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Purpose: Clinical trials have illustrated that Shenmayizhi decoction (SMYZ) could improve

the cognitive functions in patients with dementia. However, the mechanism needs to be

explored.

Methods: Fifty adult male rats (Wistar strain) were divided into five groups equally and

randomly, including control, model, and SMYZ of low dose, medium dose and high dose.

Rats in each group received a daily gavage of respective treatment. Rats in control and model

group were administrated by the same volume of distilled water. Memory impairment was

induced by intraperitoneal administration of scopolamine (0.7 mg/kg) for 5 continuous days.

Four weeks later, Morris water maze (MWM) was performed to evaluate the spatial memory

in all rats. Then, rats were sacrificed and the hippocampus was removed for further tests.

Furthermore, Western blot analysis was employed to assess the levels of acetylcholine M1

receptor (M1), acetylcholine M2 receptor (M2), acetylcholinesterase (AChE) and cholinea-

cetyltransferase (ChAT). AChE and ChAT activities were determined.

Results: The SMYZ decoction significantly improved behavioral performance of rats in

high dose. The SMYZ decoction in three doses exhibited anti-acetylcholinesterase activity. In

addition, a high dose of SMYZ promoted ChAT activity. Moreover, a high dose of SMYZ

increased the level of ChAT and declined the level of AChE assessed by Western blotting.

Besides, an increased level of M1 receptor was found after treatment.

Conclusion: Shenmayizhi decoction could mitigate scopolamine-induced cognitive deficits

through the preventative effect on cholinergic system dysfunction.

Keywords: dementia, Shenmayizhi decoction, scopolamine, acetylcholine M1 receptor,

acetylcholinesterase, cholineacetyltransferase

Introduction
The global prevalence of dementia imposes a considerable burden on society.

Nowadays, the number of patients with dementia is estimated to be 24 million

and predicted to be quadruple by the year 2050.1 Alzheimer’s disease (AD) is

the most common form of dementia and the dominant pathological features of

which were amyloid plaques and neurofibrillary tangles. Although AD was

observed by Alois Alzheimer in 1901, its pathogenesis was controversial and

there is no cure up to now.2 Besides, cognitive decline in AD has no exact

relationship with the number of plaques, which indicates that other factors might
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have effects on AD progression. Among mainstream

hypotheses, acetylcholine (ACh) plays a crucial role in

cognitive processes, and the cholinergic system is

demonstrated as a significant factor in many forms of

dementia, including AD.3

At present, cholinesterase inhibitors play an effective

role in cognition, daily living activity, behavior, and overall

clinical rating. Donepezil, galantamine and rivastigmine are

the recognized cholinesterase inhibitors for the treatment of

mild, moderate, and severe AD.4 However, herbal medi-

cines have the potential to cure of AD owing to their

multi-functional, multi-target characteristics.5 SMYZ

which consists of Renshen (Radix Ginseng), Tianma

(Rhizoma Gastrodiae), Guijianyu (Ramuli Euonymi) and

Chuanxiong (Rhizoma Chuanxiong) based on the mechan-

ism of invigorating Qi, promoting blood circulation and

suppressing Yang. Clinical trials and animal experiments

have demonstrated the significant effect of SMYZ on the

treatment of dementia.6–8 ACh plays a significant role in

memory function, particularly in the hippocampus-depen-

dent learning. Physically, the activities of AChE and ChAT

regulated the concentration of ACh in the brain.9,10

However, in neurodegenerative disease, especially the AD,

the metabolism of ACh undergoes disruption. Evidence

showed a loss of ChAT and AChE in the cortex, hippocam-

pus and amygdala of AD brain samples.11 AChE is also

able to accelerate amyloid formation.12 It has been shown

that ChAT transcription is obviously declined in the choli-

nergic neurons, which results in diminished ChAT activity

and aggravation of dementia.3 Moreover, among the

acetylcholine muscarinic receptors, M1 and M2 have the

highest expression in the prefrontal cortex (PFC) and hip-

pocampus, brain regions important for cognition.13 M1 are

the most abundant subtype in the hippocampus, which plays

an important role in regulating the excitability of hippocam-

pal neurons and in spatial learning and memory in elderly

primates.9,14 Additionally, research has revealed that loss of

M1 exacerbates the cognitive impairment.14–17 In the pre-

sent research, the effect of SMYZ on spatial learning and

memory was examined in a rat model of scopolamine,

which can induce cognitive impairments as a muscarinic

receptor antagonist. In this study, the expression differences

of M1, M2, AChE, and ChAT in the hippocampus were

evaluated by Western blot as well as the activity of ChAT

and AChE to explore the mechanism of SMYZ in choliner-

gic system, which is pointed out as a crucial factor in many

forms of dementia.

Materials And Methods
Animals
All rat work described in the present study was examined

and approved by the Committee on Ethics of Animal

Experiments of Xiyuan Hospital of China Academy of

Chinese Medical Sciences (No. 2018XLC009-1). Fifty

Sprague-Dawley (SD) rats (male) at the age of 10 weeks,

weighing 300±20g, were obtained from SPF Biotechnology

Co., Ltd. (Beijing), with a certificate of conformity: SCXK

(Beijing) 2016-0002. Rats were raised in specific pathogen-

free conditions with a temperature of 22–25°C, a 12-hr light

cycle and humidity of 50–70%. All animals were given 7

days of adaptive feeding to acclimatize.

Preparation Of SMYZ Decoction
Herb slices of SMYZ (composition: Radix Ginseng, Rhizoma

Gastrodiae, Ramuli Euonymi, Rhizoma Chuanxiong in a ratio

of 3:3:3:2) were obtained from Xiyuan hospital. Thirty-three

grams of crude material of the formulation were soaked in 330

mL of distilled water (1:10, w/v) for 30 mins at room tem-

perature and then extracted twice at 100°C with 330 mL of

distilled water under reflux, each time for 2 hrs. Then, the two

extracts were combined and freeze-dried. Five grams of

SMYZ lyophilized powder were obtained from 33 g of raw

herbs. The powder was stored at 4 °C before use.

High-Performance Liquid

Chromatography (HPLC) Analysis
Inertsil ODS-3 (4.6 × 150 mm, 5 µm) was used as stationary

phase for the chromatographic separation with a column tem-

perature at 30°C. The detection wavelength was 203 nm. The

compounds were identified by individual peak retention times

compared with reference substances. The flow rate was 1 mL/

min, and the total injection volume was 8 µL. The mobile

phase consisted of solvent A (0.3% phosphoric acid in water)

and solvent B (acetonitrile) with the following gradient

elution: 3–20% B at 0–15mins; 20–25% B at 15–20 mins;

25–40% B at 20–25 mins; 40–50% B at 25–30 mins and

50–55% B at 30–37 mins. Commercially available reference

compounds were used according to the Chinese Pharmacopeia

to identify the major components in the SMYZ decoction.

Drug Administration And Establishment

Of Animal Model
Fifty rats were divided into the following five groups using

random numbers: a control group, a model group, a low

concentration decoction group (SMYZ-L group), a medium
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concentration decoction group (SMYZ-M group) and a high

concentration decoction group (SMYZ-H group). There

were 10 rats in each group. Dosages of SMYZ were calcu-

lated on the basis of the body surface equivalent dose ratio

between rat and adult human. The same volume of distilled

water was given to the rats in control group and model

group; the drug concentrations in the high, medium and low

groups were 16.5, 6.6, and 3.3 g/kg, respectively. All the

groups were administrated by daily gavage in the morning,

and treatments lasted 4 weeks. After 4 weeks, 30 mins

before the behavioral testing, 0.7 mg/kg scopolamine was

injected intraperitoneally for 5 consecutive days.18 All

efforts were made to minimize the number of animals

used and their suffering during this study. Animal proce-

dures were performed according to the Guide for the Care

and Use of Laboratory Animals and the Beijing Laboratory

Animal Welfare Ethics Review Guidelines issued by the

Ministry of Science and Technology of China.

Reagents
Rabbit monoclonal anti-AChE antibody, rabbit monoclonal

anti-ChAT antibody, rabbit polyclonal anti-M1 antibody and

rabbit monoclonal anti-M2 antibody were acquired from

Abcam (Cambridge, GRB). Beta-actin mouse monoclonal

antibody was obtained by ImmunoWay (California, USA).

The reagent kit for measurement of the AChE activity was

purchased from Beijing Solarbio Science & Technology Co.,

Ltd, and the reagent kit for measurement of ChAT activity

was acquired from Nanjing Institute of Jiancheng

Bioengineering (Nanjing, China).

The Morris Water Maze Test
Thirty minutes after intraperitoneal injection of scopolamine,

MWM was used to detect spatial learning in rats.19 The test

consisted of a place navigation and a spatial probe test. The

place navigation was evaluated daily for 4 days. The water in

the maze was 30 cm deep and approximately 1 cm above the

platform surface at 23±1°C. An appropriate amount of ink

was mixed in the water to turn the opaque black. This test

was conducted in a soundproof room. The procedure for this

test involved the following: (1) choosing and marking a point

of pool wall from 1/2 radians of the second quadrant, (2)

placing the rats against the pool wall into the water on the

marked point, and (3) recording the time required to find and

climb on the platform. Together this procedure was called

escape latency. If the rats could not find the platform in 90 s,

they were guided appropriately to the platform and allowed

to stay for 10 s. On the fifth day, swimming distance was

recorded. Moreover, on the fifth day, the platform was

removed to perform a spatial probe test. In this test, the rats

were made to face the pool wall and enter the water from a

random point of the second quadrant. The camera system

automatically recorded the escape latency and swimming

distance and time spent in target quadrant of each rat.

Tissue Preparation
After MWM, rats were intraperitoneally anesthetized by

2% pentobarbital sodium (0.2 mL/100g) and then sacri-

ficed by decapitation. The brain tissue was instantly put on

ice and incised into left and right hemispheres sagittally.

Then, hippocampus was dissected. The right half of the

hippocampal tissue was weighed and reserved in liquid

nitrogen for protein immunoblotting. The left half of the

hippocampal tissue was weighed and reserved in liquid

nitrogen for measurement of biochemical analysis.

Western Blot Analysis
Hippocampi were dissected and lysed with RIPA (Radio-

Immunoprecipitation Assay) Lysis buffer to extract protein

and then centrifuged at 13,000g for 20 mins at 4°C (3–18K,

Sigma). The supernatant was collected. Total protein was

quantified using a BCA (bicinchoninic acid) Protein Assay

kit (Beijing Sinoble Biotechnology Center, Beijing, China).

Protein concentration was diluted to 4 mg/mL with 5× loading

buffer and boiled for 5mins.According to themolecularweight

of the target protein, either 8% or 12% acrylamide resolving

gels were prepared. Samples containing 20µg of protein were

loaded on a sodium dodecyl sulfate-polyacrylamide gel (SDS-

PAGE) electrophoresis (90-V for the stacking gel-20mins;

160V for the separating gel, timed in accordance with the

protein marker) and transferred to 0.45 µm nitrocellulose filter

membranes (300mA, 1–2hrs), then blocked with 3%

bovine serum albumin for 60 mins and incubated in primary

antibody (1:1000, ab183591; 1:5000, ab178850; 1:1000, ab18

0636; 1:2000, ab109226) overnight at 4°C. After incubation

with horseradish peroxidase-conjugated antibody anti-rabbit or

anti-mouse IgG antibodies for 40min, protein complexes were

visualized using enhanced chemiluminescence Western blot-

ting detection reagents (Millipore). Band intensity was ana-

lyzed using Image J.

Determination Of AChE Activity And

ChAT Activity
The determination of AChE activity was performed using a

commercial kit (Beijing Solarbio Science & Technology Co.,
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Ltd, Beijing city, China). ChAT activity was determined by a

commercial kit (Nanjing Jiancheng Bioengineering Institute,

Nanjing City, China). All procedures strictly followed the

manufacturer’s instructions. The determination of ChAT is

based on acetyl coenzyme A and choline as substrates. Under

the action of ChAT, the product of the reaction is combined

with the chromogenic reagent. The absorbance is determined

at 324 nm to calculate the activity of ChAT. AchE catalyzes

the hydrolysis of Ach to choline, and choline reacts with P-

nitrobenzoic acid disulfide (DTNB) to form TNB. TNB has

an absorption peak at 412 nm. AchE activity is calculated by

measuring the absorption increase rate at 412 nm.

Statistical Analysis
All data are shown as means ± standard error of mean

(SEM). One-way analysis of variance (ANOVA) followed

by Dunnett’s post hoc test was performed using SPSS 21.0

software (IBM SPSS, Shanghai, China) for the intergroup

comparisons. P < 0.05 was considered statistical difference.

Results
Bioactive Components Of SMYZ
Major components contained in SMYZ water extraction

were determined by HPLC. Five bioactive compounds in

SMYZ were detected and annotated by comparing the

retention time and UV-spectrum with reference chemicals.

These compounds were gastrodin, ferulic acid, ginsenosides

Rg1, ginsenosides Rb1, and quercetin which are shown in

Figure 1. The five standards used in the chromatogram were

300 ug/mL, 500 ug/mL, 1 mg/mL, 1 mg/mL, 1 mg/mL.

SMYZ Improves The Spatial Learning And

Memory Of The Rats Induced By

Scopolamine In The MWM
In order to verify whether SMYZ improves cognitive

impairments, the MWM was performed to test spatial learn-

ing and memory abilities in the rats. From Figure 2A, the

results show that on the first day the escape latency was

nearly the same among all groups, which suggested the

same start of spatial memory of rats in 5 groups. As the

training progressed, the escape latency on the fifth day

became shorter than that on the first day for each group

(F=669.67, P < 0.01), demonstrating that all rats were

capable of learning. On the second day and third day, the

escape latency of the model group was longer than that of

the control group (F1=15.97, F2=10.76, P < 0.01).

Moreover, on the fourth day, the SMYZ-H group and the

control group exhibited shorter escape latencies to reach

the platform than the model group (F1=15.47, F2=29.35,

P < 0.01). On the fifth day, compared to the model group,

SMYZ-H group and control group showed shorter latencies

to reach the platform (F1=5.62, F2=10.78, P < 0.01). As

shown in Figure 2B, on the fifth day, the control group and

SMYZ-H group had a larger number of crossing over the

platform position compared with the model group (F=8.19,

P < 0.05). Besides, from Figure 2C and D, the control

group, SMYZ-M group and SMYZ-H group had less pre-

sent of swimming time and swimming distance in the target

quadrant versus the model group (F1=7.66, F2=5.95,

F3=8.31, P < 0.05). The data suggest that medium and

high dosage of SMYZ could ameliorate the learning and

memory abilities of the rats induced by scopolamine.

SMYZ Increases The Expression Of ChAT

And Muscarinic M1 Receptor In The

Hippocampus While It Decreases The

Expression Of AChE In The Hippocampus

Of Rats Induced By Scopolamine
The expressions of AChE, ChAT, M1 and M2 were detected

by Western blot. The images and quantitative analysis

showed the changes in the hippocampal tissue after the

treatment of SMYZ for 4 weeks. Figure 3A shows that

after treatment there was a significant decline in the AChE

of hippocampus in the SMYZ-H group compared to that

observed in the model group (F=8.18, P < 0.05). Figure 3B

demonstrates that ChAT levels of SMYZ-H were signifi-

cantly higher than those of the model group after treatment

(F=17.78, P < 0.05). Figure 3C reveals a significant increase

in the level of M1 in SMYZ groups after treatment compar-

ing to the model group (F=10.14, P < 0.05). Especially the

SMYZ-H group had a significant rise in M1 levels compared

to the model group (F=53.48, P < 0.01). However, we did not

observe a significant between-group difference of M2

expression in hippocampus after treatment.

SMYZ Boosts ChATActivity And Reduces

AChE Activity In The Hippocampus Of Rats
In order to clarify the possible mechanisms of SMYZ improv-

ing the spatial learning and memory of scopolamine-induced

rats, the activities of key enzymes which might affect memory

in the hippocampus in the brain were measured. Figure 4

illustrates the AChE and the ChATactivity in the hippocampus

of the rats. As shown in Figure 4A, AChE activity in
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SMYZ-M group, SMYZ-H group and control group is sig-

nificantly lower than that in the model group (F1=12.63,

F2=26.73, F3=31.74, P < 0.01, respectively). Meanwhile,

SMYZ-L group had a lower AChE activity than the model

group as well (F=5.43, P < 0.05). Moreover, Figure 4B

demonstrates that SMYZ-H group and control group also

significantly boosted the ChAT activity in the hippocampus

(F1=6.98, F2=9.64, P < 0.01) compared to the model group.

Discussion
It has been proven that the cholinergic system is crucial in the

learning process as well as in the memory function and

Figure 1 The chromatographic profile of SMYZ decoction.

Notes: (A) Major compounds in SMYZ decoction compared with reference standards; a: gastrodin; b: ferulic acid; c: ginsenosides Rg1; d: ginsenosides Rb1; e: quercetin. (B)
Details of retention time from 24 to 31 mins.

Abbreviation: SMYZ, Shenmayizhi decoction.
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Figure 2 SMYZ treatment on learning and memory deficits induced by scopolamine.

Notes: (A) The effects of SMYZ on the escape latency in the MWM test after 4-week treatment in rats, including (A) P < 0.01, control group versus model group;

(B) P < 0.01, SMYZ-H group versus model group. (B) The number of crossing over the platform position during the spatial probe test in the MWM test on the fifth

day, * P < 0.05, versus the model group. (C) The percent of swimming distance in target quadrant during the spatial probe test in the MWM test on the fifth day,

* P < 0.05, versus the model group. (D) The percent of swimming time in target quadrant during the spatial probe test in the MWM test on the fifth day, * P < 0.05,

versus model group. Data are expressed as mean ± SEM (n=10).
Abbreviations: SMYZ, Shenmayizhi decoction; SMYZ-L, low-concentration SMYZ group; SMYZ-M, medium-concentration SMYZ group; SMYZ-H, high-concentration

SMYZ group.

Figure 3 AChE, ChAT and M1 levels in the hippocampus of scopolamine-induced amnesia rats.

Notes: (A) AChE expression in the hippocampus, * P < 0.05, versus the model group. (B) ChATexpression in the hippocampus, * P < 0.05, versus the model group. (C) M1

expression in the hippocampus, * P < 0.05 and ** P < 0.01, versus the model group. Data are expressed as mean ± SEM (n=3).
Abbreviations: AChE, acetylcholinesterase; ChAT, cholineacetyltransferase; M1, acetylcholine M1 receptor.
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influences acquisition and consolidation of learned task.20–25

Based on experimental and clinical evidence, ACh, as a vital

neurotransmitter, plays a vital role in memory function and

modulating learning, which both decline in healthy aging and

even more in neurodegenerative diseases.9 Decline in the

function of the central cholinergic system can influence

aspects of dementia such as a deficiency of memory and

puzzlement as shown in AD, which is featured by cognitive

dysfunction with memory deficiency and behavioral

disorders.9,25

Scopolamine, a well-acknowledged anticholinergic

drug, is generally used as a standard drug for the experi-

mental purpose to induce cognitive deficits in animals.26

After the cholinergic hypothesis of geriatric memory defi-

ciency was produced, the use of scopolamine as a pharma-

cological model of “cholinergic amnesia” became very

popular.27 Scopolamine, a muscarinic receptor antagonist,

damages learning and memory, while, it could stimulate

neuronal injury and boost the activity of AChE.27,28

Scopolamine-regulated memory deficiency is one of the

most widely used models, which is more convenient than

the complex surgical events. Studies have reported that at

least a dose of 0.1 mg/kg scopolamine could impair place

learning in the Morris task. Besides, some experiments

demonstrated that higher doses (i.e., 0.8–1.0 mg/kg, intra-

peritoneal injection) cannot impair the gain of the Morris

task.29 Therefore, this experiment was performed to

observe the effects of SMYZ on cholinergic system in

rats. Scopolamine (0.7 mg/kg) was used for injection to

induce the rats of memory and cognitive impairment.

MWM is a test of spatial learning for rodents. In

MWM, animals should rely on distal clues to navigate

from start positions to locate a drowned escape platform

around the perimeter in an open swimming arena.30 It was

first established by neuroscientist Richard G. Morris in

1981 in order to test hippocampal-dependent learning

and now it plays a crucial role in the determination of

rodent models for neurocognitive impairments like

Alzheimer’s disease.31 In the MWM of this study, scopo-

lamine-induced amnesia rats exhibited a significant pro-

longed escape latency since the second day. Besides, it had

a larger number of crossing over the platform position and

higher percent of swimming distance and swimming time

compared with the control group. All of which was con-

sistent with the results of other researches.32–34 Moreover,

after SMYZ-H intervention of 4 weeks, the escape latency

significantly decreased and the swimming time and swim-

ming distance in the target quadrant significantly reduced

as well, which indicates that SMYZ with high and medium

dosage could effectively improve learning and spatial

memory capacity in scopolamine-induced amnesia rats.

Research investigated that hippocampus had two core

functions, which were spatial navigation and episodic

memory.35 Furthermore, the function of hippocampus is pro-

minently affected by cholinergic disorder.36–38 Cholinergic

disorder has a crucial role in the pathophysiology of cognitive

impairment, while the neuromodulator ACh plays a significant

role in memory function, particularly in the hippocampus-

dependent learning.17 ACh is generated from choline and

acetyl-CoA via the ChAT enzyme and whereafter transfer

into vesicles and release into the synapse cleft, where it can

bond to ACh receptors. However, ACh can be broken back

down into choline and acetic acid by AChE in the synapse.

Choline reuptake occurs via a high-affinity choline transporter,

and then choline is recycled in the synthesis of new ACh.39

Therefore, the concentration of ACh in the brain is

Figure 4 Effect of SMYZ on the activities of AChE and ChAT in the hippocampus of scopolamine-treated rats.

Notes: (A) Activity of choline acetytransferase (AChE). (B) Activity of acetylcholine esterase (ChAT). Data are expressed as mean±SEM (n=5). * P < 0.05, ** P < 0.01 versus

model group.
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dynamically regulated by the activities of AChE and ChAT.10

As early as in the mid-1970s, autopsy studies provided evi-

dence that cholinergic system was involved in the pathogen-

esis of AD, which showed loss of ChAT and AChE in the

hippocampus, cortex and amygdala of AD brain samples.11 In

addition, decreased ChATactivity has been found to be related

to growing Aβ plaque load and to cognitive decrease.11 AChE
could boost amyloid formation. AChE activity is modulated in

the brain and blood, which is co-localized with senile

plaques.12 Previous researches have demonstrated that drugs

that alter extracellular ACh levels or its receptor activity have a

huge influence in memory functions, like donepezil, galanta-

mine and rivastigmine, which are all cholinesterase inhibitors

proven to be effective in treating the cognitive and functional

symptoms of AD.25 In the present study, we found that SMYZ

treatment could reduce AChE activity in the hippocampus of

scopolamine-induced amnesia rats. Moreover, after SMYZ-H

administration, the levels of AChE in the hippocampus of rats

were decreased. Besides, SMYZ-H could increase the ChAT

activity and improve the level of ChAT in the hippocampus of

scopolamine-induced amnesia rats. It suggests that SMYZ

improves the ability of learning and memory in

scopolamine-induced amnesia rats by regulating the choliner-

gic system.

There are two main types of cholinergic receptors which

are nicotinic receptors and muscarinic receptors, and they

are expressed both in the central and in the peripheral

nervous system.9 There are five subtypes of muscarinic

receptors, M1 through M5. In particular, among the acet-

ylcholine muscarinic receptors, M1 and M2 are expressed at

the highest levels in the prefrontal cortex (PFC) and hippo-

campus, brain regions important for cognition.13 M1 is the

most abundant subtype in the hippocampus, which is

mainly expressed in the dendrites or somatic cells and

plays an important role in modulating the excitability of

hippocampal neurons and in spatial learning and memory in

elderly primates.9,14 On the basis of these discoveries and

many other research, M1 acetylcholine receptor agonists are

becoming a vital method to treat AD. M1 regulates the three

major features of AD including cholinergic hypofunction,

β-amyloid and tau hyperphosphorylation.14–16 Researches

reveal that loss of M1 deteriorates the cognitive deficiency

and increases parenchymal and cerebrovascular Aβ as well

as increases neuroinflammation in mice with AD.

Furthermore, deposition ablating the M1 gene boosts tau

pathological characteristics by disrupting PKA-CREB sig-

naling, relative to exacerbation of cognitive impairment.17

Researches have suggested that M1 receptor activation

reduces tau hyperphosphorylation by activating PKC and

inhibiting GSK-3β.16,40 M1 agonists were considered as

potential disease-modifying strategies in AD. It has been

shown that the M1 agonist AF267B can decline the cogni-

tive deficiency in a special task and reduce Aβ and tau

deposition in the cortex and hippocampus of a mice

model of AD.40 In addition, M2 antagonists like SCH-

57790 and SC-72788 could induce obstruction of M2-

mediated suppression of the presynaptic release of ACh,

which can stimulate M1 and nicotinic receptors, improving

cognitive deficiency in AD.3 In this study, we measured the

Muscarinic M1 receptor and Muscarinic M2 receptor level

in the hippocampus by Western blot. Interestingly, we found

that SMYZ treatment effectively increased the level of M1

receptor in the hippocampus of rats induced by scopola-

mine, while there was no significant difference in M2

receptor after treatment. Therefore, the effects of SMYZ

in improving cognitive abilities and memory may be

achieved through increasing the expression of M1 receptor.

In this research, we found that the major bioactive

components of SMYZ were gastrodin, ginsenosides Rg1,

ginsenosides Rb1, ferulic acid, as well as quercetin and all

of which have treatment of cognitive disorders as

described in many reports. Both in vivo and in vitro

studies showed that gastrodin can ameliorate spatial learn-

ing and memory of scopolamine-treated rats and restrain

the production and aggregation of Aβ, as well as protect

neurons from Aβ-induced injury.41–43 Besides, gastrodin

has a protective effect on inhibiting autophagy and apop-

tosis of hippocampus neurons.44–46 It has been demon-

strated that ginsenoside Rb1 could increase the intake of

choline in cerebral cholinergic nerve endings and regulate

the release and intake of ACh. Besides, it inhibited AChE

activity in the hippocampus and improved cognitive

impairment and hippocampus senescence. Rb1 and Rg1

have been reported to elevate the level of ChAT in rodent

brains and improved the performance of aged mice in a

behavior test. Interestingly, these findings are consistent

with our results.47–49 Many studies indicate that in vitro

and in vivo experiments of animal models ferulic acid has

a beneficial effect on inhibiting the aggregation of neuro-

toxic Aβ. Moreover, it could obstruct the biological path-

ways involved in apoptotic programmed cell death which

is caused by oxidative stress and inflammatory reaction

induced to Aβ aggregation.50–53 Quercetin is known to

protect neuronal cells against oxidative stress and inflam-

matory injuries, which damage the tissues leading to AD.

It could ameliorate the learning and spatial memory
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abilities as well as increase astrogliosis and microgliosis in

the hippocampus and the amygdala by its neuroprotective

effect.54–57

Conclusion
In conclusion, our findings demonstrate that SMYZ could

improve scopolamine-induced learning and memory impair-

ments in rats via its protective effect on cholinergic system

dysfunction. This may be explained by the modulation of

the cholinergic system, as indicated by increased expression

of ChAT, promotion of ChAT activity, decreased expression

of AChE and inhibition of AChE activity, and elevated level

of M1 receptors in the hippocampus. These may help the

future investigations of the clinical use of SMYZ in treating

dementia. Moreover, we anticipate that SMYZ might be a

promising candidate for the dementia treatment by modu-

lating the cholinergic system.
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