To
this end, more than 1 million drugs and small molecules, and 12 million relations (binding,
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biomarker, expression, chemical reaction, promoter binding, microRNA effect, etc.) were
mined by natural language processing (NLP).
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Figure 6. Multivariate analysis of thermodynamic binding energy values of the leader sequence of coronaviruses against
mined inhibitory microRNAs (Table 3) demonstrates a unique pattern for SARS-CoV-2 evolution. (A) Principal component
analysis discriminates SARS-CoV-2 from other coronaviruses. (B) Clustering shows that SARS-CoV-2 has only 41.6%
similarity to SARS in its pattern of binding to microRNAs.

Literature mining-based drug repurposing could not identify any drug, small molecule,
or food supplement with direct interaction with hsa-miR-5004-3p (Figure 7). However,
downregulation of KLF4, by heme and calcium, sowed indirect potential to upregulate hsa-
miR-5004-3p as an inhibitory microRNA against SARS-CoV-2. Heme is an iron-containing
tetradentate ligand.

3.5. Significant Decline in Expression of MIR-5004 after SARS-COV-2 Infection

Meta-analysis of MIR-5004 expression in a range of tissues and cells (42 samples),
including trachea, lung biopsy, lung-derived Calu-3 cells, and lung alveolar A549 cells,
highlighted a significant (p < 0.01) decline in expression in of MIR-5004 after SARS-COV-
2 infection (Figure 8). Interestingly, the decline in expression of MIR-5004-3p was more
significant in trachea and lung tissues than in cell lines. Noticeably, the decline in expression
of human inhibitory microRNAs with increasing age, and in a range of diseases such as
diabetes and obesity, has been observed [19] that can contribute to higher mortality of
SARS-CoV-2 in elderly patients.

3.6. hsa-miR-5004-3p Genomic Variation

Impaired 5′UTR inhibitory microRNAs in the human genome could account for
the high rate of virus replication in human cells. Consequently, mutations in genomic
sequences in the 5′UTR inhibitory microRNAs may be considered as a risk factor of COVID-
19 infection. Mining more than two hundred million deposited variants in dbSNP, using
the Pathway Studio tool (Elsevier), resulted in discovery of 9 variants in hsa-MIR-5004
(Table 4). Six of these variants were splice-disrupted mutations with possible regulatory
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functions. Table 4 presents the potentially damaging variants according to their GERP++
conservation scores. The GERP++ conservation scores vary from −12.3 to 6.17. Larger
values demonstrate higher conservation. Splice-disrupted mutations in MIR5004 have high
GERP++ scores.
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Figure 8. hsa-MIR-5004 expression response to SARS-CoV-2 infection. Meta-analysis revealed a significant (p < 0.01) decline
in expression of hsa-MIR-5004 after SARS-COV-2 infection. hsa-MIR-5004 expression was studied in 42 samples of trachea,
lung biopsy, lung-derived Calu-3 cells, and lung alveolar A549 cells before and after SARS-CoV-2 infection.
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Table 4. hsa-miR-5004-3p genomic variation. High GERP++ conservation score is associated with higher functional impact.

rsId Chr. Location Ref Alt. MicroRNA Gene Region Translational
Impact

GERP++
Score

rs369274154 6 33406128 T C MIR5004 5UTR

rs371304188 6 33406147 C T MIR5004 5UTR

rs375913209 6 33406168 C T MIR5004 5UTR

Not assigned 6 33406194 A C MIR5004 5UTR splice-disrupt 4.77

Not assigned 6 33406194 A G MIR5004 5UTR splice-disrupt 4.77

Not assigned 6 33406194 A T MIR5004 5UTR splice-disrupt 4.77

Not assigned 6 33406195 G A MIR5004 5UTR splice-disrupt 4.77

Not assigned 6 33406195 G C MIR5004 5UTR splice-disrupt 4.77

Not assigned 6 33406195 G T MIR5004 5UTR splice-disrupt 4.77

4. Discussion

UTRs, particularly in the 5′UTR, are of high translational importance. The leader
sequence and TRS in the 5′ non-coding part of SARS-CoV-2 can be considered as the
Achilles’ heel of SARS-CoV-2. Leader sequence is located at the 5′ ends of all encoded
transcripts, highlighting its potential significance. The TRS can explain the host range and
pathogenicity of a coronavirus. UTRs are potential sites for antiviral drugs to bind and
inhibit the virus replication. There is no report on disruption of 5′UTR in SARS-CoV-2 but,
in bovine coronavirus, it has been found that disruption of either stem-loop III or stem-loop
IV of the 5′UTR stops virus RNA replication, suggesting that these regions function as
cis-acting elements [4,20]. On the other hand, microRNAs that bind to SARS-CoV-2 UTRs
can be induced by drugs or food supplements to reduce virus replication. Enhancing host
microRNA defense machinery against the 5′UTR region of a virus can help in prevention
of SARS-CoV-2 infection. The above-mentioned strategies represent potentially achievable
treatments against COVID-19 infection. In this study, we presented a model of literature
mining-based drug discovery to induce inhibitory microRNAs against leader sequence
of SARS-CoV-2.

Some host cell microRNAs are important components of the host immune defense
against viral infection as they destroy the viral RNA [21]. In this study, we found that
hsa-miR-5004-3p is a unique human microRNA with the ability to target the leader se-
quence of SARS and SARS-CoV-2. Our comprehensive meta-analysis also documented a
significant (p < 0.01) decline in the expression of MIR-5004-3p after SARS-COV-2 infection
in trachea, lung, and bronchial organoids as well as in lung-derived Calu-3 and A549 cells.
Interestingly, a decreased level of hsa-miR-5004-3p has been reported in the whole blood of
patients during dengue virus (DENV) infection. hsa-miR-5004-3p was undetectable in early
DENV infection, but expression was high in most of the healthy controls and recovered
dengue patients. This finding demonstrated suppression of hsa-miR-5004-3p during the
early phases of DENV infection and its importance in patient recovery [22]. Like COVID-19,
DENV is a rampant arboviral illness worldwide [22] with high viral transmission success
and immune evasion.

We found a significant trend in the 5′UTR of SARS-CoV-2 to escape from binding
of hsa-miR-5004-3p by insertion-type mutation. Such mutations decrease microRNA-
5′UTR binding stability and allow SARS-CoV-2 to escape the available human microRNA
immunity system. We suggest that the lack of innate human inhibitory microRNAs for
SARS-CoV-2 contributes to its high replication in the infected human cells. On the other
hand, mining of two hundred million deposited human genomic variants led us to discover
splice-disrupted mutations in the genomic structure of hsa-miR-5004-3p. These mutations
can negatively affect hsa-miR-5004-3p function in preventing SARS-CoV-2 replication.
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The abundance of some human inhibitory microRNAs against SARS-CoV-2 is asso-
ciated with age [19]. It has been discussed that higher COVID-19 virulence in the aged
patients [23] is potentially related to the decline in microRNAs in elderly people [19]. In
addition to age, some of the human microRNAs downregulate in coronary artery dis-
ease, kidney disease, colorectal cancer, osteosarcoma, prostate cancer, obesity/diabetes,
myocardial injury, hepatocellular carcinoma, non-small cell lung cancer, gastrointestinal
tumors, and colorectal cancer [19]. Like age, the mentioned conditions can also contribute
to lower abundance of human inhibitory microRNAs and consequently, higher severity
and mortality of COVID-19. This hypothesis needs to be examined in future studies.

The 5′UTR inhibitory microRNAs, such as hsa-miR-5004-3p or those of plant origin
such as ptc-miR474 and csi-miR3953, have promising potential for developing new thera-
pies. MicroRNA vaccine, nanoparticles, synthesized microRNAs, microRNA exosome, and
dietary microRNAs can be considered in this context. MicroRNA-peptide fusion is also
suggested as potential vaccine candidates [24]. In addition to hsa-miR-5004-3p, plant mi-
croRNAs with very low binding energy (less than −22 kcal/mol) against leader sequence
of 5′UTR of SARS-CoV-2, such as ptc-miR474b and ptc-miR474a (Populus trichocarpa) and
csi-miR3953 (Citrus sinensis) are possible candidates for inclusion. Nanoformulations of the
SARS-CoV-2 inhibitory microRNAs can successfully and safely deliver microRNAs to lung
cells, to reduce viral replication in the host cell and suppress the viral load [25]. MicroRNA-
based nanoparticles can also be utilized in the form of nanovaccines to prevent SARS-CoV-2
infection. Compared with traditional vaccines, nanovaccines have many potential benefits,
including: (1) Specific targeting to infection sites, (2) minimal off-target effects, and (3) the
possibility of nasal spray/drop formulation for direct activation of the immune system in
the respiratory tract [25]. Due to shortness of microRNA sequences (18–25 nucleotides),
synthesizing of inhibitory microRNAs are readily conducted. It has been suggested that
mixtures of synthesized microRNAs, called multiple microRNA cocktail, targeting differ-
ent coding (such as S gene) and UTR regions of SARS-CoV-2 can be considered as new
COVID-19 treatment strategy [19,26]. This synthesized mixture may be delivered to the
target host cells by liposomes like exosome (extracellular vesicle), polymer-based carriers,
or nanoparticles [26]. High potential of microRNA exosomes as biomarkers of infection
and recovery in COVID 19 has been suggested [24]. On the other hand, the combination of
a mRNA vaccine with the immune promoting agents, such as inhibitory microRNAs, can
increase its efficiency and protection, even in the case of new SARS-CoV-2 mutations.

Interestingly, expression of microRNAs, complementary to the 3′UTR of viruses, is the
main protecting strategy in plants that degrades the viral RNA or blocks its translation by
ribosomes [26]. Plants are a rich source for microRNAs, with remarkable therapeutic and
preventive roles in many diseases [27]. Recently, it has been suggested that microRNAs
in food can be absorbed by the human circulatory system [28]. The absorbed microRNA,
named dietary microRNA, can regulate gene expression and biological processes in mam-
malian cells [28]. Dietary microRNA, as a novel functional feature of food [28], opens
a new potential avenue for safe and accessible COVID19 protection and treatment. Fur-
ther research on plant dietary microRNAs may lead to a safe treatment strategy against
COVID19 by oral use of plant microRNAs or whole plants containing SARS-CoV-2 in-
hibitory microRNAs.

Sequence variation in the non-coding viral genomic regions may predispose people
to develop more severe disease. It should be noted that the genetic signature of the
pathogenesis severity in the non-coding regions of SARS-CoV-2 is still unknown. A recent
report on human–mink–human transmission cycle [29] highlights the necessity to uncover
all functional mutations, including the ones that occur in UTR regions. The availability
of 212,346 (at 21 November 2020) SARS-CoV-2 genomic sequences, including 159,057
sequences of the full genome and high coverage, in GISAID (https://www.gisaid.org/) [30]
and NCBI provides the chance of pattern recognition in 5′UTR sequences of SARS-CoV-2,
particularly against host microRNA inhibitory machinery, by machine learning models.
Models and statistics such as decision tree classification based on association rule mining

https://www.gisaid.org/
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and deep learning [31–36] that have been used for eukaryotic promoter and UTR analysis,
can be examined for UTR analysis of SARS-CoV-2. It should be noted that some of the
sequences that have been deposited in GISAID as full genomes have incomplete or low-
quality sequencing in 3′UTR and 5′UTR regions. Data cleaning of 5′UTR and 3′UTR regions
is a major task before analysis as many of the announced SARS-CoV-2 full genomes with
complete coding sequences have incomplete, short, or low-quality UTR sequences. This
problem casts doubt on the reliability of the currently identified SARS-CoV-2 sequences
and UTR mutations.

5. Conclusions

Non-coding regions are crucial for SARS-CoV-2 replication, transcription, and domi-
nation of host systems biology. Unravelling the reasons underpinning SARS-CoV-2 success
in dominating human cells and its high transmission rate is crucial for future research.
The present study is a significant step towards unravelling the evolution of the 5′UTR
in SARS-CoV-2, discovering the key regions, and utilizing the UTRs for lowering virus
load in the infected cells. We have shown that human hsa-miR-5004-3p and several plant
microRNAs are good microRNA candidates to target the leader sequence of SARS-CoV-2
at 5′UTR region.

In this study, an evolutionary pattern in the 5′UTR of SARS-CoV-2 from SARS was
discovered whereby SARS-CoV-2 tries to escape hsa-miR-5004-3p binding by the gener-
ation of insertion-type mutations. The lack of a human inhibitory microRNAs to target
the 5′ UTR of SARS-CoV-2 can contribute in immunity evasion and pathogenesis in SARS-
CoV-2. Decline in expression of human inhibitory microRNAs with increasing age, and in
a range of diseases such as diabetes and obesity, can also contribute to higher mortality of
SARS-CoV-2 in elderly patients and in individuals suffering from these diseases.

We also developed a literature mining-based drug repurposing strategy to induce
inhibitory microRNAs that are potentially active against the leader sequence of SARS-
CoV-2. Activation of inhibitory machinery microRNAs by drug repurposing and food
supplements are easily achievable treatment strategies against COVID-19. Additionally, the
microRNAs identified can be utilized for other therapeutic strategies such as development
of microRNA vaccines, nanoparticles, synthesized microRNAs, microRNA exosome, and
dietary microRNA.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/2/319/s1, Supplementary 1: Seed region of 9994 microRNAs families in targetscan database,
Supplementary 2: Multivariate analysis.
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