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Abstract
Cytochrome P450 enzymes (CYPs) play a crucial role in phase I metabolic reactions. 
The activity of CYPs would affect therapeutic efficacy and may even induce toxic-
ity. Given the complex components of traditional Chinese medicine, it is important 
to understand the effect of active ingredients on CYPs activity to guide their pre-
scription. This study aimed to evaluate the effect of polyphyllin H on the activity of 
CYPs major isoforms providing a reference for the clinical prescription of polyphyl-
lin H and its source herbs. The effects of polyphyllin H were evaluated in pooled 
human liver microsomes using probe substrates of CYP1A2, 2A6, 2C8, 2C9, 2C19, 
2D6, 2E1, and 3A4 to determine their activities. The Lineweaver-Burk was used to 
model the inhibition, and a time-dependent inhibition experiment was performed 
to understand the characteristics of the inhibition. Polyphyllin H significantly sup-
pressed the activity of CYP1A2, 2D6, and 3A4 with IC50 values of 6.44, 13.88, and 
4.52 μM, respectively. The inhibition of CYP1A2 and 2D6 was best fitted with a 
competitive model, yielding the inhibition constant (Ki) values of 3.18 and 6.77 μM, 
respectively. The inhibition of CYP3A4 was fitted with the non-competitive model 
with the Ki value of 2.38 μM. Moreover, the inhibition of CYP3A4 was revealed to be 
time-dependent with the inhibition parameters inhibition constant (KI) and inactiva-
tion rate constant (Kinact) values of 2.26 μM−1 and 0.045 min−1. Polyphyllin H acted 
as a competitive inhibitor of CYP1A2 and 2D6 and a non-competitive and time-
dependent inhibitor of CYP3A4.
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1  |  INTRODUC TION

Rhizoma paridis (Liliaceae) is common in the tropical and temperate 
regions of Eurasia, particularly in Southwest China.  Known for its 
pharmacological activities of antitumor, antibacterial, hemostasis, 
and expelling insects, R. paridis has been medicated for a long history. 
Its pharmacological action is often attributed to active extractions 
like saponins, which are critical ingredients of R. paridis. Studies 
showed that R. paridis saponins can inhibit tumor metastasis, alleviate 
oxidative stress injury, and ameliorate hepatic fibrosis.1–4 However, 
these saponins are also linked to the hepatic toxicity of R. paridis.5 
Polyphyllin H has been identified as a major steroidal saponin of R. 
paridis extracts.6 In a former study focusing on polyphyllin H phar-
macokinetics, it was reported that the maximum plasma concentra-
tion of polyphyllin H in beagle dogs was 20.72 ± 2.22 ng/mL after 
oral administration of 9.33 mg/kg R. paridis extracts, and polyphyl-
lin H was identified as the most abundant component.7 Polyphyllin 
H has been extensively researched for its pharmacokinetics, tissue 
distribution, and primary therapeutic effects.8,9 However, its hepatic 
toxicity and potential risk when combined with other compounds are 
still unknown.

Cytochrome P450 (CYP), also known as mixed functional oxi-
dase and monooxygenase, is a critical phase-I enzyme in biotrans-
formation. It is responsible for metabolizing approximately 3/4 of 
phase I-dependent drugs.10,11 CYPs are involved in the oxidation, 
demethylation, and other modifications of drug structures, en-
hancing their solubility and speeding up their excretion.12–14 Liver 
CYPs contain major subfamilies, including CYP1A, CYP2A, CYP3A, 
CYP2C, CYP2D, and CYP2E.15 These different CYP isoforms from 
various subfamilies show distinct characteristics and metabolize dif-
ferent xenobiotics. The inhibition or induction of CYP is a primary 
mechanism mediating drug–drug interaction.16 Multiple drugs can 
be metabolized by the same CYP isoform, and a single drug can also 
influence the activity of multiple CYP isoforms.17 Consequently, 
drug–drug interaction occurs when two or more drugs are co-
administrated. Traditional Chinese medicine prescriptions usu-
ally contain more than two types of herbs, and the combination 
of traditional Chinese medicine and drugs is widely used in clinics. 
Previous studies have reported interactions between herbal active 
ingredients and co-administrated drugs due to the changed activity 
of CYPs. For example, the inhibitory effect of Shaoyao-Gancao-Fuzi 
decoction on CYP3A increased the systemic exposure of tofacitinib 
in rats with glycyrrhetinic acid, glycyrrhizic acid, and liquidity playing 
critical roles.18 As the primary active ingredient of R. paridis, con-
sideration should be given to the effect of polyphyllin H on the ac-
tivity of CYPs for its safe clinical co-prescription and use as health 
products.

Liver microsomes are commonly used as experimental carriers 
in investigations of CYPs, due to their easy preparation, reproduc-
ibility, and short experimental period. Another significant advantage 
is their ability to assess the activity of multiple CYP isoforms simul-
taneously through a cocktail assay.19 CYPs activities are evaluated 
using the probe reaction method, which measures the production 

of metabolites. This study explored the effect of polyphyllin H on 
the activity of major CYP isoforms in human liver microsomes and 
corresponding probe reactions (Table 1). The study also examined 
inhibition characteristics to reveal the potential mechanism underly-
ing the effect of polyphyllin H.

2  |  METHODS

2.1  |  Study design

The probe reactions were performed in pooled gender-neutral 
human liver microsomes (HLMs, 22 donors, lot #4133007) ob-
tained from BD Bioscience (USA). The concentrations of probe 
substrates and HLMs (added by protein concentration) were se-
lected according to previous studies.20,21 Three treatments were 
set: negative control (without inhibitors), positive control (with 
typical inhibitors of CYP isoforms, summarized in Table  1), and 
polyphyllin H (with 100 μM polyphyllin H). Key protein targets and 
ligands in this article are hyperlinked to corresponding entries in 
https://​www.​guide​topha​rmaco​logy.​org, the common portal for 
data from the IUPHAR/BPS Guide to PHARMACOLOGY,22 and are 
permanently archived in the Concise Guide to PHARMACOLOGY 
2019/20.23

2.2  |  HLMs assay

The reaction systems were composed of 100 mM potassium phos-
phate buffer (pH = 7.4), NADPH generating system, HLMs, probe 
substrates, and polyphyllin H (100 μM) or typical inhibitors and the 
reaction volume was 200 μL. Probe substrates, inhibitors (except for 
dextromethorphan and quinidine were dissolved in water), and poly-
phyllin H were dissolved in methanol with a final concentration of 
1%, and 1% neat methanol was added to the incubations without 
inhibitor (to exclude the effect of methanol on CYP450 activities). 
The relatively high concentration of polyphyllin H was primarily used 
to screen CYP450 isoforms responding to polyphyllin H according 
to previous studies.20,24,25 The NADPH-generating system was pre-
pared as follows: 5 mM MgCl2 (Sigma, USA), 1 mM NADP

+ (Sigma, 
USA), 5 mM G-6-P (Sigma, USA), and 4 U/mL glucose-6-phosphate 
dehydrogenase (Sigma, USA). The reaction was initiated by the 
NADPH-generating system and conducted at 37 °C for 1 h after a 5-
min preincubation. Ice-cold acetonitrile was added to terminate the 
reaction and the mixture was centrifugated at 13,000 rpm for 15 min 
after a 5-min ultrasonic mixing. Further incubation with 0, 5, 10, 15, 
25, 50, and 100 μM polyphyllin H was performed with the substrates 
of the isoforms significantly inhibited by polyphyllin H with the same 
conditions as above to obtain the IC50 values assessing the inhibi-
tion strength. The IC50 values were calculated with the non-linear 
regression.

The time-dependent characteristics of CYP inhibition were 
evaluated with 20 μM polyphyllin H and 1 mg/mL HLMs (protein 
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concentration). The concentrations of probe substrates approx-
imated to Km are summarized in Table  1. The reaction system 
was prepared as described above and pre-incubated at 37°C for 
30 min and then transferred to another tube for further incuba-
tion. The reaction was terminated after 0, 5, 10, 15, and 30 min 
by acetonitrile, and then centrifugated at 13,000 rpm for 15 min 
for HPLC analysis. Furthermore, the concentration of probe sub-
strates was increased to approximately 4-fold Km values and incu-
bated with 0, 2, 5, 10, 20, and 50 μM polyphyllin H for 0, 5, 10, 15, 
and 30 min to obtain the time-dependent inhibition parameters 
inhibition constant (KI) and inactivation rate constant (Kinact) by 
linear fitting.

2.3  |  Inhibition model fitting

The incubations with a series of concentrations of probe sub-
strates were carried out to fit the inhibition model. The competi-
tive inhibition was fitted with v = (Vmax × S)/[Km(1 + I/Ki) + S], and 
the non-competitive inhibition model was fitted with v = (Vmax × S)/
[Km + S(1 + I/Ki)]. Where Vmax represents the maximum velocity of the 
reaction, Km represents the substrate concentration at half of Vmax, S 
represents the concentration of the substrate, I represents the con-
centration of polyphyllin H and Ki is the inhibition constant obtained 
from the nonlinear regression analysis. The values of Vmax and Km 
were calculated by the Lineweaver-Burk analysis.

2.4  |  HPLC analysis

The HPLC analysis was conducted with the Agilent 1290 series. The 
supernatant of the reaction mixture was transferred to the C18 col-
umn with water: acetonitrile as the mobile phases. The temperature 
of the column was set as 30°C and the mobile rate was 0.2 mL/min. 
The gradient elution conditions were set as 10%–20% acetonitrile 
for 5 min, 20%–30% acetonitrile for 5 min, 30%–40% acetonitrile for 
5 min, and 40% acetonitrile for 5 min. The total run time was 15 min 
per sample including a re-equilibration of 5 min. The quantitative 
detection method was constructed by our team based on previ-
ous studies.26–28 The specific analysis conditions are summarized 
in Table  2. The inhibition ratio was calculated with the following 
equation:

Where I represent the inhibition ratio, Cneg represents the pro-
duction of metabolites in the negative control, Ci represents the pro-
duction of metabolites in the positive control or polyphyllin H.

2.5  |  Statistical analysis

Experimental data were analyzed by GraphPad Prism 9.0 software 
and expressed as mean ± SD (n = 3). Difference comparison was per-
formed with one-way ANOVA (p < .05).

I (%) =
[(

Cneg − Ci

)

∕
(

Cneg

)]

× 100% .

Isoenzymes Internal reference Mobile phase Wavelength References

CYP1A2 7-Hydroxycoumarin Methanol: phosphate 
buffer (pH = 3.0, 
50 mM) = 32:68

UV 245 nm [21-23]

CYP2A6 - Acetonitrile: acetic acid 
(0.1%, v/v) = 35:65

Fluo Ex/EM 
340/456 nm

[21-23]

CYP3A4 Corticosterone Methanol: 
water = 50:40, 
0–15 min, 48% B-30% 
B; 15–22 min, 30% 
B-20% B

UV 254 nm [21-23]

CYP2C8 - Methanol: 
Water = 65:35

UV 230 nm [21-23]

CYP2C9 Coumarin Acetonitrile (A): 
phosphate buffer 
(pH = 7.4, 100 mM, 
B) = 32:68, 0–9 min, 
68% B-32% B

UV 280 nm [21-23]

CYP2C19 Tolbutamide Methanol: potassium 
phosphate (pH 7.0, 
10 mM) = 30:70

UV 204 nm [21-23]

CYP2D6 - Acetonitrile: phosphate 
buffer (pH = 3.0, 
50 mM) = 25:75

Fluo Ex/EM 
235/310 nm

[21-23]

CYP2E1 Phenacetin Acetonitrile: acetic acid 
(0.5%, v/v) = 22:78, 
1–10 min, 78% B-40% B

UV 287 nm [21-23]

TA B L E  2 The detection conditions of 
HPLC for each CYP450 isoenzymes.

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1321&familyId=262&familyType=ENZYME
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1325&familyId=262&familyType=ENZYME
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1326&familyId=262&familyType=ENZYME
https://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=262
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1329&familyId=262&familyType=ENZYME
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1330&familyId=262&familyType=ENZYME
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3  |  RESULTS

3.1  |  Effect of polyphyllin H on the activity of CYPs

The activity of all CYP isoforms was suppressed by correspond-
ing inhibitors, with a decrease ranging from 94.35% to 83.63%. 
Polyphyllin H significantly suppressed CYP1A2, 2D6, and 3A4, re-
ducing their activity to 24.49, 33.33, and 17.79% of the negative con-
trol, respectively (Figure 1A). The inhibitory effects of polyphyllin H 
were revealed to be concentration-dependent. As the concentration 
of polyphyllin H increased, the activities of CYP1A2 (Figure 1B), 2D6 
(Figure 1C), and 3A4 (Figure 1D) decreased with IC50 values of 6.44, 
13.88, and 4.52 μM, respectively.

3.2  |  Inhibition models of CYP1A2, 2D6, and 3A4

With various concentrations of polyphyllin H and substrates of 
CYP1A2, 2D6, and 3A4, the inhibition of CYP1A2 (Figure 2A) and 
2D6 (Figure 2B) was best fitted with the competitive inhibition model, 
as shown by the stable Vmax in the double-reciprocal plots. In contrast, 
the inhibition of CYP3A4 was best fitted with the non-competitive in-
hibition model with a stable Km (Figure 2C). The Ki values obtained for 
CYP1A2, 2D6, and 3A4 were 3.18, 6.77, and 2.38 μM, respectively.

3.3  |  Time-dependent characteristics of CYP1A2, 
2D6, and 3A4 inhibition

The activity of CYP3A4 decreased over the incubation period, while 
CYP1A2 and 2D6 remained relatively stable (Figure 3A). In the pres-
ence of 2, 5, 10, 20, and 50 μM polyphyllin H, a time-dependent 
manner was observed in the inhibition of CYP3A4 (Figure 3B). By 
fitting the slope of time-dependent inhibition, the related param-
eters KI and Kinact were obtained as 2.26 μM−1 and 0.045 min−1, re-
spectively (Figure 3C).

4  |  DISCUSSION

Traditional Chinese medicine has the advantages of low toxic-
ity and high efficiency.29 However, its complex composition and 
lengthy treatment process would influence metabolic enzymes 
and induce drug–drug interactions. These interactions can alter 
the physicochemical properties, pharmacokinetics, and pharma-
codynamics, and even lead to adverse reactions. The CYP1, CYP2, 
and CYP3 families account for 13%, 33%, and 30% of total CYPs 
and include several key isoforms.30,31 Polyphyllin H was found 
to inhibit the activity of CYP1A2, 2D6, and 3A4 in the present 
study. The roles and divisions of these three isoforms vary slightly. 

F I G U R E  1 Polyphyllin H significantly suppressed the activity of CYP1A2, 2D6, and 3A4, but the inhibitory effects were weaker than 
typical inhibitors (A). The inhibition of CYP1A2 (B), 2D6 (C), and 3A4 (D) was enhanced with the increasing concentration of polyphyllin H. 
IC50, Half maximal inhibitory concentration. nsp > .05, ****p < .0001.
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CYP1A2 is mainly responsible for the biotransformation of polycy-
clic aromatic hydrocarbons, aromatic amines, heterocyclic amines, 
and some halogenated hydrocarbons. CYP1A2 is also involved in 
the metabolism of xanthine drugs, such as phenacetin, proprano-
lol, clozapine, and caffeine.32,33 Although CYP2D6 only accounts 
for about 2% of CYPs, it participates in the metabolism of over a 
fifth of prescription drugs, involving antipsychotics, antidepres-
sants, analgesics, and antiarrhythmic drugs.34 The gene polymor-
phism of CYP2D6 affects drug metabolism and can induce adverse 
side effects. As such, the suppressed activity of CYP2D6 by poly-
phyllin H observed in this study would influence the metabolism 
of specific drugs and increase the risk of toxic reactions. CYP3A4 
is widely expressed in the liver and gut and has extensive sub-
strate specificity. According to statistical data, the substrates of 

CYP3A4 include 38 categories and over 150 drugs, which typi-
cally have a large molecular weight, aromatic rings, and less po-
larity.35,36 Environmental factors can affect CYP3A4 activity and 
individual differences in CYP3A4 expression can cause unpredict-
able drug reactions and toxicity.37 The altered activity of CYP1A2, 
2D6, and 3A4 has been reported to mediate drug–drug interac-
tion during drug co-administration. For instance, the inactivation 
of CYP1A2 by Xanthotoxin was suggested to induce the increas-
ing systemic exposure of Tacrine.38 A prospective observational 
study also demonstrated that the CYP2D6-mediated interactions 
could affect the efficiency of prescribed drugs in the emergency 
department.39 Hence, the inhibition of these isoforms by poly-
phyllin H should draw attention to its co-administration with the 
substrates of these enzymes. Further clinical investigations are 

F I G U R E  2 The inhibition of CYP1A2 
(A) and 2D6 (B) was best fitted with a 
competitive model in the presence of 
0–15 μM (for 1A2) and 0–30 μM (for 
2D6) polyphyllin H concentrations. 
The inhibition of CYP3A4 was non-
competitive in the presence of 0, 1, 2, 5, 
and 10 μM polyphyllin H (C). 1/velocity: 
The reciprocal of the reaction rate; 1/
substrate: The reciprocal of substrate 
concentration; Km: The substrate 
concentration at half of the maximum 
velocity of the reaction (Vmax).
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needed to specify the potential of polyphyllin H to induce inter-
actions with co-administrated drugs. Additionally, the inhibitory 
effects of polyphyllin H appeared to be concentration-dependent. 
The IC50 values also provide a reference for its dosage in clini-
cal prescriptions. However, there was a lack of in  vivo valida-
tion for the metabolism and plasma concentration of polyphyllin 
H. Previously, pharmacokinetic studies reported the maximum 
plasma concentration of polyphyllin H was 11.75 ± 1.28 μg/L in 
rats and 20.72 ± 1.28 μg/L in beagle dog after oral administration 
of R. paridis extracts, which are both lower than the identified IC50 
values.7,40 Hence, further in vivo evaluation of the interaction of 
polyphyllin H with co-administrated drugs is necessary.

Inhibition characteristics are crucial in determining whether 
drug–drug interaction will occur. Both competitive and non-
competitive inhibitions are reversible, mediated by weak forces 
such as hydrogen and hydrophobic bonds.41,42 In competitive in-
hibition, inhibitors compete with substrates for binding sites, pre-
venting substrate binding. In contrast, non-competitive inhibition 
allows enzymes to bind with substrates, but inhibitors bind to the 
enzyme substates complex, preventing the release of products. 
Herein, the inhibition of CYP1A2 and 2D6 was revealed to be 
competitive, while the inhibition of CYP3A4 was non-competitive. 
Ki, a critical parameter in reversible inhibition is linked with IC50 

values according to previous studies. It was reported that IC50 
is 2-fold of Ki value in competitive inhibition, which is consistent 
with our findings, and Ki is approximately equal to IC50 values in 
non-competitive inhibition.43 However, recent CYP-related stud-
ies also observed that the Ki values were also half of IC50 values 
in non-competitive inhibition, which is similar to the present 
study.44,45 Therefore, there is a controversy in the association 
between Ki value and IC50 values in non-competitive inhibition in 
experimental studies and modeling, which needs further investi-
gation. The chemical structure of polyphyllin H includes several 
ring structures (Figure 4), which might be similar to the substrates 
of CYP1A2 and 2D6, and therefore induced competitive inhibition 
on these CYPs.

Time-dependent manner significantly influences the effect of 
polyphyllin H on CYPs. Time-dependent inhibition is subtle and 
presents a challenge in predicting drug–drug interaction. The parent 
drug must undergo various metabolic transformations before finally 
binding with CYPs.46,47 In the inhibited isoforms, only the inhibition 
of CYP3A4 by polyphyllin H was found to increase with prolonged 
incubation time. This in vitro study primarily revealed the inhibitory 
effect of polyphyllin H on the activity of CYP1A2, 2D6, and 3A4 
in human liver microsomes. It suggests that polyphyllin H could 
potentially affect the metabolism of substrate drugs of these CYP 

F I G U R E  3 The inhibition of CYP3A4 was enhanced with incubation time (a), and the time-dependent inhibition parameters were 
obtained by fitting the inhibition under 2, 5, 10, 20, and 50 μM polyphyllin H (b and c).1/slope: The reciprocal of slopes under different 
concentrations of polyphyllin H in Figure 2B; 1/polyphyllin H: The reciprocal of polyphyllin H concentration in Figure 2B.
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isoforms. Studies have developed prediction methods for the risk of 
drug–drug interaction.48,49 However, due to the difference in bio-
availability, there was a lack of in vivo validation close to the actual 
clinical situation. There are also several prediction models that could 
predict the risk of drug–drug interaction, such as dynamic model and 
static model. Therefore, future studies should pay more attention to 
evaluating the potential of polyphyllin H inducing drug–drug inter-
action with the help of prediction model and more in vivo models, 
and clinical validations. Additionally, with the development of mode 
fitting, in silico investigations could help to predict the potential 
binding sites between the compounds and CYP450s, providing more 
molecular evidence for revealing the affecting mechanisms of poly-
phyllin H on CYP1A2, 2D6, and 3A4, which should be taken into the 
study design in our future research.

5  |  CONCLUSION

In conclusion, polyphyllin H has been found to inhibit the activity 
of CYP1A2, 2D6, and 3A4, in a manner that is directly correlated 
with its concentration. It causes competitive inhibition of CYP1A2 
and 2D6 and non-competitive inhibition of CYP3A4. This inhibitory 
effect of polyphyllin H could potentially lead to drug–drug interac-
tions. Therefore, this should be evaluated further in the context of 
clinical traits and considered in its prescription.
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