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ABSTRACT Human erythrocytes contain an Mr 200,000 polypeptide that cross-reacts specifi- 
cally with affinity-purified antibodies to the Mr 200,000 heavy chain of human platelet myosin. 
Immunofluorescence staining of formaldehyde-fixed erythrocytes demonstrated that the im- 
munoreactive myosin polypeptide is present in all cells and is localized in a punctate pattern 
throughout the cell. Between 20-40% of the immunoreactive myosin polypeptide remained 
associated with the membranes after hemolysis and preparation of ghosts, suggesting that it 
may be bound to the membrane cytoskeleton as well as being present in the cytosol. The 
immunoreactive myosin polypeptide was purified from the hemolysate to ~85% purity by 
DEAE-cellulose chromatography followed by gel filtration on Sephacryl S-400. The purified 
protein is an authentic vertebrate myosin with two globular heads at the end of a rod-like tail 
~150-nm long, as visualized by rotary shadowing of individual molecules, and with two light 
chains (Mr 25,000 and 19,500) in association with the Mr 200,000 heavy chain. Peptide maps 
of the Mr 200,000 heavy chains of erythrocyte and platelet myosin were seen to be nearly 
identical, but the proteins are distinct since the platelet myosin light chains migrate differently 
on SDS gels (Mr 20,000 and 17,000). The erythrocyte myosin formed bipolar filaments 0.3- 
0.4-~m long at physiological salt concentrations and exhibited a characteristic pattern of 
myosin ATPase activities with EDTA, Ca ++, and Mg++-ATPase activities in 0.5 M KCI of 0.38, 
0.48, and <0.01/~mol/min per mg. The Mg++-ATPase activity of erythrocyte myosin in 0.06 M 
KCI (<0.01 ~tmol/min per mg) was not stimulated by the addition of rabbit muscle F-actin. The 
erythrocyte myosin was present in about 6,000 copies per cell, in a ratio of 80 actin monomers 
for every myosin molecule, which is an amount comparable to actin/myosin ratios in other 
nonmuscle cells. The erythrocyte myosin could function together with tropomyosin on the 
erythrocyte membrane (Fowler, V. M., and V. Bennett, 1984, J. Biol. Chem., 259:5978-5989) 
in an actomyosin contractile apparatus responsible for ATP-dependent changes in erythrocyte 
shape. 

Underlying the plasma membrane of eucaryotic cells is a 
cytoskeletal actin filament network that is believed to play a 
structural role in determining cell architecture as well as a 
dynamic role in generating membrane movements. The mo- 
lecular organization of this membrane cytoskeleton is best 
understood in the human erythrocyte, a cell with a unique 
biconcave disk shape, remarkable deformability properties, 
and no intracellular membranes or organelles. The available 
evidence indicates that the erythrocyte membrane cytoskele- 
ton is constructed of many short actin filaments (~ 12-20 
monomers long) (26, 35) that are cross-linked into an anas- 
tomosing network in the plane of the membrane by long, 
flexible spectrin molecules in association with an Mr ~80,000 

helper protein, band 4.1. The entire cytoskeletal ensemble is 
attached to the cytoplasmic surface of the membrane via the 
specific association of spectrin with ankyrin, an Mr ~210,000 
protein that is itself tightly bound to the cytoplasmic domain 
of band 3, the anion channel, and major integral membrane 
protein (for recent reviews, see references 5, 7). The recent 
isolation of spectrin- and ankyrin-like proteins from none- 
rythrocyte cells and tissues and their localization on the 
plasma membrane (4, 10) encourage the view that the orga- 
nization of the erythrocyte membrane cytoskeleton could 
indeed be representative of the plasma membrane cytoskele- 
ton of nucleated cells, at least in certain regions. However, as 
currently depicted, this model is an essentially static one and 
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does not account for the plasma membrane movements of 
nucleated cells (e.g., membrane ruffling, filopodial extension 
and retraction, and endo- and exocytosis), nor for dynamic 
ATP-dependent discocyte-echinocyte shape transformations 
of erythrocytes (22, 24, 34, 37). 

We describe here the identification and purification of 
myosin from human erythrocytes. The erythrocyte myosin 
was found to be present with respect to the erythrocyte actin 
in a ratio of about 80 actin monomers to 1 myosin molecule, 
an amount comparable to actin/myosin ratios in other non- 
muscle cells. In addition, we have recently identified a non- 
muscle from of tropomyosin on the erythrocyte membrane 
that is present in sufficient quantities to almost completely 
coat all of the short actin filaments in the membrane cyto- 
skeleton (14). This suggests that the erythrocyte myosin is not 
simply a relic from a previous developmental stage of the cell 
and supports the hypothesis that a membrane-associated ac- 
tomyosin contractile apparatus could be responsible for ATP- 
dependent changes in erythrocyte shape and deformability. 

MATERIALS A N D  METHODS 

Production and Purification of Antibodies: Myosin was puff- 
fled from outdated human platelets as described by Pollard et al. (28) and was 
stored at 4"C as a slurry in 60% saturated ammonium sulfate. Three New 
Zealand white rabbits were injected subcutaneously at multiple sites on the 
back and sides with 100-150 ,g each of native myosin in complete Freund's 
adjuvant, followed by booster injections with antigen in incomplete Freund's 
adjuvant after 3 wk, and then at l-2-mo intervals thereafter, Titer was moni- 
tored by the immunoblot method (see below) and was high after the third 
injection. Immune serum was diluted with 1 vol of 150 mM NaCI, 10 mM 
sodium phosphate, 1 mM EDTA, 1 mM NAN3, 0.2% (vol/vol) Triton X-100, 
heated to 60"C in the presence of 200 ,g/ml phenylmethylsulfonyl fluoride to 
minimize protease activity, and stored at -20"C. Antibody against platelet 
myosin was isolated by affinity chromatography with myosin coupled to 
cyanogen bromide-activated Sepharose (CI) 4B (Pharmacia Fine Chemicals, 
Piscataway, N J) (0.7 mg of myosin/ml ofagarose). 10-20 ml of immune serum 
was applied to a 3.5-ml column, the column was washed, and antibody was 
eluted as described previously (14). Peak fractions (based on A2ao) were pooled, 
concentrated three- to fourfold by dialysis into 150 mM NaCI, 10 mM sodium 
phosphate, I mM Na EDTA, 0.02% NAN3, pH 7.5, 50% glycerol at 4"C, and 
stored at -20"C. Yields of purified antibody ranged from 0.03 to 0.10 mg 
(based on E~0 = 14) per milliliter of diluted serum, depending on the rabbit. 
Although the antibodies were isolated by affinity chromatography with native 
platelet myosin, they were specific for the heavy chain and did not label the 
light chains in immunoblotting assays. Ig was isolated from preimmune serum 
by affinity chromatography on Protein A-Sepharose (14), Affinity-purified 
antibodies to human erythrocyte spectrin were a gift from Dr. Peter C. Agre 
(Department of Medicine, The Johns Hopkins University School of Medicine). 

Preparation of Hemolysate, Membranes, and Purified Pro- 
teins: Erythroeytes were isolated from freshly drawn human blood antico- 
agulated with acid/citrate/dextrose as described (6). Cells were lysed in 10-15 
vol of ice-cold 7.5 mM sodium phosphate, 1 mM EDTA, 2 mM dithiothreitol 
(DTT)? 20 #g/ml of phenylmethylsulfonyl fluoride, pH 7.5, and the mem- 
branes were pelleted by centrifugation as described (6); this supernatant is 
referred to as the hemolysate. Membranes were prepared by three more washes 
in the lysis buffer (6). Ankyrin and spectrin were purified from membranes as 
described (6), and the M, 200,000 immunoreactive myosin polypeptide from 
the hemolysate as described in the text and the legend to Fig. 3. Protein 
concentrations for the purified proteins were determined spectrophotometri- 
cally from the absorbance at 280 nm (after correction for light scattering at 320 
nm) based on an E]~ value of 10 for spectrin and ankyffn, and 5.9 for myosin 
(28). 

Electrophoresis and Immunoblotting Procedures: Elec- 
trophoresis was performed on 5-15% acrylamide linear gradient SDS gels in 
the presence of 4 M urea, with a 5% stacking gel containing 2 M urea, and 
with sample preparation and molecular weight standards as described previously 
(14). Electrophoretic transfer ofpolypeptides from the SDS gels to nitrocellulose 
paper was performed as described previously (14) except that gels were trans- 

Abbreviation used in this paper: DTT, dithiothreitol. 
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ferred for 6 h at 500-700 mA current at 15°C. Nitrocellulose gel transfers were 
labeled overnight (12-18 h) at 4"C with 2-4 #g/ml of aflqnity-purified antibodies 
to human platelet myosin, and processed for antibody detection with ]25I- 
Protein A (2 × l06 cpm/ml) as described (14). 

We quantitated the amount of the Mr 200,000 immunoreactive myosin 
polypeptide in a sample by staining the protein on the nitrocellulose transfers 
with 0.2% ponceau S in 3% trichloroacetie acid (10 rain at room temperature 
followed by two washes in distilled water), cutting out the appropriate region 
of the nitrocellulose, and counting the ~2~l-Protein A-labeled band in the gamma 
counter. The actual micrograms of the immunoreactive myosin polypeptide 
were computed from a standard curve prepared from immunoblots of known 
amounts of purified erythrocyte myosin that were electrophoresed on SDS gels 
and transferred to nitrocellulose in parallel with the unknowns. The standard 
curve was linear from ~0.02 to at least 0.25 ,g of protein, and duplicate samples 
were reproducible _+ 5%. The concentration of the purified erythrocyte myosin 
for the standard curve was based on the A2so, assuming E2s0~ = 5.9 (28), and 
corrected for the purity of the preparation (~85%; see Results) by multiplying 
by a factor of 1.2. 

Immunofluorescence of Erythrocytes: Erythrocytes (isolated as 
described above) were fixed in suspension (10% [vol/vol]) in 3% (wt/vol) 
paraformaldehyde in PBS (150 mM NaCI, 10 mM sodium phosphate, pH 7.5) 
for 15 rain at room temperature, and then allowed to settle onto poly-t-lysine- 
coated coverslips (No. 2) for an additional 5 min at room temperature. 
Coverslips were washed three times in PBS, incubated 30 rain at room temper- 
ature in 50 mM NH,CI in PBS, and then washed three times in PBS. Cells on 
coverslips were permeabilized by a 30-s incubation in acetone at -20"C, 
transferred immediately to PBS containing 0.2% gelatin (PBS/gelatin), and 
then washed two times in PBS/gelatin. Coverslips were placed over 50-#1 drops 
of affinity-purified antibodies or preimmune Ig (10 #g/ml in PBS/gelatin) and 
incubated for 30 min at room temperature in a humid chamber. After four 
washes in PBS/gelatin they were incubated for 20 min at room temperature 
with tetramethyl rhodamine isothiocyanate goat anti-rabbit IgG (Miles Labo- 
ratoffes, Elkhart, IN) (1/400 dilution in PBS/gelatin). Following two washes in 
PBS/gelatin and two washes in PBS, coverslips were mounted on slides in 50% 
glycerol, 50% PBS and examined in a Zeiss microscope equipped with epiflu- 
oreseence optics. Micrographs were taken with Kodak Tri-X pan film, ASA 
800. 

Antimyosin staining of erythrocytes was only obtained with the formalde- 
hyde fixation, acetone postfixation/permeabilization protocol described above. 
Formaldehyde fixation followed by permeabilization with 0.1% Triton X- 100 
resulted in extraction of the phase-dense cytoplasmic contents of the cells and 
completely eliminated the antimyosin staining. Also, no specific staining was 
visible with acetone treatment alone in the absence of formaldehyde fixation. 
The antispectrin staining was identical regardless of the fixation/permeabiliza- 
tion protocol. 

Electron Microscopy: For rotary shadowing, purified erythrocyte 
myosin in 0.5 M KC1 was dialyzed at a concentration of 30 #g/ml against 100 
mM ammonium formate, 30% (vol/vol) glycerol, pH 7.0, sprayed onto freshly 
cleaved mica, dried under vacuum at room temperature, and rotary shadowed 
at an angle of 1-10" with platinum followed by carbon (36). For negative 
staining, purified myosin in 0.5 M KCI was dialyzed at a concentration of 200 
ug/ml against 50 mM KCI, 2 mM MgC12, 10 mM PIPES, pH 7.0, 4"C, to form 
filaments. After dilution and application to Formvar- and carbon-coated grids. 
the myosin was negatively stained with t% uranyl acetate. Rotary shadowed 
and negatively stained samples were photographed using a Zeiss microscope 
operating at 80 kV. 

RESULTS 

Identification of Myosin in Human Erythrocytes 

Previous attempts to identify myosin in human erythro- 
cytes have been frustrated by the similarity in molecular 
weight of the myosin heavy chain (Mr 200,000) to the major 
membrane-associated cytoskeletal proteins spectrin (M, of 
band 2 ~220,000) and ankyrin (Mr ~210,000), and by high 
levels of ATP hydrolysis resulting from membrane-associated 
ion pumps and coupled kinase-phosphatase activities in 
whole-cell lysates, membranes, and membrane extracts. To 
circumvent these problems, we prepared antibodies to platelet 
myosin to use as a specific probe in assaying for the presence 
of myosin in erythrocytes. Fig. 1 shows that affinity-purified 
antibodies to the M, 200,000 heavy chain of human platelet 
myosin cross-reacted with an Mr 200,000 polypeptide in 



FIGURE I Identification of an M, 200,000 immunoreactive myosin polypeptide in human erythrocytes. (Lane I) Erythrocytes; 
(lane 2) cytosol; (lane 3) membranes; (lane 4) erythrocyte ankyrin (1.5 #g); (lane 5) erythrocyte spectrin (2 #g); (lane 6) platelet 
myosin. (Panel A, 1.6 #g; panel B, 0.08/~g). Erythrocytes were lysed in 15 vol of lysis buffer and membranes were prepared as 
described in Materials and Methods. Aliquots of the lysed erythrocytes, the hemolysate (cytosol), and the washed membranes 
resuspended to the initial lysis volume were added directly to SDS gel electrophoresis sample buffer (14) and heated to 80°C for 
5 min. 80-/A samples of each were electrophoresed on 5-15% acrylamide linear gradient SDS gels in the presence of 4 M urea, 
and either (A) stained with Coomassie Blue or (B) electrophoretically transferred to nitrocellulose paper as described in Materials 
and Methods. The nitrocellulose strips were incubated with 2 #g/ml of affinity-purified antibodies to human platelet myosin, or 
preimmune Ig, followed by incubation with 12Sl-labeled protein A. Immunoreactive bands were detected by autoradiography 
after exposure of the film for I h. 

human erythrocytes. Preimmune Ig did not label either the 
purified platelet myosin (Fig. 1, lane 6) or the cross-reactive 
polypeptide in the erythrocytes (Fig. 1, lanes 1-3). The im- 
munoreactive polypeptide was not band 2 of spectrin or 
ankyrin (Mr equivalent to band 2 of spectrin on these gels), 
since neither purified ankyrin (Fig. 1, lane 4) nor purified 
spectrin (Fig. 1, lane 5) were labeled by the antimyosin 
antibodies. These results suggest that the immunoreactive Mr 
200,000 polypeptide could be the M, 200,000 heavy chain of 
an erythrocyte myosin-homologue. 

To determine whether this immunoreactive myosin poly- 
peptide was localized on the membrane or in the cytosol, we 
lysed erythrocytes and compared immunoblots of whole cells, 
hemolysates, and membranes (Fig. 1, lanes 1-3). A true 
cytoplasmic component would be expected to be present in 
the hemolysate in the same proportion as in the whole cells, 
whereas a tightly bound membrane component would be 
expected to be associated exclusively with the washed mem- 
branes. Fig. 1 shows that only ~30-40% of the immunoreac- 
tive myosin polypeptide was released into the supernatant 
during hemolysis of erythrocytes in 7.5 mM sodium phos- 
phate, pH 7.5 (Fig. 1, lane 2), while an additional 30-40% 
was washed off the membranes during the preparation of 

ghosts (Fig. 1, lane 3). 2 This intermediate fractionation be- 
havior might be expected from a component that is loosely 
bound to the membrane as well as being present in the cytosol. 
However, a variable proportion of the putative myosin hom- 
ologue may also be tightly associated with the membranes 
since ~20-30% of the immunoreactive myosin polypeptide 
remained associated with the membranes even in well- 
washed, white ghosts (Fig. 1, lane 3), and inclusion of phys- 
iological concentrations of magnesium (2 mM) in the lysis 
and washing buffers resulted in about a twofold increase in 
this amount (data not shown). 

Immunofluorescence staining of formaldehyde-fixed eryth- 
rocytes with the affinity-purified antibodies to myosin dem- 
onstrated that the immunoreactive myosin polypeptide was 
present in all cells (Fig. 2 a). The putative erythrocyte myosin- 
homologue was thus not derived from reticulocytes or from 
contaminating platelets or neutrophils in the cell preparations. 
No staining with preimmune Ig was observed under these 
conditions (Fig. 2c). The antimyosin staining was only ob- 
served when the fixed cells were permeabilized with acetone 

2 Estimated by quantitative immunoblotting procedures as described 
in Materials and Methods. 
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FIGURE 2 Immunofluorescence staining of human erythrocytes with antiplatelet myosin (a), preimmune Ig (c), and antispectrin 
(e). b, d, and f are phase-contrast micrographs corresponding to a, c, and e. Erythrocytes were fixed with 3% paraformaldehyde 
fol lowed by acetone at -20°C and incubated with the various rabbit Ig samples at 10 pg/ml, fol lowed by rhodamine-conjugated 
goat anti-rabbit IgG, as described in Materials and Methods. The antispectrin staining in e is actually 50-100-fold brighter than 
the antimyosin staining in a (estimated by the exposure times used to photograph the cells and to print the negatives), but the 
micrographs are printed so as to be on the same scale for comparison. (a-f) Bar, 10 pm. x 9,000. (Inset) x 18,000. 

before incubation with the antibody, indicating that the im- 
munoreactive myosin polypeptide was in the interior of the 
cell and not adsorbed adventitiously to the cell surface. The 
antimyosin staining was variable in intensity and was distrib- 
uted in a granular or punctate pattern in each cell (Fig. 2a, 
see inset). The small size of the cells and the relatively dim 
staining made it difficult to determine whether the punctate 
antimyosin staining was localized in the cytosol and/or asso- 
ciated with the membrane in the fixed cells. The punctate 
staining pattern was probably not artifactuaUy induced by the 
fixation/permeabilization protocol because staining with af- 
finity-purified antibodies to spectrin produced a uniform rim- 
staining pattern (Fig. 2 e), which is consistent with the estab- 
lished location of spectrin on the cytoplasmic surface of the 
membrane (5, 23, 39). 

Purification and Partial Characterization of 
Erythrocyte Myosin 

To evaluate the possibility that the immunoreactive myosin 
polypeptide is the Mr 200,000 heavy chain of an erythrocyte 
myosin-homologue, we purified the polypeptide from the 
hemolysate and compared its physical and functional prop- 
erties with those established for authentic vertebrate myosins 
(19, 21, 29). The immunoreactive myosin polypeptide was 
separated from the enormous amount of hemoglobin, as well 
as numerous other cytosolic proteins in the hemolysate, by 
DEAE-cellulose chromatography in the presence of 20 mM 
sodium pyrophosphate, pH 7.5 (Fig. 3A, compare lanes I and 
2). This procedure also served to concentrate the Mr 200,000 
immunoreactive myosin polypeptide by about 25-fold with 
respect to its original concentration in the hemolysate (<1 

gg/ml). 2 The Mr 200,000 polypeptide was then concentrated 
an additional 10-fold by precipitation with ammonium sulfate 
at 60% saturation (Fig. 3A, lane 3) and separated from most 
of the low molecular weight polypeptides by gel filtration in 
0.5 M KC1 on Sephacryl S-400 (Fig. 3A, lane 4). When more 
protein was loaded on the gels, two low molecular weight 
polypeptides (Mr 25,000 and 19,500) were seen to be associ- 
ated with the purified Mr 200,000 polypeptide (Fig. 3 B, lane 
1). These polypeptides were present in a molar ratio of 1.09 
Mr 25,000:0.90 Mr 19,500:1.0 Mr 200,000 polypeptide, 3 and 
thus presumably represent the two light chains that would be 
expected to be associated with the Mr 200,000 heavy chain of 
an erythrocyte myosin molecule. Together, these three poly- 
peptides accounted for ~85% of the Coomassie Blue-staining 
material in the purified preparation. In the representative 
experiment shown in Fig. 3, -0.7 mg of protein was obtained 
from two units of blood, which represents a recovery o f -  18% 
of the protein present as the Mr 200,000 immunoreactive 
myosin polypeptide in the hemolysate. 2 

Structurally, the purified erythrocyte myosin is a typical 
vertebrate myosin, with two heads and a long rod-like tail 
~ 150 nm long (21, 29, 36), as visualized by low angle rotary 
shadowing of individual molecules (Fig. 4, left column). The 
double-headed appearance of the individual molecules, to- 
gether with the roughly equimolar stoichiometry of the Mr 
200,000, 25,000, and 19,500 polypeptides (1:1.09:0.90, see 
above), suggests that the native molecules are dimers of two 
heavy chains, each with two associated light chains, as are 
other myosins. In addition, peptide maps of the Mr 200,000 

3 Determined by quantitative elution of dye from the Coomassie 
Blue-stained protein bands as described by Fenner el al. (12). 
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FIGURE 3 (A) Purification of human erythrocyte myosin. Erythrocytes were isolated from two units of whole blood as described 
by Bennett (6) and lysed in 12 vol of ice-cold 7.5 mM sodium phosphate, I mM EDTA, 2 mM DTT, 20/~g/ml phenylmethylsulfonyl 
fluoride (pH 7.5), and the membranes were removed by centrifugation for 45 min at 17,000 g (2°C). The hemolysate (3,300 ml) 
was adsorbed batchwise to DEAE-cellulose equilibrated with 20 mM sodium pyrophosphate, I mM EDTA, 2 mM DTT (pH 7.5) 
for I h at 4°C with stirring, and unadsorbed protein (mainly hemoglobin) was removed by several cycles of settling and decanting 
of the DEAE in this buffer. The DEAE was poured into a column (2.5 x 18 cm), washed with 5 column volumes of 50 mM NaCl, 
20 mM sodium pyrophosphate, I mM EDTA, 2 mM DTT (pH 7.5), and then eluted with 7 column volumes of a 50-250 mM NaCI 
linear gradient in the same buffer, collecting 10-ml fractions. Fractions containing the immunoreactive myosin polypeptide 
(assayed by immunoblotting procedures) were pooled (150 ml), and the protein was precipitated by addition of 1.5 vol of ice- 
cold, saturated ammonium sulfate and then collected by centrifugation for 20 min at 17,000 g. The precipitate was resuspended 
to a 13-mi final vol in 0.5 M KCI, 10 mM Tris, I mM EDTA, I mM DTT (pH 7.5), and centrifuged for 30 rain at 100,000 g. The 
supernatant was applied to a Sephacryl S-400 column (2.5 x 85 cm) equilibrated with the same buffer and run at 20 ml/h, 
collecting 5-ml fractions. Fractions containing the Mr 200,000 polypeptide eluted at ~1.5 V0 and were pooled (40 ml) and 
concentrated 5-10-fold to 0.1-0.2 mg/ml by dialysis against solid sucrose. The purified protein was stored on ice after dialysis 
against 0.5 M KCl, 10 mM 3-(N-morpholino) propane sulfonic acid, I mM EDTA, I mM DTT (pH 7.0) and was stable for at least 
3 wk. Samples of hemolysate (80 #I) [lane I ], the DEAE pool (40/~I) [lane 2], the ammonium sulfate-concentrated material (20 #I) 
[lane 3], and the purified Mr 200,000 polypeptide (2/~g) [lane 4] were electrophoresed on 5-I 5% acrylamide linear gradient SDS 
gels containing 4 M urea and either stained with Coomassie Blue (left) or transferred to nitrocellulose and labeled with 4/Lg/ml 
platelet myosin and 1251-1abeled protein A (right) as described in Materials and Methods. One tenth as much protein was loaded 
for the immunoblots, and the immunoreactive bands were detected after exposure of the autoradiograms for only 30 min. Lane 
5 is 2/~g of purified human platelet myosin for comparison. (B) Comparison of 6 #g each of purified human erythrocyte myosin 
(lane I) and human platelet myosin (lane 2) on 7.5-15% acrylamide linear gradient SDS gels in the absence of urea (14). HC, 
heavy chains; (LC), light chains. 

heavy chain of the purified erythrocyte myosin and of platelet 
myosin were found to be nearly identical (Fig. 5), indicating 
a high degree of structural homology between the two pro- 
teins. However, these proteins are distinct in that the molec- 
ular weights determined for the platelet myosin light chains 
on 7.5-15 % acrylamide linear gradient SDS gels (Mr 20,000 
and 17,000; Fig. 3 B, lane 2) were different from those deter- 
mined for the erythrocyte myosin light chains (Mr 25,000 and 
19,500; Fig. 3B, lane 1). 

Dialysis of the purified erythrocyte myosin into low salt led 

to formation of typical bipolar myosin filaments (0.3-0.4 pm 
long) with the heads at each end and a central bare zone in 
the middle (Fig. 4, middle and right column). Occasionally, 
possible intermediate stages in the formation of these fila- 
ments were observed in the rotary-shadowed specimens. For 
example, two molecules are associated via their tails in the 
bottom left panel of Fig. 4, and the head end of an individual 
myosin molecule is splayed out from the bipolar filament 
while the tail region remains attached in the filaments de- 
picted in the bottom two panels of the middle column in Fig. 
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4. The looser association of the molecules in the rotary- 
shadowed specimens as compared with the negatively stained 
specimens may be due to the somewhat different dialysis 
conditions used for the sample preparations (0.1 M ammo- 
nium formate, pH 7.5, versus 50 mM KC1, 2 mM MgC12, pH 
7.0), or it may be an artifact of the respective electron micro- 
scopic techniques. 

The purified erythrocyte myosin exhibited a characteristic 
pattern of myosin ATPase activities, with a Ca++-activated, 
Mg+÷-inhibited ATPase activity at both high and low salt, 
and activation by high concentrations of KC1 but not NaC1 
in the absence of divalent cations (2 mM EDTA) (Table I). 
The Ca+2-ATPase activity in 0.5 M KC1 of the erythrocyte 
myosin was higher than the EDTA-ATPase activity measured 
in 0.5 M KC! (0.48 and 0.38 ~mol/min per mg, respectively). 
This is the reverse of the relative Ca +÷ and EDTA-ATPase 
activities of platelet myosin measured under similar condi- 

FIGURE 4 Electron micrographs of low angle, rotary-shadowed 
individual human erthyrocyte myosin molecules (left) and myosin 
filaments (middle), and of negatively stained myosin filaments 
(right). Bar, 200 nm. x 100,000. 

tions (0.35 and 0.50 umol/min per mg, respectively, see 
reference 28). The addition of rabbit skeletal muscle F-actin 
(I mg/ml) to purified erythrocyte myosin had no effect on 
the low Mg÷+-ATPase activity of erythrocyte myosin that was 
measured in 60 mM KC1, 2 mM MgC12, pH 7.0 (<0.01 umol/ 
min per mg). 

Determination of the Number of Copies of 
Myosin per Cell 

The purified erythrocyte myosin was used as a standard in 
a quantitative immunoblotting assay to determine the amount 
of myosin in erythrocytes (Materials and Methods). As shown 
in Table II, the amount of the Mr 200,000 heavy chain of 
erythrocyte myosin detected was directly proportional to the 
microliters of cell equivalents electrophoresed and transferred 
to nitrocellulose, which demonstrates that the assay is oper- 
ating in both antimyosin antibody and ~25I-protein A excess. 
Additionally, this also shows that the co-migrating spectrin 
(band 2) and ankyrin polypeptides are not interfering with 
the transfer or antibody labeling of the erythrocyte myosin 
heavy chain. The molar ratio of the Mr 200,000 polypeptide 
to spectrin was calculated with respect to the micrograms of 
band 1 of spectrin in each sample because there are no 
polypeptides co-migrating with band 1 of spectrin on these 
SDS gels of erythrocytes. The average value for the ratio of 
spectrin to myosin calculated from the values in Table I was 
32.1 spectrin dimers/myosin molecule (dimer of two heavy 
chains). Since there are 200,000 molecules of spectrin dimer 
per cell (5), the number of molecules of myosin per cell would 
be 6,240. This is a ratio of about 80 actin monomers for every 
myosin molecule, assuming there are 500,000 copies of actin 
per cell (5, 26). 

DISCUSSION 

The possibility that erythrocytes contain myosin has been 
discussed since 1960 when Nakao et al. (22) first observed the 
reversible ATP-dependent discocyte-echinocyte shape trans- 
formations of human erythrocytes. The ability of isolated 
membranes (ghosts) to undergo similar ATP-dependent shape 
transformations (24, 34, 37), as well as ATP-dependent en- 
docytosis (25, 31), led numerous investigators to hypothesize 

FIGURE 5 Two-dimensional peptide maps of 12Sl-labeled chymotryptic peptides of human erythrocyte myosin heavy chain (a), 
human platelet myosin heavy chain (b), and a mixture of peptides from platelet and erythrocyte myosin heavy chains (c). Myosin 
from platelets and erythrocytes (50 pmol each) was denatured in 0.1% (wt/vol) SDS, radiolabeled with 1 mCi of 1251 by using 
chloramine-T as an oxidant, and electrophoresed on an SDS polyacrylamide gel. The 12Sl-labeled heavy chains were localized by 
staining with Coomassie Blue, cut from the gel, and digested with 50/~g/~l alpha-chymotrypsin in 50 mM ammonium formate, 1 
mM NaN3 for 18 h at 37°C. The digest was lyophilized and analyzed by electrophoresis (horizontal dimension) and chromatography 
(vertical dimension) as described (11). 
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that cell shape and membrane properties were influenced by 
a membrane-associated actomyosin contractile apparatus. At 
one point, it was suggested that spectrin might be a myosin- 
like protein (15) and that the actin-spectrin network under- 
lying the membrane could be the erythrocyte membrane 
analogue to actomyosin contractile systems in other cells (33, 
34). However, the extensive work on the physical and func- 
tional properties of spectrin (18) and the recent identification 
of spectrin-like proteins in nonerythrocyte cells and tissues 
(4, 5) have made it abundantly clear that spectrin is not 
myosin. In this report we have established the presence in the 
human erythrocyte of an authentic vertebrate myosin, based 
on cross-reaction with affinity-purified antibodies to human 
platelet myosin and characterization of the structural and 
functional properties of the purified protein. Myosin is an 
endogenous component of mature human erythrocytes, based 
on immunofluorescence localization of myosin in all cells, 
and is present with respect to the actin on the erythrocyte 
membrane in an amount comparable to actin/myosin ratios 
in other nonmuscle cells (molar ratio = 80/1; see reference 
29). Our work confirms and extends a preliminary report by 
Kirkpatrick and Sweeney (17) that erythrocyte cytosol con- 
tained myosin, and also presumably accounts for previous 
observations of myosin-like ATPase activities in crude prep- 
arations of spectrin from erythrocyte membranes (3, 30). 

In retrospect, there are several reasons why the presence of 
myosin in the erythrocyte has been previously overlooked. 
First, the intensity of antimyosin staining of erythrocytes is 
considerably less intense than that of platelets or neutrophils 
in samples of whole blood processed for indirect immunoflu- 
orescence (V. Fowler, unpublished data). Second, the presence 
of interfering ATPase activities, and the similarity in molec- 
ular weight on SDS gels of the myosin heavy chain to the 
major cytoskeletal proteins, spectrin and ankyrin, makes it 
impossible to employ the usual criteria for initial identifica- 
tion of myosin. Finally, attention has focused on structural 
proteins that are tightly associated with the membrane, while 
the majority of the erythrocyte myosin is released into the 
supernatant during hemolysis and preparation of membranes 
under hypotonic conditions (7.5 mM sodium phosphate, pH 
7.5). 

In common with myosins isolated from various nonmuscle 
cells, the Mg++-ATPase activity of erythrocyte myosin is not 
enhanced by the addition of rabbit skeletal muscle F-actin 
(19, 29). Actin activation of the Mg++-ATPase activity of 
platelet and other cytoplasmic myosins, as well as smooth 
muscle myosin, occurs only after the Mr 20,000 light chain of 
the myosin has been phosphorylated by a calcium- and cal- 
modulin-dependent protein kinase (1). Thus, it is possible 
that the Mr 19,500 light chain of erythrocyte myosin could be 

TABLE I 

A TPase Activity of Erythrocyte Myosin 

10 mM 10 mM 
2 mM EDTA CaCI2 MgCI2 

0.5 M KCI 0.376 0.478 <0.01 
0.06 M KCI 0 0.406 <0.01 
0.5 M NaCI 0.118 0.204 0 

ATPase activities (/amol/min per mg) were determined by using 25 #g/ml of 
purified erythrocyte myosin in a buffer containing 10 mM 3-(N-morpho- 
lino)propane sulfonic acid, I mM ATP, pH 7.0, ions as specified above, and 
0.5/aCi/ml [3,-~2P]ATP. The radioactivity released as P~ was determined after 
incubation for 15 and 30 rain as described by Agre et al. (2), and was 
corrected for nonenzymatic Pj release in the absence of myosin. 

TABLE II 

Quantitation of the Amount of Myosin in the Erythrocyte 

Cell equivalents (#I)* 

1.0 1.5 2.0 

Spectrin band 1 (#g)* 0.66 0.99 1.32 
Erythrocyte myosin 0.030 0.048 0.066 

(#g)S heavy chain 
Spectrin d imer/myosin 33.8 31.7 30.8 

(mol/mol) H 
Molecules myosin per 5,917 6 , 3 0 9  6,494 

cell ~ 

* Calculated from the microliters of sample electrophoresed for each deter- 
mination and the volume of packed cells used to prepare the initial gel 
sample. 

* Determined by the dye elution method of Fenner et al. (12) from a standard 
curve constructed by electrophoresing known quantities of purified spectrin 
in parallel with the gel samples of the erythrocytes. 

t Determined by a quantitative immunoblotting procedure as described in 
Materials and Methods. 

| Calculated assuming M, 260,000 lot band 1 of spectrin and Mr 200,000 for 
the heavy chain of erythrocyte myosin, and that each spectrin molecule 
(dimer) contains one band 1 polypeptide whereas each myosin molecule 
contains two Mr 200,000 heavy chains. 
Calculated assuming 200,000 spectrin dimers per cell (5). 

homologous to the Mr 20,000 regulatory light chains of other 
cytoplasmic myosins, and as isolated, be in the dephosphor- 
ylated state. Regulation of the level of phosphorylation of the 
M, 19,500 light chain of erythrocyte myosin by a calcium- 
and calmodulin-dependent protein kinase, coupled with a 
myosin light chain phosphatase, could provide a mechanism 
for calcium control oferythrocyte actomyosin ATPase activ- 
ity, as has been described for platelet and smooth muscle 
actomyosin systems (1). However, the presence in erythrocyte 
myosin of a light chain of apparent Mr 25,000 on SDS gels, 
similar to vertebrate skeletal and cardiac muscle myosins (21, 
38), and unlike other previously characterized cytoplasmic or 
smooth muscle myosins (19, 29), suggests that other regula- 
tory mechanisms should be considered. For example, it is 
possible that actin activation of the Mg+*-ATPase activity of 
erythrocyte myosin could be specific for erythrocyte mem- 
brane actin, which consists exclusively of the beta-isoelectric 
variant (reference 27 and V. Fowler, unpublished data), as 
suggested by Schrier et al. (32). Calcium regulation of eryth- 
rocyte actomyosin ATPase activity could then be provided by 
an actin-linked erythrocyte troponin-tropomyosin system, as 
discussed previously (14). Clearly, these regulatory mecha- 
nisms are not mutually exclusive, and additional myosin or 
actin-linked mechanisms for control of erythrocyte acto- 
myosin ATPase activity might also exist (19, 29). 

Myosin in the human erythrocyte could function, together 
with the membrane-associated actin protofilaments, in an 
actomyosin contractile apparatus responsible for ATP-de- 
pendent discocyte-echinocyte changes in cell shape and mem- 
brane properties (25, 31, 34, 37). Additionally, the passage of 
erythrocytes through the narrow sinusoids in the spleen may 
not be entirely a passive process driven by hydrostatic pres- 
sure, but may be facilitated by energy-dependent actomyosin 
contractions that are triggered by increases in intracellular 
calcium resulting from enhanced passive calcium permeabil- 
ity induced by physiological shear stresses (20). Such a hy- 
pothesized actomyosin contractile apparatus is probably not 
permanently assembled on the erythrocyte membrane, since 
much of the myosin is released into the supernatant after 
hemolysis of fresh, ATP-replete biconcave cells. The interac- 
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tion of myosin with the erythrocyte membrane cytoskeleton 
is likely to be complex and regulated at several levels: the 
ATP-dependent interaction of myosin heads with the actin 
protofilaments in the membrane skeleton (actomyosin 
ATPase); the self-association of molecules into bipolar fila- 
ments; and the association of filaments or individual myosin 
molecules via their tails to a nonactin site on the membrane. 
It is tempting to speculate that the increases in intracellular 
calcium and depletion of ATP levels that are correlated with 
discocyte-echinocyte shape transformations of erythrocytes 
(22, 24, 37) could be functionally related to assembly and 
activity of an actomyosin contractile apparatus on the eryth- 
rocyte membrane. 

Although there is no precedent for the organization and 
functioning of a membrane-associated contractile apparatus, 
the ability of erythrocyte myosin to form bipolar filaments at 
the concentrations of myosin estimated to be present in the 
erythrocyte ( -50 pg/ml) 4 raises the possibility that force pro- 
duction and membrane movements could result from ATP- 
dependent sliding of bipolar myosin filaments past antiparallel 
actin filaments in the membrane skeleton. The punctate 
character of the antimyosin staining of erythrocytes and the 
ratio of actin to myosin (80 monomers/myosin molecule; or 
1,200 monomers/1 myosin filament of 15 monomers; refer- 
ence 29) suggest that actomyosin interactions might occur at 
specialized sites in the membrane skeleton. Localized con- 
tractions could be transmitted through the cytoskeletal net- 
work via the multiple spectrin-band 4.1 linkages between the 
actin protofilaments, and tension could be exerted on the 
membrane via the specific association of spectrin with an- 
kyrin. Alternatively, individual myosin molecules could be 
attached directly to a membrane site via their tails, leaving 
their heads free to interact with the actin protofilaments. The 
relationship of such hypothesized calcium-activated acto- 
myosin contractions of the membrane cytoskeletal network 
to the previously observed inhibition of spectrin-band 4.1- 
actin gelation by micromolar calcium (13) is not immediately 
apparent. It is possible that the intracellular free calcium ion 
concentration could regulate spectrin-band 4.1-actin interac- 
tions concurrently with actomyosin contractions in a mem- 
brane-associated counterpart of the solation-contraction cou- 
pling mechanism that has been proposed to explain amoeboid 
movements (8, 9, 16). Clearly, evaluation of these ideas will 
require extensive biochemical and ultrastructural investiga- 
tion of the interaction of myosin with the membrane and 
with the actin filaments in the membrane skeleton. In partic- 
ular, the relationship of actomyosin interactions to the spec- 
trin-band 4. l-actin linkages in the membrane cytoskeleton, 
as well as the locations and associations of potential regulatory 
proteins such as tropomyosin (14) or troponins, will need to 
be defined. 

We acknowledge Thomas D. Pollard and Doug Murphy for their gift 
of antibodies to human platelet myosin for a preliminary immunoblot 
of erythrocyte membranes, and Rebecca Wagner for technical assist- 
ance in performing the initial immunoblots. We also thank Brian E. 
Burke for his advice in working out the immunofluorescence proce- 
dures, Peter C. Agre for the affinity-purified antibodies to spectrin, 
Tom Urquhart for the photography, and Arlene Daniel for the typing. 

4 Calculated from the number of copies of myosin per cell (6,000, see 
Results) and a cell volume of 85 um 3. 
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Note added in Proof. In a recent experiment by Albert J. Wong, 
Daniel P. Kiehart, and Thomas D. Pollard (J. BioL Chem., in press), 
phosphorylation of the M, 19,500 light chain was observed to be 
correlated with the actin-activated ATPase activity of erythrocyte 
myosin. 
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