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A B S T R A C T   

SARS-CoV-2, the causative agent for COVID-19, infect human mainly via respiratory tract, which is heavily 
inhabited by local microbiota. However, the interaction between SARS-CoV-2 and nasopharyngeal microbiota, 
and the association with metabolome has not been well characterized. Here, metabolomic analysis of blood, 
urine, and nasopharyngeal swabs from a group of COVID-19 and non-COVID-19 patients, and metagenomic 
analysis of pharyngeal samples were used to identify the key features of COVID-19. Results showed lactic acid, L- 
proline, and chlorogenic acid methyl ester (CME) were significantly reduced in the sera of COVID-19 patients 
compared with non-COVID-19 ones. Nasopharyngeal commensal bacteria including Gemella morbillorum, Gemella 
haemolysans and Leptotrichia hofstadii were notably depleted in the pharynges of COVID-19 patients, while Pre
votella histicola, Streptococcus sanguinis, and Veillonella dispar were relatively increased. The abundance of 
G. haemolysans and L. hofstadii were significantly positively associated with serum CME, which might be an anti- 
SARS-CoV-2 bacterial metabolite. This study provides important information to explore the linkage between 
nasopharyngeal microbiota and disease susceptibility. The findings were based on a very limited number of 
patients enrolled in this study; a larger size of cohort will be appreciated for further investigation.   

1. Introduction 

COVID-19 is a respiratory illness caused by SARS-CoV-2 (Severe 
Acute Respiratory Syndrome Coronavirus 2), and over 95 million people 
worldwide have been infected as of Jan 17, 2021. Through investigating 
the extensive features of the COVID-19 patients, those individuals who 
are elderly, having other clinical comorbidities [1], blood group A [2,3], 
or genetic variation [4,5] might have increased risk for the infection 
with SARS-CoV-2 or develop into severe COVID-19 cases. 

SARS-CoV-2 primarily causes lung infection through binding of 

ACE2 receptors present on the alveolar epithelial cells [6], but it also 
infects intestinal epithelial cells [7], oral and nasal epithelial cells [8]. 
Gut microbiota may play a role in the susceptibility and as a diagnostic 
biomarker for COVID-19 [9–11]. Nasopharyngeal microbiome com
prises an abundance of microorganism species that interact with the 
local epithelial and immune cells, and together, they form a unique 
micro-ecological system. Respiratory tract microbiota is associated with 
resistance against the development of respiratory tract infections [12]. A 
single-cell analysis showed airway epithelium-immune cell interaction 
is associated with COVID-19 severity [13]. SARS-CoV-2 is associated to 
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the significant change in the respiratory microbiota [14], but whether 
nasopharyngeal microbiome could affect the susceptibility to COVID-19 
and regulate olfactory and gustatory disorders remain to be elucidated. 
Some opportunistic pathogens including Streptococcus, Prevotella and 
Campylobacter were enriched in pharyngeal microbiota of COVID-19 
patients, and moreover, two Streptococcus strains could stimulate the 
expression of ACE2 of Vero cells in vitro [15]. The Prevotella proteins are 
found to be involved in multiple interactions with NF-κB and can pro
mote SARS-CoV-2 infection [16]. Therefore, some pathogens in the 
pharynxes of COVID-19 patients may change the expression of the ACE2 
or modulating the host’s immune system involved in virus-host in
teractions. In addition, several metabolomic studies have shown meta
bolic alteration in COVID-19 patients [17–19], which may shed light on 
diagnostic biomarkers and therapy development for COVID-19. 

In this study, we integrated non-targeted metabolomic analysis of 
blood, urine, and nasopharyngeal swabs from 9 COVID-19 patients and 
6 non-COVID-19 patients from a Chinese population, and found several 
metabolites were significantly reduced in the serum of COVID patients. 
Then we analyzed the nasopharyngeal microbiome and association of 
COVID-19-related clinical phenotypes with microbial species, which 
revealed potential biological mechanisms linking nasopharyngeal 
microbiota to the COVID-19 susceptibility. Due to the emergency of 
COVID-19 pandemic and the enrollment policy changed, only a very 
limited number of patients eventually participated in this study, a larger 
size of cohort will be appreciated for further investigation. 

2. Materials and methods 

2.1. Study design and enrolled patients 

The cohort consisted of 9 COVID-19 and 6 non-COVID-19 patients 
with matched age and gender. All patients were admitted to department 
of infectious diseases, the Third Affiliated Hospital of Sun Yat-sen Uni
versity (TAH-SYSU), Guangzhou, China, during January and February 
2020. This study complied with all relevant ethical regulations and was 
approved by ethics committee of TAH-SYSU with the ethical number 
[2020]-02-018-01. SARS-CoV-2 infections were confirmed using nucleic 
acid test (NAT) by Guangzhou Center for Disease Control and Preven
tion. 6 non-COVID-19 patients had similar clinical characteristics 
including fever, cough, and ground-glass opacity in the lung as COVID- 
19 patients however negative in the NAT. Non-COVID-19 controls 
experienced NAT for at least two sequential NAT (four out of six un
derwent three sequential NAT), and all showed negative results. As for 
the severity, one of the COVID-19 patients was severe, while two of the 
controls were severe. None of them were admitted to a critical care unit 
or on the ventilator. 

2.2. Subjects and sample collection 

Nasopharyngeal swabs and anal swabs from all study subjects were 
collected on admission. The viral load of SARS-CoV-2 RNA in the 
nasopharynx was relatively higher than in the oropharynx according to 
our experience and literature report [20]. The anal swabs were also used 
for NAT, as an auxiliary means of examination. All blood and urine 
samples used were also collected on admission. Throughout the hospi
talization period, patients were provided with standard meals per day 
and received standard treatment. The examination and medication of 
COVID-19 group and non-COVID-19 group remained the same, until the 
nucleic acid results confirmed. The standard meals included steamed 
fish, scrambled egg with sweet pepper, lettuces, corn and carrot soup, 
etc. Blood specimens were taken for analyzing hematological indexes, 
using automated equipment and routine clinical laboratory methods at 
TAH-SYSU. 

2.3. DNA extraction and metagenome sequencing 

DNA from nasopharyngeal samples of 15 patients were extracted 
with the DNA Mini Kit (Qiagen). DNA concentrations were measured 
using the Qubit quantification system (Thermo Scientific, Wilmington, 
US), and then metagenomic libraries were constructed. Metagenomic 
shotgun sequencing was performed using the Illumina NovaSeq plat
form (Illumina, San Diego, California). Raw 2 × 150 bp paired-end 
Illumina reads were quality-filtered using fastp (v0.20.0) with the 
default parameters (-W 4 -M 20). Human reads were removed by map
ping the reads to the human reference genome (hg38) with Bowtie2 
(v2.3.4.3). After removing human reads, the average and range of read 
lengths were 148bp and 90–150bp, respectively. 

2.4. Metagenomics analysis of taxonomic profiling and functional 
profiling 

HUMAnN2 v0.11.2 [21] was used to for taxonomic classification and 
estimation of microbial species abundances. HUMAnN2 efficiently 
identifies known microbial species in a sample by screening DNA reads 
with MetaPhlAn2 [22]. Functional capabilities of the microbial com
munity were described by the MetaCyc metabolic pathways, and 
assessed using the UniRef90 proteomic database annotations. This 
analysis grouped all gene families to 298 pathways. HUMAnN2 was also 
used to evaluate the percentage of species contributing to the abundance 
of each microbial metabolic pathway. 

2.5. Non-targeted metabolomic profiling and metabolites identification 

We used UPLC-MS/MS untargeted metabolomics approach to 
analyze the serum, urine, and nasopharyngeal samples. Each type of 
samples thawed on ice and quality-control (QC) samples were prepared 
by mixing each aliquot with a pooled sample, and then analyzing them 
in parallel using the same method. Agilent 1290 infinity II (Agilent 
Technologies) equipped with ACQUITY UPLC HSS T3 (1.8 μm 2.1 × 100 
mm, Waters) was used for chromatographic separation. Metabolomic 
profiling was performed by Agilent 6545A QTOF (Agilent Technolo
gies). All samples were analyzed in positive and negative mode. The raw 
MS files were converted to ABF file format using the freely available 
Reifycs file converter. Peak picking and alignment were performed using 
MS-DIAL version 4.10 [23], and metabolites were identified using 
database METLIN (https://metlin.scripps.edu/). 

2.6. Bioinformatic and statistical analyses 

For clinical data, continuous variables were expressed as median and 
compared with the two-tailed unpaired Student’s t-test; categorical 
variables were expressed as number (%) and compared by Fisher’s exact 
test between COVID-19 and non-COVID-19 groups. For metabolomic 
data, partial-least-squares discrimination analysis (PLS-DA) was applied 
to eliminate the effect of inter-subject variability among the participants 
and identify metabolites that significantly contributed to the classifica
tion. Metabolites were ranked according to their variable importance in 
the projection (VIP) scores from PLS-DA model and metabolites with VIP 
scores >1.0 are considered as the significant contributors. To identify 
the most relevant metabolic pathways involved in COVID-19, the 
pathway analysis was employed by MetaboAnalyst 3.0 [24]. 

For metagenome data, the alpha diversity (Shannon index) of each 
sample was calculated with R package VEGAN (v2.5.3) on the relative 
abundance of all species. principal coordinate analysis (PCoA) was 
performed on the family level using VEGAN. To test the difference in the 
microbial composition between two groups, PERMANOVA was 
employed based on the Bray-Curtis dissimilarity. Species and functional 
pathways were tested for enrichment or depletion in individuals with 
COVID-19 or non-COVID-19 according to the non-parametric method, 
Wilcoxon rank-sum test. Linear discriminant analysis (LDA) Effect Size 
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(LEfSe) was also used to identify differentially abundant taxa within the 
different groups. The threshold of the LDA score (log10) is 3. Moreover, 
we analyzed the Spearman’s association between serum metabolites and 
clinical phenotypes, and between nasopharyngeal metagenome and 
clinical phenotypes, with permutational P-value< 0.05. Heat maps were 
hierarchically clustered to represent the associated patterns based on the 
correlation distance, and the analyses and visualizations were imple
mented in R (v3.6.3). 

3. Results 

3.1. Clinical characteristics of participants 

Characteristics of the study population are presented in Table 1. 

There were no significant differences in age (p = 0.40) and gender (p =
0.75) between the COVID-19 group and non-COVID-19 group. Non- 
COVID-19 group had higher rates of smoking than COVID-19 group 
(50% VS. 11%), but there is no statistically significant difference (p =
0.28). One out of nine (11.1%) in COVID-19 patients and one out of six 
(16.7%) in non-COVID-19 had co-existing medical condition, hyper
tension. Fever was present in 100% of the COVID-19 patients and 83.3% 
of the non-COVID-19 patients on admission. Moreover, the percentage 
of sputum production, fatigue or myalgia, sore throat, chest tightness 
and ground-glass opacity in the lung were also calculated, all of which 
showed no significant difference between the two groups. Results of anal 
swabs NAT indicated two of the nine COVID-19 patients were positive, 
and one of the two had intestinal symptoms, diarrhea (Table 1). Most of 
hematological indexes including lymphocyte (LYM) count, haemoglobin 
(HGB) level, and platelet (PLT) count also showed no remarkable dif
ference between COVID-19 and non-COVID-19 patients. Notably, the 
white blood cell (WBC) count was significantly reduced in COVID-19 (p 
< 0.01, Table 1). Regarding inflammatory markers, there was no sig
nificant difference in procalcitonin (PCT), as well as in C-reactive pro
tein (CRP) between two groups of patients. All patients were cured at 
last, no death, and discharged from hospital. 

3.2. Metabolomics data analysis showed the altered metabolites in serum, 
urine, and nasopharyngeal swabs of COVID-19 patients 

The metabolomes of 15 serum, urine and nasopharyngeal samples 
from COVID-19 patients and non-COVID-19 patients were identified and 
quantified. Using principal component analysis (PCA), we observed a 
clear differentiation of the serum metabolomes from COVID-19 and non- 
COVID-19 groups in both negative and positive ion modes (Fig. 1. a-b). 
PERMANOVA indicated the difference between the two groups was not 
significant overall (p = 0.22), but one of the principal components, PC3, 
was significantly different for both negative ion modes (p = 0.011) and 
positive ion modes (p = 0.005). For negative ion modes, PC1 and PC3 
account for 39.1% and 9.2% of the total variation, respectively; while 
for positive ion modes, they account for 12.5% and 7.3%, respectively. 
For urine, there was also some difference between two groups of samples 
(Fig. 1. c-d). The samples from distinct groups were largely separated 
according to the results of PLS-DA (Fig. 1. e-f). In contrast to non-COVID- 
19, COVID-19 samples had exhibited reduced metabolites including 
isodesmosine, lactic acid, L-proline, and chlorogenic acid methyl ester 
(CME) in the serum (Fig. 1. g, Table S1). On the other hand, metabolites 
including ornithine, 8-propyloxycaffeine, and taurine were up-regulated 
in the urine of COVID-19 patients (Fig. 1. h, Table S2). In addition, we 
found several metabolites, including benzoate and PGH2 (prostaglandin 
H2), were significantly down-regulated in the nasopharyngeal metab
olome from COVID-19 patients (Fig S1, Table S3). 

According to the results of differentially abundant metabolic path
ways, lactate- or L-proline-enriched 17 pathways such as pyruvate 
metabolism, HIF-1 signaling pathway, prodigiosin biosynthesis, central 
carbon metabolism in cancer, styrene degradation, glucagon signaling 
pathway, mineral absorption, and carbapenem biosynthesis were rela
tively depleted in the serum of COVID-19 patients (Fig. 2. a, Table S4). 
As for urine, the 5 significantly up-regulated pathways in COVID-19 
patients were taurine and hypotaurine metabolism, sulfur metabolism, 
primary bile acid biosynthesis, ABC transporters, and neuroactive 
ligand-receptor interaction, all of which were taurine-related (Fig. 2. b, 
Table S5). In the metabolome of nasopharyngeal swabs, 5 PGH2-related 
pathways including platelet activation, retrograde endocannabinoid 
signaling, oxytocin signaling pathway, serotonergic synapse, and 
arachidonic acid metabolism were down-regulated in COVID-19 pa
tients (Table S6). 

Table 1 
Clinical characteristics of the study population.   

non-COVID-19 
(N = 6) 

COVID-19 (N =
9) 

p- 
value 

Age, median (IQR), year 45.3 (31–76) 38.9 (27–62) 0.40 
Female sex – no. (%) 2/6 (33.3%) 5/9 (55.6%) 0.75 
Smoke – no. (%) 3/6 (50%) 1/9 (11.1%) 0.28 
Coexisting disorder – no. (%) 

Hypertension 1/6 (16.7%) 1/9 (11.1%) 1 
Symptoms – no. (%) 

fever on admission 5/6 (83.3%) 9/9 (100%) 0.83 
temperature on admission (◦C) 38.5 (36.4–40) 38.1(37.3–38.6) 0.30 
cough 5/6 (83.3%) 6/9 (66.7%) 0.91 
Sputum production 3/6 (50%) 3/9 (33.3%) 0.91 
fatigue or myalgia 1/6 (16.7%) 3/9 (33.3%) 0.91 
sore throat 0/6 (0%) 2/9 (22.2%) 0.64 
chest tightness 1/6 (16.7%) 3/9 (33.3%) 0.91 
ground-glass opacity in the 
lung 

4/6 (66.7%) 8/9 (88.9%) 0.69 

Diarrhea 0/6 (0%) 1/9 (11.1%) 1 
Red blood cell (RBC) count, ×

1012/L 
4.58 (3.34–5.25) 4.67 

(3.88–5.73) 
0.81 

White blood cell (WBC) count, ×
10⁹/L 

8.11 (5.42–9.95) 5.19 (3.8–7.3) <0.01 

Lymphocyte (LYM) count, ×
10⁹/L 

1.03 (0.63–1.67) 1.25 
(0.65–2.98) 

0.50 

Haemoglobin (HGB) level, g/L 134.7 (108–151) 138.1 
(108–164) 

0.72 

Platelet count (PLT), × 10⁹/L 225.5 (174–286) 202.8 
(115–298) 

0.44 

Aspartate aminotransferase 
(AST), U/L 

26.7 (15–40) 19.7 (16–24) 0.09 

Alanine aminotransferase (ALT), 
U/L 

27.7 (11–63) 16.4 (7–37) 0.14 

albumin (ALB), g/L 44.8 (30.9–53.8) 47.9 
(39.2–56.7) 

0.39 

total bilirubin (TBIL), μmol/L 11.4 (4.8–17.5) 7.5 (4.3–16.9) 0.20 
blood urea nitrogen (BUN), 

mmol/L 
3.81 (2.97–4.54) 4.06 

(2.79–6.33) 
0.66 

Creatinine (CREAT), μmol/L 73.3 (58–103) 66.3 (55–94) 0.37 
creatine kinase (CK), U/L 75.5 (41–130) 83 (46–186) 0.73 
Lactate dehydrogenase (LDH), 

U/L 
241.5 (139–553) 183.7 

(152–198) 
0.28 

myoglobin (MGB), ng/mL 26.8 (13.9–55.6) 27.8 (6.6–45.7) 0.90 
pro B type natriuretic peptide 

(Pro-BNP) ≤100 ng/L – no. 
(%) 

4/6 (66.7%) 8/9 (88.9%) 0.69 

Cardiac troponin I (CTnI), μg/L 0.027 
(0.002–0.111) 

0.007 
(0.001–0.035) 

0.24 

prothrombin time (PT), S 13.5 (12.5–15.3) 12.8 
(12.4–13.2) 

0.07 

international normalized ratio 
(INR) 

1.03 (0.94–1.2) 0.96 (0.92–1.0) 0.06 

Procalcitonin (PCT) level, μg/L 0.195 
(0.02–0.76) 

0.027 
(0.02–0.06) 

0.09 

C-reactive protein (CRP) level 
≥5 mg/L – no. (%) 

4/6 (66.7%) 7/9 (77.8%) 1 

erythrocyte sedimentation rate 
(ESR), mm/h 

33.5 (7–85) 17.9 (7–37) 0.22  
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3.3. Metagenome analysis showed the altered nasopharyngeal microbiota 
between COVID-19 and non-COVID-19 patients 

To explore whether the nasopharyngeal microbiota would exhibit 
differentially upon SARS-CoV-2 infection or not, we analyzed the mi
crobial community and function within the COVID-19 and non-COVID- 
19 patients by metagenome sequencing. After DNA extraction, 6 of 15 
libraries failed library construction, even with the addition of carrier 
DNA and adaptor concentration adjustment to increase ligation effi
ciencies. As a result, 9 samples (6 from COVID-19 and 3 from non- 
COVID-19 patients) showed successful construction of libraries, then 
to perform the shot-gun metagenomic sequencing. 

Metagenome analysis revealed the microbial composition consists of 
a variety of bacteria and a small proportion of archaea and viruses (Fig 

S2. a). Firmicutes and Bacteroidetes were the two most abundant phyla 
in the 9 nasopharyngeal samples, comprising on average 32.9% and 
28.6%, respectively. The relative abundance of Proteobacteria, Actino
bacteria, and Fusobacteria were 16.2%, 12.6% and 8.8%, respectively. 
Spirochaetes was the next group of bacteria with the proportion less 
than 1% (0.91%). Viruses were present in 3 out of 9 samples, and on 
average, making up 0.03%. Through comparing the alpha-diversity of 
nasopharyngeal community between COVID-19 and non-COVID-19 
groups, we found there was no significant difference (p = 0.71, Fig S2. 
b). PCoA of Bray-Curtis distances indicated variance in the nasopha
ryngeal microbiota between two groups of patients (Fig. 3 a). At the 
genus level, communities were dominated by Prevotella (21.1%), Veil
lonella (11.7%), Neisseria (8.9%), and Actinomyces (7.5%) (Table S7). 
More specifically, the abundance of five species including Prevotella 

Fig. 1. The serum and urine metabolome. (a–b) The negative (a) and positive (b) ion modes of the serum metabolome between COVID-19 and non-COVID-19 
patients. (c–d) The negative (c) and positive (d) ion modes of the urine metabolome between COVID-19 and non-COVID-19 pneumonia. Red indicates the 
COVID-19 samples, and green indicates the non-COVID-19 samples, while blue refers to quality-control (QC) samples. (e–f) PLS-DA score plot of all the 632 me
tabolites of serum (e) and 972 metabolites of urine (f). Case (red color) and control (green color) indicate the samples from COVID-19 and non-COVID-19, 
respectively. (g–h) Volcano plots (p-value ≤ 0.05 and fold change (FC) >1.2) identify statistically significant metabolites in serum (g) and urine (h) between 
COVID-19 and non-COVID-19 pneumonia. Red indicates up-regulated in COVID-19, while green indicates down-regulated in COVID-19. 

Fig. 2. Bubble plot of KEGG pathway enrichment for differential metabolites in serum (a), and differential metabolites in urine (b) of COVID-19 patients. 17 
pathways were all down-regulated in serum (a) and they were contributed by lactate and L-Proline, while 5 pathways were all up-regulated in urine (b) that 
contributed by taurine. There were no up-regulated pathways in serum and down-regulated pathways in urine in COVID-19 patients compared to controls. The point 
size indicates the count of differential metabolites that involve in the corresponding pathways, and the color indicates the adjusted p value. 
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histicola, Megasphaera micronuciformis, Lautropia mirabilis, Streptococcus 
sanguinis, and Veillonella dispar were higher in COVID-19 patients, 
although not to a statistically significant level (Fig. 3 b). LEfSe analysis 
identified Gemella morbillorum, Gemella haemolysans, Campylobacter 
gracilis, Stenotrophomonas maltophilia, and Leptotrichia hofstadii were 
significantly more abundant in non-COVID-19 patients (Fig. 3 c), which 
is consistent with the results of wilcoxon rank-sum test (Fig. 3 d). 

Additionally, gene families and functional pathways enriched in the 
nasopharyngeal microbiota of COVID-19 patients relative to non- 
COVID-19 were analyzed. 29 gene families were significantly 
different, including TonB-dependent siderophore receptor, addiction 
module toxin, cytosine-specific methyltransferase, tetratricopeptide 
repeat protein, iron-sulfur cluster biosynthesis protein, response regu
lator receiver domain-containing protein, and signal peptidase I, which 
were all lower in COVID-19 group (p < 0.01). The gene family TonB- 
dependent siderophore receptor can be contributed by Campylobacter 
showae, while cytosine-specific methyltransferase and tetratricopeptide 
repeat protein could be contributed by L. hofstadii (Fig. 4 a). For iron- 
sulfur cluster biosynthesis protein, response regulator receiver 
domain-containing protein, and signal peptidase I, G. morbillorum is the 
important contributor. 

Moreover, the relative enrichment of 13 KEGG pathways varied 
significantly between the two groups. Pathways related to pyruvate 
fermentation to isobutanol, superpathway of purine nucleotides de novo 
biosynthesis, seleno-amino acid biosynthesis, superpathway of L- 
methionine biosynthesis, lactose and galactose degradation I, and gua
nosine nucleotides degradation II were enriched in non-COVID-19 group 
(Fig. 4 b). On the contrary, pathways involved in superpathway of L- 

serine and glycine biosynthesis I, NAD biosynthesis I (from aspartate), 
superpathway of menaquinol-8 biosynthesis I, superpathway of 
demethylmenaquinol-8 biosynthesis, and superpathway of menaquinol- 
8 biosynthesis II were significantly increased in COVID-19 samples 
(Fig. 4 b). 

3.4. Nasopharyngeal microbiome associated with serum metabolomics in 
COVID-19 and non-COVID-19 patients 

To understand the extent to which the altered nasopharyngeal 
microbiota in COVID-19 patients was linked with circulating metabo
lites in our patients, we performed the association analysis of the mi
crobial abundance and serum metabolome. G. haemolysans and 
L. hofstadii, relatively depleted in COVID-19 patients, were significantly 
positively associated with CME in serum (p < 0.05, Fig. 5 d). Besides, 
these two species were also correlated with beta-hydroxy butyric acid. 

We also performed the association analysis of the microbial 
component and hematological indexes from COVID-19 patients and 
controls. The abundance of Haemophilus parainfluenzae, Neisseria fla
vescens, Neisseria subflava, Gemella sanguinis, Gemella morbillorum, 
Gemella haemolysans, and Streptococcus australis were positively corre
lated with WBC, while were negatively correlated with ALB (Fig S3). 
Rothia dentocariosa, Eubacterium brachy, Corynebacterium durum, Bullei
dia extructa, and Bacteroidetes oral taxon 274 were consistently nega
tively correlated with AST, MGB, and CK (p < 0.05). AST and CK reflect 
the degree of myocardial and skeletal muscle damage. Actinomyces 
graevenitzii, Actinomyces odontolyticus, Prevotella loescheii, Rothia aeria, 
Selenomonas noxia, Selenomonas flueggei, Streptococcus tigurinus, and 

Fig. 3. The metagenome analysis of the nasopharyngeal microbiome in COVID-19 and non- COVID-19 patients. (a) PCoA plot shows the composition of naso
pharyngeal microbiota at the family level in COVID-19 (Case, n = 6) and non-COVID-19 (Control, n = 3) patients. (b) The species that were more abundant in the 
nasopharyngeal samples of COVID-19 patients with p value less than 0.1 (but not less than 0.05). The mean values and error bars were shown in the boxplots. P 
values, Wilcoxon rank-sum test, of each species were labelled above the boxplots. (c) The LDA Effect Size (LEfSe) analysis of the species in relative abundance 
between COVID-19 (Case) and non-COVID-19 (Control) patients. Five species were enriched in non-COVID-19 (Control) patients according to the LDA scores. (d) The 
significantly different species in relative abundance of nasopharyngeal microbiome between COVID-19 (Case) and non-COVID-19 (Control) patients. *, p value 
< 0.05. 
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Streptococcus salivarius were negatively correlated with LDH. Moreover, 
four species from Streptococcus (S. parasanguinis, S. constellatus, 
S. anginosus, and S. intermedius) were uniformly negatively associated 
with AST (p < 0.05). 

In addition, serum metabolome may reveal the alteration of COVID- 
19 patients after SARS-CoV-2 infection, so we explored the serum- 
related metabolites linked to clinical phenotypes. Results indicated 
that serum level of L-norvaline, L-isoleucine, L-norleucine, niacinamide, 
and camptothecin were positively associated with RBC and HGB (Fig. 5. 
c, Table S8). Spermidine was found to be positively associated with CK 
and ALB, but negatively associated with Pro-BNP, ESR and CTnI. CME 
was positively correlated with both CK and MGB (p < 0.05). WBC is the 
only factor that had significant difference between COVID-19 and non- 
COVID-19 patients (Fig. 5 a), and it was positively correlated with 
CME (neg-289) that is notably lower in COVID-19 group (Fig. 5 b). CME 
could be a potential beneficial metabolite for the prevention or 

treatment of COVID-19. 

4. Discussion 

COVID-19 has become a pandemic, several studies has been reported 
regarding the characteristics of metabolome, but there is lack of meta
genome analysis of nasopharyngeal microbiome for COVID-19 infection. 
This study presents a comprehensive exploration of the relationship of 
the nasopharyngeal microbiome with serum, urine, and nasopharyngeal 
metabolome in 9 COVID-19 and 6 non-COVID-19 patients, which pro
vides novel insights into the characterization of this illness. COVD- 
negative cases in our study also have ground glass opacity in the lung 
that may be viral pneumonia caused by other kinds of viruses. Several 
16S rRNA gene sequencing studies had showed the alterations in the 
human oral and upper respiratory microbiomes in COVID-19 [25,26]. 
Recently, a Chinese team from Wuhan institute of virology published a 

Fig. 4. The significantly different gene families and KEGG pathways between COVID-19 (Case) and non-COVID-19 (Control) patients. (a) Heat map of differential 
gene families (Wilcoxon rank-sum test, p < 0.01) in the nasopharyngeal samples. Specific species contributing to the abundance of these gene families were labelled 
in the figure. The horizontal color bar indicates the group of each sample. (b) Boxplots of significantly different KEGG pathways in two groups and the pathway 
names were colored according to direction of enrichment. Red indicated to be enriched in COVID-19 (Case), while green indicated to be enriched in non- COVID-19 
(Control). *, p < 0.05. 
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metagenomic sequencing study that reveals the potential linkages be
tween pharyngeal microbiota and COVID-19 [15]. Our study is a novel 
metagenomic study to reveal the nasopharyngeal microbiome features 
of COVID-19 patients in China, which also have been reported by other 
studies in USA [14] and Italy [27]. 

The serum metabolome between COVID-19 and non-COVID-19 pa
tients showed distinct profiles. COVID-19 patients had down-regulated 
metabolites including isodesmosine, lactic acid, L-proline, and CME in 
the serum. The tetrasubstituted pyridinium amino acids isodesmosine 
and desmosine are cross-linkers of elastin and are biomarkers for various 
pathological conditions [28], such as chronic obstructive pulmonary 
disease [29]. Lactate contributes to enhanced immune responses by 
inducing GPR31-mediated dendrite protrusion of intestinal CX3CR1+
cells and high resistance to invasive Salmonella infection [30]. Addi
tionally, pathways for the synthesis of arginine, proline, and ornithine 
were increased in the fecal microbiome in a pulmonary arterial hyper
tension (PAH) cohort compared with reference cohort [31]. Chlorogenic 
acid can ameliorate experimental colitis in mice by suppressing 
signaling pathways involved in inflammatory response and apoptosis 
[32]. CME significantly alleviated the pathological damage of the lung 
tissue, reduced the levels of PGE2 and IL-1beta in the serum and the 
protein expression levels of related-inflammatory factors in the lung 
tissue of LPS-induced mice with acute lung injury [33]. Thus, lactate and 

CME may be anti-inflammatory metabolites in COVID-19. 
Pyruvate metabolism, HIF-1 signaling pathway, prodigiosin biosyn

thesis, and central carbon metabolism in cancer were Lactate- or L- 
Proline-enriched pathways that down-regulated in serum of COVID-19 
patients. The lactate-to-pyruvate ratio is increasing in serum samples 
from patients with essential hypertension [34]. Prodigiosin is normally 
secreted by some microorganisms as a secondary metabolite, having 
many beneficial properties that make it a promising drug candidate 
[35]. Proteomics analysis of SARS-CoV-2-infected host cells revealed 
that inhibition of central carbon metabolism prevents viral replication 
[36]. Therefore, metabolites of lactate and L-proline might be helpful for 
reducing the risk of SARS-CoV-2 infection. 

Nasopharyngeal microbiota underlying the susceptibility of healthy 
individuals to COVID-19 needs to be elucidated, since nasopharynx may 
be the frontline for the virus to land and invade human. Metagenome 
analysis indicated that the relative abundance of Prevotella histicola, 
Megasphaera micronuciformis, Lautropia mirabilis, Streptococcus sanguinis, 
and Veillonella dispar were higher in COVID-19 patients. P. histicola is a 
human gut-derived commensal bacterium that boosts anti-inflammatory 
immune responses and suppresses inflammatory arthritis [37], and it 
can also be found in the human oral cavity [38] or tongue microbiota 
[39]. Although Streptococcus are not typical respiratory pathogens, 
some species were identified as etiologic agents of pulmonary infections 

Fig. 5. The association of the serum metabolome and clinical phenotypes. (a) Boxplot of serum WBC between COVID-19 (Case) and non-COVID-19 (Control) pa
tients. (b) The level of serum metabolite neg-289 in COVID-19 (Case) and non-COVID-19 (Control) patients. The metabolite’s name of neg-289 is chlorogenic acid 
methyl ester (CME). P values were labelled above the boxplots (a, b). (c) Heat map showed the association of serum metabolome and clinical phenotypes in 15 
patients. RBC, red blood cell; WBC, white blood cell; LYM, lymphocyte; HGB, haemoglobin; PLT, platelet count; AST, aspartate aminotransferase; ALT, alanine 
aminotransferase; ALB, albumin; TBIL, total bilirubin; BUN, blood urea nitrogen; CREAT, creatinine; CK, creatine kinase; LDH, Lactate dehydrogenase; MGB, 
myoglobin; Pro-BNP, pro B type natriuretic peptide; CTnI, cardiac troponin I; PT, prothrombin time; INR, international normalized ratio; PCT, procalcitonin level; 
CRP, C-reactive protein; ESR, erythrocyte sedimentation rate. (d) The significant association of several specific nasopharyngeal bacteria and serum metabolome. Red 
indicates the positive correlation and blue indicates the negative correlation (c–d). *, P < 0.05; **, P < 0.01. 
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such as aspiration pneumonia [40]. S. sanguinis is a pioneer species of 
oral biofilm and promote oral health, but is well known as a cause of 
infective endocarditis [41]. Streptococcus suis and S. agalactiae stimu
lated the expression of ACE2 of Vero cells in vitro, which may promote 
SARS-CoV-2 infection [15]. Further research will be needed to validate 
the interaction between Streptococcus strains and SARS-CoV-2. In addi
tion, V. dispar is strongly associated with autoimmune hepatitis, posi
tively correlated with serum level of aspartate aminotransferase and 
liver inflammation [42]. They may involve in the host’s immune regu
lation and then confer COVID-19 susceptibility or severity. 

Gemella morbillorum, Gemella haemolysans, Campylobacter gracilis, 
Stenotrophomonas maltophilia, and Leptotrichia hofstadii were signifi
cantly more abundant in non-COVID-19 patients. In the oropharynx, 
microbial communities in both young children and adults had a signif
icantly higher proportion of Streptococcus, Gemella, Haemophilus and 
Neisseria [43]. Overgrowth of lactic acid-producing bacteria like Meg
asphaera and Leptotrichia species in oropharyngeal samples was related 
to susceptibility to H7N9 infection [44]. However, different strains from 
one same species might carry distinct genome, which means that they 
could perform varied function among diverse strains. Therefore, the 
correlation of Leptotrichia species and respiratory virus infection needs 
more validation. G. morbillorum is a natural inhabitant of the human 
oropharyngeal and gastrointestinal flora, tending to cause endocarditis 
among patients with valvular diseases [45]. Both of G. morbillorum and 
G. haemolysans carry the genes required for incorporating phosphor
ylcholine into their cell walls and encoded some choline-binding pro
teins [46]. Gene-level analysis of nasopharyngeal metagenome 
indicated G. morbillorum is involved in iron-sulfur cluster biosynthesis 
protein, response regulator receiver domain-containing protein, and 
signal peptidase I. 

The abundance of family Propionibacteriaceae and species Coryne
bacterium accolens were notably increased and decreased, respectively, 
in a group of USA SARS-CoV-2-positive nasopharyngeal samples [14], 
but they showed no significant difference in our study. Recently, a 
meta-transcriptomic study of a Chinese cohort showed the predominant 
respiratory microbial taxa of severely ill COVID-19 patients were Bur
kholderia cepacia complex, Staphylococcus epidermidis, and Mycoplasma 
spp. (including M. hominis and M. orale) [47], which was not observed in 
our cohort. The results above suggest that individual genetics, medical 
conditions, and regional difference might play important roles in 
influencing one’s respiratory microbiome composition and function; 
moreover, methods for sampling and analyzing could also affect the 
sequencing results. Therefore, more studies need to be conducted in 
order to elucidate the effect of SARS-CoV-2 infection on respiratory 
microbiota, especially the studies including multi-regional COVID-19 
patients. 

Several functional pathways such as pyruvate fermentation to iso
butanol, and superpathway of purine nucleotides de novo biosynthesis, 
were significantly decreased in COVID-19 group. Isobutanol is a prom
ising candidate as second-generation biofuel [48], while purine nucle
otides de novo biosynthesis could be modulated as a therapeutic strategy 
in mitochondrial myopathy that is characterized by muscle weakness 
[49]. Clinical symptoms at the onset of COVID-19 pneumonia were 
myalgia or fatigue [50], which might be regulated by microbial meta
bolism of purine nucleotides de novo biosynthesis. Association analysis 
showed G. haemolysans and L. hofstadii from nasopharynx were signifi
cantly positively associated with CME in serum, suggesting the species 
may have some beneficial properties for COVID-19. 

However, our study has some notable limitations. First, the cohort 
size of participating patients is small. Due to the revised enrollment 
policy and rearrangement of medical resource among the city, new 
suspected and confirmed COVID-19 patients were asked to be sent to a 
different municipal designated hospital and we did not have access to 
those new patients, which lead to a very limited number of patients 
enrolled in this study. Secondly, we only obtained nasopharyngeal 
metagenomic sequencing results from 9 patients, since the amount of 

DNA extracted from the pharyngeal swabs were of low concentration in 
the other 6 samples and failed in the library construction. The compo
sition of nasopharyngeal microbiota might be better determined by 
sequencing the 16S rRNA gene [51–53]. However, metagenomic 
sequencing has advantages for its accurate identification of species and 
metabolic pathways. Third, the metabolome of serum and urine, and 
metagenome of nasopharyngeal swabs were not collected at multiple 
time points and profiled, because of the priority for clinical treatment. A 
more comprehensive study, which including a large cohort of patients 
and each patient with diverse specimen at multi-time-point, would be 
greatly appreciated for further investigation. 

5. Conclusion 

We identified that the specific biomarkers, Lactate, L-Proline and 
CME, in non-COVID-19 patient, which may be anti-SARS-CoV-2 bacte
rial metabolites. Moreover, G. morbillorum, G. haemolysans and 
L. hofstadii were nasopharyngeal commensal bacteria that significantly 
depleted in COVID-19 patients, could possibly regulate host inflamma
tory and immune processes through their genes and encoded proteins. 
Continued research efforts on identification of signature microbial and 
metabolic biomarkers and developing appropriate procedures are war
ranted to both prevent and treat respiratory virus infections. 
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