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Abstract: The paper gives a set of basic relations characterizing the phenomena of viscous polymer
resin flow through fiber reinforcement and the resin curing process. We describe the technological
process of manufacturing composite structures. The influence of the resin curing process on values of
residual stresses in composite constructions is analyzed taking into account two components: thermal
shrinkage and chemical shrinkage of resins. For cases of 2-D structures, the method of formulating
such tasks has been demonstrated. The types of design variables appearing in the optimization
problems in this area are also presented. The 2-D optimization problems have been formulated.
Various optimization problems are solved in order to demonstrate the influence of discussed relations
on values of residual stresses and curing processes of thermosetting resins.

Keywords: fundamental relations of resin flow and hardening; residual stresses; thermosetting resin
curing process; optimization; design variables

1. Introduction

The process of producing finished products of fiber composites is based on matrix polymerization.
The problems related to the kinetics of reactions (degradation and polymerization), physical changes
and the mechanical properties of polymers and monomers are studied in the field of science known as
polymer physics. Carrothers [1] is the first person who analyzed the in step-growth polymerization
of monomers. However, Flory [2] is considered the first scientist establishing the field of polymer
physics. French scientists [3] and Russian/Soviet schools of physics contributed much since the
70s [4,5]. However, the development and achievements of polymer physics seem to be not sufficient in
the description of the fabrication of constructions made of fibre composites since they are produced
in two phases, i.e., polymers and reinforcement. The final products can be created simultaneously
with the creation of the material, which is generally the case of thermosetting resin matrix composites.
In thermoplastic resin composites, it is more common to fabricate the composite first and form or mold
the shape in the second operation [6–9].

Starting materials of a thermosetting resin are in a fluid state and are called monomers or
prepolymers. They are solidified by a chemical reaction during which molecules of monomers or
prepolymers are linked together to form polymer networks [10]. This process of linking the molecules
is called polymerization or cross-linking. The cross-linking is accomplished by catalysts or curing
agents usually selected to give the desired combination of time and temperature to complete the
reaction suitable for a particular product. The curing and accompanying hardening of thermosetting
polymers are irreversible. The curing can be accomplished in stages. The composite can be formed in
one stage when polymer viscosity is low for good penetration into fiber bundles, and the final curing
and hardening carried out when the product is shaped. The interfacial bonding between two polymers
can be controlled using a straightforward and direct method [11].
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The hardening process (in the case of thermosetting-based composites) or solidification from
melt/fluid state (for thermoplastic-based composites) is an important part of the technological process
of manufacturing of advanced composite structures. A comprehensive discussion of these processes in
composite materials would include many complex phenomena such as mass, momentum and heat
transfer, accompanied by the chemical curing reaction of the resin as well as motion and deformation
of fibers (Figure 1). Hardening/solidification processes are usually carried out with the use of the
pressure, which leads to the squeezing air and resin out of the structure. Such transformations result in
changes in the microstructure and dimensions of the composite materials. These techniques have been
used in the manufacturing of composite parts; however, the hardening process has more crucial steps
in the fabrication of thermosetting-based composite structures. Controlling and proper management
of these important processing steps allow achieving the required properties of composite materials,
especially those that are dominated by the fibers. Improper hardening/solidification can lead to the
unacceptable structural defects such as residual stresses, warping, voids or other unwanted effects.
In many cases, the presence of such defects may result in the rejection of the structure.

A number of various factors that are not fully recognized and defined plays a fundamental role
here. The most important of them are given below:

• knowledge about the size, physicochemical structure and interfacial surface form, which in many
cases is the source of macro-cracks and the final damage of the structure,

• description of the resin curing relationship through a series of semi-empirical relations containing
many material constants that are very difficult to determine in the experimental path; moreover,
little information on this subject can be found in the generally available literature,

• lack of simple relations describing the deformations of the viscoelastic matrix as a function of
resin hardening parameters and temperature,

• phenomenological form of the infiltration relations of the resin into the fiber bundles, which is
especially complicated for 3-D cases,

• the need to analyze complex, non-linear physical relations for various types of initial-boundary
conditions, which is sometimes very complicated.
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Due to the above facts, it is necessary to conduct numerical analysis using the finite element
method (FEM) or the finite volume method (FVM), and then validate numerical results with
experiments and engineering experience [12–14]. Performing numerical calculations already allows
for some optimization of the technological process by eliminating the most unfavorable solutions,
even without precisely specifying particular objective functions. Unfortunately, the basic inconvenience
of accurate numerical analysis is their time-consumption, which increases dramatically in the case of
optimization [15–18].
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Considerations and analysis in this area can not only be limited to the description of the resin
curing process but must also be supplemented with a description of the mold pouring/filling
process and infiltration through the fiber system. A detailed description of the physicochemical
phenomena associated with the process of manufacturing composite structures are shown in Figure 1,
which also presents what phenomena can be easily modeled using the finite element/volume method
(part referred to as simulation). Others such as chemical shrinkage, residual stresses, etc., require the
development of additional models.

In the process of optimization of manufacturing technologies of composite structures,
the viscosity [19–21] and the reaction kinetic models are used. Application of them allows for the
determination of the optimal shape of a mold and the optimal process of heating and cooling of
the mold and sample (a temperature-time history, a location of inlet gates and a location of heaters).
Many different reaction kinetics (RK) models have been proposed so far [22–37]. In practical application,
the most often used are models (or their extended or developed formulations) proposed by Kamal and
Sourour [22] and Bogetti and Gillespie [23].

The above-mentioned models have been successfully applied to the different composite materials
and resin systems such as carbon-fiber reinforced polymer (CFRP) [38–44], glass-fiber reinforced
polymer (GFRP) [45–48], epoxy resin systems [49–51], fast cure epoxy [30,32,37]. The applicability of
the curing models has been also confirmed for different manufacturing technologies of composite
structures, such as: liquid silicone rubber (LSR) [52], resin film infusion (RFI) [53], resin transfer
molding (RTM) [30,31,33,38,44,51,54], compression resin transfer molding (C-RTM) [32], reactive
injection molding (RIM) [30], vacuum-assisted resin transfer molding (VARTM) [55,56], reactive
extrusion (REX) [30], autoclaving [57] and out-of-autoclave (OOA) [34,37]. A detailed description is
presented in Chapter 2.

An optimal cure process of composite structures was proposed by White and Hahn [58,59] to
decrease residual stresses during the manufacturing process. Muc [12] and Muc and Saj [15,16]
conducted research on the optimal design of composite thermoforming using a genetic algorithm.
Matysiak et al. [52] optimized the silicone molding process based on numerical simulations and
experiments. Song et al. [60] presented optimization of the curing procedure to minimalize the residual
voids. Leite et al. [61] applied artificial neural networks to optimize the vacuum thermoforming
process and minimalize the product deviations.

The present paper begins with the description of the basic relations describing the phenomena
occurring throughout the manufacturing process of composite structures. In this section, the flow of the
fluid (resin), relations of heat flow during mold heating, kinetic model of exothermic chemical reaction,
the viscosity of the resin during its curing, and resin infiltration through reinforcement are put forward.
In the next chapter, the residual stresses arising in composite material manufacturing are presented
and discussed with the use of the viscoelastic and the mechanical 2D models. The optimization
problems are shown in the following section, in which the influence of the resin curing process on
values of residual stresses in composite construction is analyzed taking into account two components:
thermal shrinkage and chemical shrinkage of resins. For cases of 2-D structures, two particular
technological processes are presented. In these examples, the influence of outside heater temperature
on the distribution of the degree of cure has been demonstrated. In Appendix A, the physical properties
of the epoxy resin used in the numerical examples are given.

The aim of the present paper is two-fold:

1. to demonstrate the influence of the fundamental relations and models on the values of
residual stresses,

2. to formulate and solve possible optimization problems arising in the curing of
thermosetting resins.

The influence of the fundamental relations and the resin curing models (described in chapters
2 and 3) on the values of the residual stresses is presented and discussed in paragraph 3.4. It was
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observed that the number of assumed curing variables (and their dependence) in the curing model
have a significant influence on the calculated residual stresses.

2. Relations Used to Describe the Phenomenon of Curing

The hardening process of resins is a complex physicochemical phenomenon, for which description
a number of relations are required—see also Figure 1:

• description of the motion of the fluid (resin) into the form of a product,
• relations of heat flow during mold heating by external heat sources,
• kinetic model of exothermic chemical reaction,
• description of the law of viscosity of the resin during its curing,
• modeling phenomena of resin infiltration through reinforcement.

Each of the above physical laws includes a number of material factors, which, in many cases are
very difficult to determine.

To describe the motion of the fluid, we apply non-linear relations for viscous liquids in the form
proposed by Navier-Stokes—see Landau et al. [62]. The system of equations will be formulated in
the Euler approach (description at a fixed point in space), which is directly related to the numerical
method used to solve equations (finite volumes). Fundamental relations are derived from a series of
conservation laws listed below:

the principle of mass conservation (equation of flow continuity):

dρ

dt
+ ρ∇ · v = 0, (1)

the second law of Newton’s dynamics (equation of fluid motion):

ρ

(
∂v
∂t

+ v∇ · v
)
= ρF +∇ · T, (2)

the principle of energy conservation:

ρcv
dT
dt

= T : ∇v +
.
σ +∇ · .

q, (3)

where T is the stress tensor in the liquid and it is the sum of the hydrostatic pressure p and the
viscous friction:

T = −pI +
2
3

η∇ · vI + η

(
∂vi
∂xj

+
∂vj

∂xi

)
, (4)

and v is the speed vector having the component vi, ρ is the density of the fluid, I—the unit matrix,
cv—the specific heat in a constant volume. dH/dt = ∂H/∂t + v∇H—material derivative of variable H,
the symbol “:” means double scalar product, and the symbol ∇ defines a gradient.

For most of the continuous media, it is assumed that the heat flux vector
.
q is proportional to the

temperature gradient. This relation is called the Fourier law:

.
q = λ∇T, (5)

where: T—temperature, λ—thermal conduction coefficient.
Here, for thermosetting, the viscosity model proposed by Castro-Macosko [19] is used:

η = B exp
(

Tb
T

)(
αg

αg − α

)C1+C2α

, (6)
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where: B—reference viscosity [Pas], Tb = E/R—parameter dependent on the activation energy E [K], C1,
C2—coefficients, R—gas constant = 8.314 J/(mol·K). The flow threshold αg (generally for epoxy-amine
systems αg = 0.5 − 0.6 [20]) is synonymous with gelling of the resin, i.e., the moment in which the
material rapidly changes from a liquid state to a solid state—highly elastic. This is mainly due to the
rapid increase of the viscosity of the material.

The degree of cure (αg) at which gelation occurs can be calculated by formula proposed by
Castro-Macosko:

αg = [r( f − 1)(g− 1)]−
1
2 , (7)

where: r—the ratio between resin and hardener, f and g—functionality of resin and hardener,
respectively. Application of the Castro-Macosko model—Equation (6), with exponential viscosity
growth behavior, provides a good description of the isothermal viscosity rise [21].

The curing reaction is exothermic, which is taken into account in the equation of energy balance
by determining the intensity of the internal heat source, defined by the formula:

.
σ = ρQT

dα

dt
, (8)

where QT is experimentally determined by the total heat of the chemical reaction separated from the
mass unit after the time when the material has been fully cured.

The reaction rate expressed as a derivative of the degree of curing α is calculated using the
reaction kinetics (RK) model. The phenomenon of cross-linking of curable material consisting of the
linking of polymer molecules chains into ordered spatial networks is a process associated with the
release of large amounts of heat (the exothermic character of the phenomenon). The analysis of this
process requires knowledge and understanding of the kinetics governing the reaction of cross-linking.
It is difficult to consider this phenomenon at the microscopic level, i.e., to study and describe the role
of individual molecules or chains. The ideal model of reaction kinetics depends on the analysis in
which it will be used. If the model is to show the process, it should be relatively simple so that it
can be implemented into the mathematical apparatus. If, however, there is a need to track individual
components of the reaction, a kinetic model should be used that gives such possibilities. The size
denoted as α is a measure of the degree of hardening (curing) of the curable material. It characterizes
the state of development of the polymerization reaction by expressing the stage of reacting the curable
material in the considered moment of time. Generally, the RK models can be described by the following
formula [7]:

∂α

∂t
= K f (α), (9)

where f (α) is the function describing the cure rate and K is the pre-exponential factor.
Due to many different resin systems used in practical applications, different RK models have

been proposed so far [7,22–36]. Many RK models are based on the following formulations (including a
combination of them):

the n-th order reaction model
f (α) = (1− α)n, (10)

the n-th order autocatalytic reaction model

f (α) = (1− α)n(1 + kα), (11)

the Prout-Tompkins autocatalytic reaction model

f (α) = (1− α)nαm. (12)
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The most often used in practical applications is the model proposed by Kamal and Sourour in 1973 [22].
The model allows for determining the rate of curing reaction depending on the degree of curing α:

∂α

∂t
= (k1 + k2αm)(1− α)n, (13)

The reaction rate constants k1 and k2 are usually determined from the Arrhenius relationship
defined by the formula:

ki = Ai exp
(
−Ei

T

)
, (14)

where: i = 1, 2; m, n—constants, Ai—exponential factors [1/s], Ei—activation energies [K], T—absolute
temperature [K]. The sum of the parameters m + n defines the so-called order of reaction speed. In some
versions of the model, you can find activation energy in the dimension [J/mol]. It is then necessary to
further divide this amount by the constant R (constant gas). It should be noted that these RK models
are formal ones, and hence, formally capture the actual chemical reactions.

Bogetti and Gillespie [23] stated that Kamal’s model is the most adequate for the description of
phenomena occurring in the technological processes of composite structures production. It is a special
case of Equation (13), in which it is assumed that k1 = 0, i.e.,:

∂α

∂t
= k2αm(1− α)n, (15)

There are also many simplified relations received on the basis of experimental studies. An example
of such a relationship is the relation proposed by Kempner et al. [24], used to describe the curing
process of the carbon fiber reinforced AS4/350-6 pre-impregnates:

∂α

∂t
=

{
(k1 + k2α)(1− α)(B− α) for α ≤ 0.3
k3(1− α) for α > 0.3

, (16)

where ki is defined as before (Equation (14)) and B is a constant (for AS4/350-6 pre-impregnates
B = 0.47).

The use of different laws describing changes in the degree of resin curing (i.e., Equations (13),
(15) or (16)) leads to their different variations in time and finally to different residual stress values—see
Muc [12,63,64]. Due to this fact, a proper selection of the RK model is an important practical issue.
On the basis of the validation of the particular models to the experimental tests [27–57], the practical
recommendations regarding the selection of the RK models for composite materials (Table 1) and
fabrication processes of fiber composites (Table 2) are given.

Table 1. Validation of particular reaction kinetics models for composite materials and epoxy
resin systems.

Material System Reaction Kinetics Models References

CFRP

1.Kamal–Sourour (13) & Arrhenius (14)
2. Bogetti–Gillespie (15)
3. Kempner et al. (16)
4. Kamal–Sourour (13) & Bailleul [27]

[38–44]

GFRP 1.Kamal–Sourour (13) & Arrhenius (14)
2. Bogetti–Gillespie (15) [45–48]

Epoxy resin systems

1. Kamal- Sourour (13) & Arrhenius (14)
2. Kamal–Sourour (13) & Rabinowitch [28]
3. n–th order (10)
4. n–th order autocatalytic (12)

[49–51]

Fast cure epoxy
1.Model for non-isothermal curing based on the Kiuna approach [29]
2. Iso–conversional methods [30]
3. Model based on the Ruiz et al. approach [31,32]

[30,32,37]
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For the production of composite structures, in technological processes, the liquid resin is pressed
into the mold cavity, in which there is reinforcement with a defined permeability. Such a system
significantly modifies the flow of the material (resin) by fibrous reinforcement. In order to characterize
such a flow, Darcy’s law may be used (it is understood as the right to filter fluid through a medium
with a defined permeability) in the form of:

v = − 1
η

K · ∇p. (17)

Tensor K is characterized by the permeability of reinforcement during the flow of resin in the
liquid state and takes the following form:

K =

 k11 k12 k13

k12 k22 k23

k13 k23 k33

. (18)

In the system of Equations (1)–(18), the set of unknowns consists of: v—velocity vector with
three components, T—symmetrical stress tensor with six independent components, T—temperature,
.
σ—intensity of the internal heat source,

.
q– intensity of heat flux with three components, volume,

η—viscosity, p—pressure, α—degree of curing. Reducing the system of equations by mutual
substitutions, we finally get a set of six equations with six unknowns: v—velocity vector,
T—temperature, p—pressure, α—degree of curing.

Table 2. Validation of particular reaction kinetics models for selected fabrication processes of
fiber composites.

Process Reaction Kinetics Models References

LSR Kamal–Sourour (13) & Arrhenius (14) [52]

RFI Kamal–Sourour (13) & Arrhenius (14) [53]

RTM

1. Kamal–Sourour (13) & Arrhenius (14)
2. Iso–conversional methods [30]
3. Ruiz–Trochu [31,33]
4. Extended Bogetti–Gillespie [34]
5. Kamal–Sourour (13) and Bailleul [27]
6. Prout–Tompkins autocatalytic (12)

[30,31,33,38,44,51,54]

C-RTM Model based on the Ruiz et al. approach [31,32] [32]

RIM Iso–conversional methods [30] [30]

VARTM Kamal–Souror (13) & Arrhenius (14) [55,56]

REX Iso–conversional methods [30] [30]

Autoclaving Karkanas–Partridge’s (modificated Kamal–Sourour) [35,36] [57]

OOA 1. Extended Bogetti–Gillespie [34]
2. Model for non–isothermal curing based on the Kiuna approach [37] [34,37]

3. Residual Stresses

3.1. Classification of Approaches Used

Residual stresses and their influence on the structure of the composite material can be considered
at various levels [8,12,63–69], i.e., the microscale (fiber/matrix), at the scale of the individual layer
(laminate) or at the macroscale (structure)—Figure 2. At the level of the microstructure, the influence
of residual stresses is usually taken into account by introducing a safety coefficient in the values
determining allowable stresses and strength for composite materials. Some work in this field is carried
out by Caiazzo et al. [70].
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Most often, the residual stress induced by the resin curing process is calculated using the finite
element method and/or the homogenization theory. This is done at the level of the individual layer,
the laminate or the entire structure. Most of these works, however, concern the analysis of the resin
curing process itself (without the analysis of filling molds by a liquid resin)—see Figure 1.

During and/or after the manufacturing process, the development of free strains and the mismatch
of these strains between different components lead to the formation of residual stresses. In general,
the free strains are divided into three categories: strains due to thermal changes (i.e., thermal
expansion/shrinkage), strains due to phase changes of the matrix (i.e., cross-linking or crystallization)
and strains due to moisture absorption, i.e.,:

ε̃
f ree
j (t) = γj(α, T, M)∆T(t) + β j(α, T, M)∆M(t) + φj(α, T, M)∆α(t), (19)

where: j—the strain component, γj—the coefficients of thermal expansion, β j—the coefficient of
moisture expansion, φj—the coefficient of cure expansion, M—moisture, ∆—increments in the real
physical time t. In the further part of the work, the influence of stresses/strains due to moisture
absorption will be neglected.
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Figure 2. Possible levels of residual stress analysis.

Internal heat sources generate residual stresses at the micro-scale level, and external ones at the
macro level; they are applied on the edges of the structure. Manufacturing-induced residual stresses of
polymer–matrix composites reduce the tensile load at which first ply failure occurs [71]—see Figure 3.
Thermomechanical treatments offer the potential to change these residual stresses, but their application
is hindered because the shape stability of composite material components is limited at treatment
temperatures, which must be above the glass transition temperature of the matrix. The fundamental
effect of residual stresses is observed in the form of the reduction of structural strength (see Figure 3)
and as the change in the shape of the structure (lateral torsional buckling)—Figure 4.
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In this work, we will analyze the effect of residual stresses at the laminate level taking into account
the influence of external heat sources.

Theoretical and numerical modeling of thermal residual stresses was investigated in Refs [72–78].
Several techniques have been used to predict the spring-in of curved and angle sections ranging from
simple analytical models [79,80] to laminate plate theory and finite element based models [40,47,59,60,
81–84].
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3.2. Viscoelastic Model

Using the classical linear viscoelastic approach (see e.g., Kim et al. [85]), the stress components
can be evaluated from the following relation:

σi(t) =
t∫

0

Qij(αc, ξ − ξ′) ∂

∂τ

[
ε j(τ)− ε̃ j(τ)

]
dτ, (20)

where Qij denotes the components of the stiffness matrix. For the given value of the cure parameter
αc [86], it is assumed that:

ξ =

t∫
0

χ[αc, T(s)]ds, ξ′ =
τ∫

0

χ[αc, T(s)]ds, (21a,b)

The mechanical properties of the composite material change as the curing progresses. In particular,
the transverse compliance, S22(t) = [Q22(t)]−1, undergoes a substantial change with time during
cure [87]. This behavior can be modeled by a power law of the form:

S22(α, t) = S22i(α) f (t) + D(α)[tχT(α, T)]q(α), (22)



Polymers 2019, 11, 127 10 of 22

where:

D(α) = Di + (D f − Di)α, q(α) = qi + (q f − qi)α, χT(α, T) = χ(α, T, M) (23a,b,c)

and f is a material dependent function chosen to agree with the experimental results [59,60], D—the
transverse creep coefficient, αT—the shift factor and q is the transverse creep exponent. Assuming
Young’s modulus varies with the cure parameter α, the form of the cure parameter variations with time,
one can obtain the resultant stresses for the given laminate stacking sequences and their variations
with time.

For a plane stress problems, the elements of the stiffness matrix [Q] can be expressed by the
elements of the compliance matrix [S] as follows:

Q̂11(α, t) =
S22(α, t)

S11(α)S22(α, t)− S2
12(α)

, (24)

Q̂22(α, t) =
S11(α)

S11(α)S22(α, t)− S2
12(α)

, (25)

Q̂12(α, t) =
−S12(α)

S11(α)S22(α, t)− S2
12(α)

, (26)

where:

S11(α) =
1

Ê11(α)
, S12(α) = −

v̂12(α)

Ê11(α)
, S22i(α) =

1
Ê22i(α)

, (27a,b,c)

The variations of Young’s transversal modulus (in the direction perpendicular to the fiber) can be
written in the following way:

Ê22i(α) = E22 0 ≤ α ≤ α∗

Ê22i(α) = a0 + a1α + a2α2 α∗ ≤ α
(28)

where: Ê22i is the initial transverse modulus, E22 is the transverse modulus for the uncured material,
α* is the degree of curing for the initial modulus and a0, a1 and a2 are the parameters of the model.

Young’s modulus parallel to fibers and Poisson’s ratio are usually written as follows:

Ê11(α) = Ê11i + (Ê11 f − Ê11i)α, (29)

v̂12(α) = v̂12i + (v̂12 f − v̂12i)α, (30)

In Equations (24)–(30) the symbol “ˆ” was introduced above the symbols to distinguish the
quantities referring to the description of viscoelastic and elastic phenomena. It should be emphasized
that Equations (24)–(28) are a generalization of analogous compounds for viscoelastic models.
The physical meaning of the possibility of using such compounds is explained in detail in Pipes
et al. [88]. A review of the applied models of viscoelastic bodies for the description of fiber composites
is presented by Sun [89]. Sobotka [90] showed an overview of the rheological models used to describe
the deformation of orthotropic plates and shells. Wilson [91] analyzed the effect of considering
viscoelastic deformations on buckling of rods and plates. He showed that this reduces the critical force.
Similar effects were noted for shell structures—see Rikards and Teters [92]. Problems of viscoelastic
deformations in polymer mechanics are also discussed in Wilczyński’s monograph [93].

3.3. Mechanical 2D Model

Using the classical 2D relations for elastic thin-walled laminates, we can calculate the stresses as
follows (compare with Equation (19)):
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σi = Qij

(
ε j − ε̃

f ree
j

)
, i, j = 1, 2, 6, (31)

Strains are assumed to change linearly through the thickness:

ε j = ε0
j + zκj, (32)

where ε0
j is the vector of mid-plane strains and κj is the vector of curvature components of the laminate.

Defining in the classical manner the in-plane force resultants and moments resultants:

Ni =

t/2∫
−t/2

σidz, Mi =

t/2∫
−t/2

σizdz, i = 1, 2, 6, (33a,b)

and writing the Equations (5) and (6) in the incremental form we obtain finally the values of mid-plane
strain increments dε0

j :
NL

∑
k=1

Qk
ijtkdε0

j −
(

NL

∑
k=1

Qk
ijtkdε̃

0 f ree
j

)
= 0, (34)

the positions of the neutral axis zb:
NL

∑
k=1

Qk
ij(tk − zb)δjr = 0, (35)

and the increments of the curvature dκj:

NL

∑
k=1

zk∫
zk−1

dzQk
ij

[
dε0

j + (z− zb)dκj − dε̃
0 f ree
j

]
= 0, (36)

The above relations were derived under the assumption that the mold is not subjected to any
constraints. However, the distributions of the free strains with respect to the temperature and the cure
parameter should be known in advance from experiments.

If the vacuum bag is attached to the solid mold, both mid-plane strains and the curvature are
constrained during cure and warpage is prevented. Therefore, under the assumption dε0

j − dκj = 0 we
can calculate the incremental force and moment due to the incremental cure shrinkage:

dNmech = −
NL

∑
k=1

zk∫
zk−1

Qk
ijdε̃

0 f ree
j (α, T)dz, (37)

dMmech = −
NL

∑
k=1

zk∫
zk−1

Qk
ijdε̃

0 f ree
j (α, T)zdz, (38)

At the end of curing, the total force and moment can be found by the integration over the total
value of the cure parameter α and the temperature T.

3.4. Residual Stresses—Numerical Example

In the above presented models, residual stresses can be derived knowing the variations of the
cure parameter α with time and temperature for the strictly specified type of a resin. For instance,
in the mechanical model (see Section 3.3) the analysis of the hardening process is based on the diagram
drawn below (Figure 5). The presented variations of temperature and cure parameter concern the
production of layered cylindrical shells and plates with circular holes (see Figure 4). The structures
were made of 8 layers with layers orientation ±45◦ using the autoclave technique. The cure parameter
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was calculated using the Kamal and Sourour model—Equation (13). The obtained results from the
analytical solutions were compared with FE solutions and deflections of the real structures—Table 3.Polymers 2018, 10, x FOR PEER REVIEW  12 of 23 
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Figure 5. Variations of temperature and curing during the manufacturing of structures.

Table 3. Comparison of the maximal deflection obtained using analytical and FE models with
experimentation.

Method Deflection [mm]

Plate; 8 layers ±45◦ Cylindrical shell; 8 layers ±45◦

Technological process 31 20

Kamal and Sourour model—Equation (13) 25.4 17.9

FE model 22.8 16.9

The presented above examples refer to the simplest heating process in the autoclave corresponding
to the trapeze form of the temperature-time profile – Figure 5.

Using the mechanical model, it is possible to compute the residual stresses. Now, the analysis
is conducted for composite plates with cross-ply configuration 0◦/90◦ taking into account two resin
curing models:

Model 1—Kamal and Sourour—Equation (13) (k1 > 0),
Model 2—Bogetti and Gillespie—Equation (15) (k1 = 0).
For the assumed form of the temperature profile and the degree of cure distribution, the plots of

the residual stresses are shown in Figure 6.
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The final values of residual stresses are strongly affected by the prescribed curing model.

4. Optimization Problems

4.1. General Remarks

Both technological processes discussed herein, i.e., the RIM and the RTM processes are conducted
in a similar way presented in Figure 7.

The initially heated resin mixture is injected into the mould through the inlet gate— the number
of the inlet gates may be greater than one. In the part of the mould occupied by the manufactured
part, a porous media may exist that determines unidirectional, 2-D or 3-D systems of fibres in the case
of the RTM process and one or more obstacles in the macro scale (or even none of them) in the case
of the RIM process. In the mathematical or numerical sense, the difference between two processes
results in the appearance of the additional set of equations (the Darcy flow rule—Equation (17)) for
the RTM process whereas for the RIM process, the additional part inserted into the space occupied
by the manufactured part in Figure 7 leads to the appearance of additional boundary conditions at
the boundaries of obstacles. Then, the whole mould is heated to the prescribed temperature and then
consolidated and cooled. The temperature in the mould is controlled by a finite set of electric heaters
running around the mould in 3-D space.
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In engineering practice, the final quality of the product and residual stresses obtained in the
curing process are dependant on the variety of factors and each of them may be treated as the design
variable in the optimisation problems. In general, they may be classified in the following manner:

Resin mixture:

• Type of the resin (polyester, epoxy etc.),
• Types of fillers and hardeners,
• Weight fractions of components,
• Relation between viscosity, time, temperature and degree of curing,
• Mold (Figure 7):
• Geometry,
• Positions, number and type (point or line) of the inlet gates,

Specific parameters of the technological process (Figure 7)

• Velocity of the resin mixture at the input gate,
• Pressure at the input gate,
• Initial temperature of the resin mixture,
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• Application of vacuum (or not),
• Total number of products,
• Control of parameters during the process.

They are not independent parameters since everything depends on the existing equipment and
the engineering realization of technological process.

However, the resin mixture flow may be blocked by the partially cured resin, i.e., the resin having
(e.g., according to the commonly accepted assumption) a degree of cure α greater than 65%. In the
optimisation problem, to eliminate such an inconvenience during the curing process, one may control
the spatial distribution of the degree of cure α inside the mold at each time step. Strictly speaking,
we intend to build the optimal spatial distribution of the α parameter in such a way that the degree of
curing is a decreasing function in an arbitrarily chosen direction s, i.e.,:

dα

ds
< 0, (39)

for an arbitrary moment of curing time t—see Figure 8.
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The parameter s in Equation (39) denotes the vector joining two points P0 of the highest degree of
curing and Pl where the curing parameter is measured. In general, that relation is valid for both 2-D
and 3-D problems, i.e., for an arbitrary pair of points inside the mold.

The detailed optimization analysis can be carried out with the use of the numerical analysis in the
form shown in Figure 9.
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In Figure 9 the term “probabilistic algorithms” denotes both genetic algorithms and evolutionary
algorithms that may be used in the optimization problems. The detailed description of those procedures
(not repeated herein) is discussed in detail by Muc et al. [94–97].

4.2. Optimization Examples

4.2.1. RIM Process—Optimal Sequence of Hardening

It is obvious that the heating of the mould in the room or very low temperatures can reduce
significantly or even eliminate the problems mentioned in the previous section. On the other hand,
the quality of the product and its strength increase significantly for the curing process at high
temperatures. Therefore, it is necessary to conduct the heating process at high temperatures but
analysing both spatial as well as time distributions of the degree of cure α and these effects should
be taken into account in the objective. Finally, the objectives of our optimisation problem can be
formulated in the following way:

To maximize:

F =
Ih

∑
i=1

∫ tk
0 αPi

100× tk
−

Nt

∑
ti=1

A× pen (40)

where: Ih—the total number of the control points, tk—the total time of the curing process, αPi—the
degree of curing at the control point Pi, ti—the i-th time step, Nt—the total number of time steps in the
numerical simulation, pen—the penalty coefficient, A—the value computed from the formulae:

A =

{
dα
dsP

if dα
dsP

> 0
0 if dα

dsP
> 0

(41)

The presented methodology was applied to the optimization of the reactive injection molding
process (RIM) of the structure presented in Figure 10a,b. The main aims of the analysis were to optimize
the degree of cure and the total curing time—Equation (40). Both parameters can be treated as the
main effectiveness measures of the technological RIMP. Special attention was focused on the quality of
the product in surroundings of the corners within molds. Non-optimal curing process (Figure 10a)
may result in defects appearing (macroscopic and microscopic voids) in the final product. Influences
of different parameters were studied in the optimization process and finally the temperatures of the
heat sources were selected as the design variables. The calculations were made using Fluent software
and with the application of the genetic algorithms. In the numerical analysis of the non-isothermal
RIM the following phenomena were studied:

1. The behavior of the resin (fluid) during the injection (Navier-Stokes relations),
2. Heat transfer analysis (Fourier law),
3. Curing and rheology (including viscosity modeling—Castro-Macosko model and curing kinetics

– Kamal and Sourour model) during the gelation.

Generally, macroscopic defects are caused by large air pockets, which can be blocked inside the
mold cavity or stopped resin flow caused by the partially cured resin. This problem can be observed in
Figure 10a, in which the curing process begins around the inlet gate (P2). Such an incorrect curing
process leads to the appearance of the air bubbles. In order to prevent such phenomena during the
technological process, the distribution and change of the degree of cure α of the whole structure at
each moment of time should be controlled.
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Figure 10. Comparison of distribution of degree of cure during curing process: (a) incorrect, (b) optimal.

For a particular technological process, the curing process at two points (P1 and P2; where P1 –
point in which curing should occur earlier than in point P2) can take the form shown in Figure 11 and
it is not characterized by a single curve in the form presented in Figure 5. The area between curves,
describing the curing process in time, for any two points of a structure can be treated as a measure of
correctness of the curing process (Figure 11). If the curing curve for P1 lies above the curve for point
P2, then the curing process has the correct manner (Figure 11b). In the otherwise case or in a case in
which curves cross each other or have common points, the curing process is incorrect and may lead to
the deterioration of the product quality (Figure 11a).
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4.2.2. RTM Process—Optimal Temperature Profile

In the RTM process, due to a variety of chemical exothermal reactions and curing procedures,
residual stresses of non-mechanical origin can arise and finally may lead to the reduction of the
load carrying capacity of the structure. Therefore the fundamental optimization problem takes the
following form:

To minimize the residual stresses varying the time interval during the curing procedure:

Min σ(t) (42)

For the prescribed temperature variations (Figure 5), the distributions of residual stresses are
demonstrated in Figure 6.

Now, it is assumed that the design variables sk may vary in time but in a specific, prescribed
way, i.e.,:

sk(xi, t) = sk(t) , t ∈ [tp1, tp2] (43)

where k denotes the total number of design variables, whereas p1 and p2 mean the number of time
intervals in the assumed heating process—see Figure 12.
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Figure 12. Definitions of design variables.

In the presented case, the total number of ten design variables ((t1,T1), (t2,T2), (t3,T3), (t4,T4),
(t5,T5)) is reduced to only seven (see Figure 12). The analysis is conducted for cross-ply symmetric
laminates [04,904]S with the use of the viscoelastic model (the Section 3.2). Similarly, as previously,
model 1 is described by the Kamal and Sourour relations, and model 2 by the Bogetti and Gillespie
equation. The results of computations are plotted in Figures 13 and 14.
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Figure 13. Variations of the degree of curing with time for the optimal heating/cooling process shown
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5. Concluding Remarks

In the present paper, the possibility of the conjunction of genetic and evolutionary algorithms
with the FV Fluent package in application to the optimization of the Reactive Injection Molding (RIM)
and the Resin Transfer Molding (RTM) technological processes is presented and discussed. In the first
part, a complete set of governing equations characterizing the thermosetting resin hardening process
is written. Special attention is focused on the definition of design variables that can be used in the
optimization problems for the above technological processes.

Among different variants of optimal designs, two 2-D problems are solved: (1) the optimal
sequence of hardening and (2) the optimization of heating/cooling process and their influence on the
values of residual stresses. The analysis conducted enables a better understanding of the behavior
of the resulting residual stresses to changes in the cure cycle. It is concluded that by choosing these
gradients in an optimum manner, the residual stresses can be reduced substantially.

The numerical results demonstrate evidently the strong influence of governing relations on the
optimal solutions.

Author Contributions: A.M.—conceptualization, writing, numerical analysis; P.R.—writing, editing, M.C.—writing,
editing.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Physical properties of the epoxy resin used in the numerical examples. The model input
parameters and values based on the experimental study conducted by White and Hahn [58,59] are
given below.

Parameter Value Parameter Value

First dwell temperature 131 ◦C Degree of curing when chemical shrinkage
is complete αc = 0.81

Second dwell temperature 181 ◦C Final transverse chemical shrinkage strain e2
cf = −0.029

Cure kinetics constant k1 = 1.98exp(-2770/T) s−1 Uncured transverse creep coefficient Di = 2.72E-9

Cure kinetics constant m1 = 1.17-(1.74E-3)T Fully cured transverse creep coefficient Df = 2.72E-9

Cure kinetics constant n1 = 199-(0.415)T Uncured transverse creep exponent qi = 0.123

Cure kinetics constant k2 = 6550exp(-7040/T) s−1 Fully cured transverse creep exponent qf = 0.24

Cure kinetics constant m2 = 0 Shift factor constants B1 = 6190
B2 = 20.3

Cure kinetics constant n2 = 13.2-(0.025)T Initial transverse modulus modeling
coefficients

a0 = −214 GPa
a1 = 451 GPa

a2 = −228 GPa

Cure kinetics constant k3 = 81.9exp(-5340/T) s−1 Uncured transverse modulus E* = 2 GPa

Cure kinetics constant m3 = 0 Curing at initial transverse modulus
development α* = 0.82

Cure kinetics constant n3 = 131-(0.558)T+
+(6E-4)T2 Uncured longitudinal modulus E11i = 114 GPa

First break point as a function
of dwell temperature Tc2 (3.44E-12)(100.22·Tc2) Fully cured longitudinal modulus E11f = 183 GPa

Second break point -25.7+(0.11)Tc2+
-(1.15E-4)Tc22 Uncured major Poisson’s ratio υ12i = 0.4

Longitudinal thermal
expansion coefficient α1 = −0.3E-6 m/◦C Fully cured major Poisson’s ratio υ12f = 0.31

Transverse thermal expansion
coefficient α2 = 30E-6 m/◦C Minor Poisson’s ratio υ21 = 0.35

Initial stress-free temperature T0 = 290 K Final shear modulus G = 15 GPa

Chemical strain coefficients
β1 = 0.005

β2 = −525E-5
β3 = 1

Half thickness of laminate h = 0.765 mm
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CRC Press: Boca Raton, FL, USA, 2017; Volume 4.

66. Zhao, L.G.; Warrior, N.A.; Long, A.C. A thermo-viscoelastic analysis of process-induced residual stress in
fibre-reinforced polymer–matrix composites. Mater. Sci. Eng. A 2007, 452–453, 483–498. [CrossRef]

67. Metehri, A.; Serier, B.; Bachir, B.; Belhouari, M.; Mecirdi, M.A. Numerical analysis of the residual stresses in
polymer matrix composites. Mater. Des. 2009, 30, 2332–2338. [CrossRef]

68. Yang, L.; Yan, Y.; Ma, J.; Liu, B. Effects of inter-fiber spacing and thermal residual stress on transverse failure
of fiber-reinforced polymer–matrix composites. Comput. Mater. Sci. 2013, 68, 255–262. [CrossRef]

69. Pefferkorn, A. Shrinkage Characteristics of Experimental Polymer Containing Composites under Controlled
Light Curing Modes. Polymers 2012, 4, 256–274. [CrossRef]

70. Caiazzo, A.; Rosen, B.W.; Poursartip, A.; Courdji, R.; Vaziri, R. Integration of the Process Modelling and
Stress Analysis Methods for Composite Materials. In Proceedings of the 34th International SAMPE Technical
Conference, Baltimore, 4–7 November 2002; pp. 208–215.

71. Kim, R.Y.; Hahn, H.T. Effect of curing stresses on the first ply-failure in composite laminates. J. Compos.
Mater. 1979, 13, 2–16. [CrossRef]

72. Chamis, C.C. Lamination Residual Stresses in Fiber Composites; NASA-CR-134826; IIT Research Inst.: Chicago,
IL, USA, 1974.

http://dx.doi.org/10.1016/j.tca.2016.02.010
http://dx.doi.org/10.1016/j.compositesa.2013.01.021
http://dx.doi.org/10.1002/adv.21272
http://dx.doi.org/10.1016/j.polymertesting.2012.09.011
http://dx.doi.org/10.1016/S0017-9310(01)00266-6
http://dx.doi.org/10.1177/0731684417691673
http://dx.doi.org/10.1002/pen.24568
http://dx.doi.org/10.1177/002199839202601604
http://dx.doi.org/10.1177/002199839202601605
http://dx.doi.org/10.3390/ma7064088
http://www.ncbi.nlm.nih.gov/pubmed/28788666
http://dx.doi.org/10.3390/polym10020143
http://dx.doi.org/10.1016/0266-3538(89)90083-3
http://dx.doi.org/10.1016/j.msea.2006.10.060
http://dx.doi.org/10.1016/j.matdes.2008.11.009
http://dx.doi.org/10.1016/j.commatsci.2012.09.027
http://dx.doi.org/10.3390/polym4010256
http://dx.doi.org/10.1177/002199837901300101


Polymers 2019, 11, 127 22 of 22

73. Zobeiry, N.; Vaziri, R.; Poursartip, A. Computationally efficient pseudo-viscoelastic models for evaluation of
residual stresses in thermoset polymer composites during cure. Compos. Part A 2010, 41, 247–256. [CrossRef]

74. Arafath, A.; Vaziri, R.; Poursartip, A. Closed-form solution for process-induced stresses and deformation of
a composite part cured on a solid tool: P. I. Compos. Part A 2008, 39, 1106–1117. [CrossRef]

75. Arafath, A.; Vaziri, R.; Poursartip, A. Closed-form solution for process-induced stresses and deformation of
a composite part cured on a solid tool: P. II. Compos. Part A 2009, 40, 1545–1557. [CrossRef]

76. Zobeiry, N.; Malek, S.; Vaziri, R.; Poursartip, A. A differential approach to finite element modelling of
isotropic and transversely isotropic viscoelastic materials. Mech. Mater. 2016, 97, 76–91. [CrossRef]

77. Zobeiry, N.; Poursartip, A. The origins of residual stress and its evaluation in composite materials. Manuf.
Tech. Polym. Matrix Compos. (PMCs) 2012, 43–72. [CrossRef]

78. Kollar, L.P.; Springer, G.S. Stress analysis of anisotropic laminated cylinders and segments. Int. J. Solids Struct.
1992, 29, 1499–1517. [CrossRef]

79. Fernlund, G. Spring-in of angled sandwich panels. Compos. Sci. Technol. 2005, 65, 317–323. [CrossRef]
80. Hahn, H.; Pagano, N.J. Curing stresses in composite laminates. J. Compos. Mater. 1975, 9, 91–106. [CrossRef]
81. Chen, P.C.; Ramkumar, R.L. RAMPC—An integrated three-dimensional design tool for processing

composites. In Proceedings of the 33rd International SAMPE Symposium and Exhibition, Anaheim, CA,
USA, 7–10 March 1988; pp. 1697–1708.

82. Johnston, A.; Vaziri, R.; Poursartip, A. A plane strain model for process-induced deformation of laminated
composite structures. J. Compos. Mater. 2001, 35, 1435–1469. [CrossRef]

83. Zhu, Q.; Geubelle, P.H.; Li, M. Dimensional accuracy of thermoset composites: simulation of process-induced
residual stresses. J. Compos. Mater. 2001, 35, 2171–2205. [CrossRef]

84. Wisnom, M.R.; Potter, K.D.; Ersoy, N. Shear-lag analysis of the effect of thickness on spring-in of composites.
J. Compos. Mater. 2007, 41, 1311–1324. [CrossRef]

85. Kim, Y.K.; White, S.R. Stress relaxation during cure of 3501-6 epoxy resin. In Proceedings of the 1995
ASME International Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995;
pp. 43–56.

86. Schwarzl, F.; Staverman, A.J. Time-temperature dependence of linear viscoelastic behaviour. J. Appl. Phys.
1952, 23, 838–851. [CrossRef]

87. Weitsman, Y. Residual thermal stresses due to cooldown of epoxy-resin composites. J. Appl. Mech. 1979, 46,
563–567. [CrossRef]

88. Pipes, R.B.; Beussart, A.J.; Tzeng, J.T.; Okine, R.K. Anisotropic Viscosities of Oriented Discontinuous Fiber
Laminates. J. Comp. Mater. 1992, 26, 1088–1099. [CrossRef]

89. Sun, C.T. Characterization of strain rate-dependent behavior of polymeric composites. In Mechanics of
Composite Materials and Structures; MotaSoares, C.A., MotaSoares, C.A., Freitas, M.J.M., Eds.; NATO Science
Series; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999; Volume 361, pp. 195–203.

90. Sobotka, Z. Rheology of Continua and Structures; Akademia: Prague, Czech Republic, 1981. (In Czech)
91. Wilson, D.W.; Vinson, J.R. Viscoelastic effects on buckling of laminated plates subjected to hygrothermal

conditions. ASME PublicationsAD-03, Advances in Aerospace Structures and Materials, 1983.
92. Rikards, R.B.; Teters, G.A. Buckling of Composite Shells; Zinatne: Ryga, Latvia, 1984. (In Russian)
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