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Experimental and epidemiological data show that the severity and the duration of
brain inflammation are attenuated in females compared to males. This attenuated brain
inflammation is ascribed to 17β-estradiol. However, several studies suggest that 17β-
estradiol is also endowed with proinflammatory properties. The aim of the present
study is to assess the effect of hormonal replacement therapies on lipopolysaccharide
(LPS)-induced brain inflammation and its consequent effect on newly born neurons.
Bilaterally ovariectomized rats received intrastriatal injection of LPS (250 ng/μl) and were
subsequently given daily subcutaneous injections of either vehicle, 17β-estradiol (25 μg/kg)
or 17β-estradiol and progesterone (5 mg/kg). Microglial activation and newly born neurons in
the rostral migratory stream were monitored using double immunofluorescence. Nuclear
factor κB (NFκB) signaling pathway and its target inflammatory proteins were assessed
by either western blot [cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6)] or enzyme-
linked immunosorbent assay [tumor necrosis factor-α (TNF-α)]. LPS-induced activation
of microglia, promoted NFκB signaling pathway and enhanced the production of proin-
flammatory proteins (TNF-α and COX-2). These proinflammatory responses were not
attenuated by 17β-estradiol injection. Supplementation of 17β-estradiol with progesterone
significantly dampened these proinflammatory processes. Interestingly, LPS-induced brain
inflammation dampened the number of newly born neurons in the rostral migratory stream.
Administration of combined 17β-estradiol and progesterone resulted in a significantly
higher number of newly born neurons when compared to those seen in rats given either
vehicle or 17β-estradiol alone. These data strongly suggest that combined 17β-estradiol
and progesterone, and not 17β-estradiol alone, rescues neurogenesis from the deleterious
effect of brain inflammation likely via the inhibition of the signaling pathways leading to the
activation of proinflammatory genes.
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INTRODUCTION
Brain inflammation is a common symptom that develops as
a result of many infectious diseases (e.g., E. coli meningitis,
HIV encephalopathy, West Nile virus induced dementia; Nau
and Bruck, 2002; Gendelman and Persidsky, 2005; Hayes et al.,
2005), neurological diseases (Eikelenboom et al., 2002; Streit,
2004; Nagatsu and Sawada, 2005; Stys et al., 2012), stroke and
brain trauma (Spencer et al., 2008; Lambertsen et al., 2012).
While moderate brain inflammation plays an important role
in the repair process following an insult, prolonged and exac-
erbated brain inflammation hampers neuronal survival and
inhibits neuronal renewal (neurogenesis; Liu et al., 2001; Springer
et al., 2001; Ekdahl et al., 2003; Monje et al., 2003; Bessis et al.,
2007) and consequently negatively impacts brain integrity and
function.

Experimentally, a well-established model of brain inflam-
mation consists of the local application of lipopolysaccharide
(LPS; the outer coat of Gram negative bacteria) within the
brain parenchyma, at the level of the striatum (Nadeau and
Rivest, 2002; Cunningham et al., 2005; Soucy et al., 2005; Glezer
et al., 2007; Hunter et al., 2007). Once administered, LPS

binds to a specific receptor called toll like receptor 4 (TLR4)
expressed largely on microglia; the immune competent cells
within the brain (Laflamme and Rivest, 2001; Lehnardt et al.,
2002, 2003). TLR4 activation results in the phosphorylation of
a series of intracellular kinases culminating in the phosphory-
lation of an inhibitory factor called IκB. The phosphorylation
of IκB results in the release of a nuclear transcription fac-
tor: nuclear factor κB (NFκB; Rivest, 2003; Dev et al., 2011),
which translocates into the nucleus and induces the transcrip-
tion of inflammatory genes, such as cyclooxygenase-2 (COX-2),
tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and
interleukin-6 (IL-6) (Libermann and Baltimore, 1990; Cao et al.,
1997; Rivest, 2003; Krakauer, 2004; Chew et al., 2006; Brasier,
2010).

In addition to these transcriptional events, microglia adopt
morphological changes to allow for motility and secretory func-
tions (Dheen et al., 2007). Indeed, in non-pathological conditions,
microglial cells adopt a resting shape characterized by a small
perikarya and numerous and long processes (Spencer et al., 2008;
Ousman and Kubes, 2012). Once activated by bacterial LPS,
microglial cells morph into an ameboid shape with fewer and
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shorter processes, increase in number (mitosis) and mount local
inflammatory responses (Kim et al., 2000; Nadeau and Rivest,
2002). Exacerbated microglial activation and prolonged pro-
duction of inflammatory molecules creates hostile environment
for both neuronal survival (Springer et al., 2001; Cunningham
et al., 2005) and neurogenesis (Ekdahl et al., 2003; Monje et al.,
2003).

Epidemiological and experimental data strongly suggest that
the severity and duration of brain inflammation is higher
in males compared to females (Roof and Hall, 2000; Mur-
ray et al., 2003). It had been advanced that this dampened
brain inflammatory response in females is brought about by
the anti-inflammatory role of female sex hormones (namely
17β-estradiol [E] and progesterone [Pr]; Stein and Hoffman,
2003; Amantea et al., 2005). However, the potential beneficial
role of ovarian hormones remains highly debated and contro-
versial as these hormones have been shown to either promote
(Calippe et al., 2008, 2010; Rettew et al., 2009; Seillet et al., 2012) or
suppress brain inflammatory responses (Pozzi et al., 2006; Vegeto
et al., 2008).

We have previously shown that a hormonal replacement ther-
apy (HRT) that combines E and Pr dampens neuroimmune
responses to systemic inflammation in ovariectomized (OVX) rats
(Mouihate and Pittman, 2003). Conversely, an HRT based on E
alone was required for promoting LPS-induced brain inflamma-
tory response (Soucy et al., 2005). Thus, in the present paper, we
hypothesize that an HRT based on E and Pr, but not that consist-
ing of E alone, will likely dampen brain inflammatory response.
To this aim we assessed the effect of the two clinically prescribed
HRT regimens (e.g., E + Pr, or E alone) on microglial acti-
vation, and the molecular events leading to the inflammatory
response including the activation of NFκB signaling pathways,
proinflammatory cytokines and COX-2. Because brain inflam-
mation dampens neurogenesis and that the striatal inflammatory
response spreads to the rostral migratory stream (RMS), a route
of newly born neurons migrating toward the olfactory bulb (Lep-
ousez et al., 2013), we explored whether the HRT impact on brain
inflammation is associated with survival of newly born neurons in
the RMS.

MATERIALS AND METHODS
Female Sprague Dawley rats weighting 250–270 g were bred in the
Animal Resources Centre at the Health Sciences Centre, Kuwait
University. The room temperature was set to 22◦C and the rats
lived under a 12 h light/dark cycle (7 a.m.–7 p.m.). They were pair-
housed, and had access to pellet chow and water ad libitum. All
experiments were done in accordance with guidelines on humane
handling of experimental animals as established by the Canadian
Council on Animal Care. The procedures employed were approved
by the Animal Resources Centre of Kuwait University. All efforts
were made to minimize animal suffering.

ANIMAL SURGERIES
Female rats (250–270 g) were anesthesized with an i.p. injec-
tion of a mixture (1 ml/kg b.w.) of ketamine (50 mg/ml) and
xylazine (3 mg/ml) and both ovaries were surgically removed. The
OVX rats were then left undisturbed for two weeks to allow the

clearance of circulating ovarian hormones as previously described
(Mouihate and Pittman, 2003). On day 15 post-ovariectomy, anes-
thetized (mixture of ketamine–xylazine) OVX rats were positioned
in a stereotaxic apparatus (387673937Harvard Apparatus, Hol-
liston, MA, USA) to receive an intracerebral injection of LPS
using a 10 μl Hamilton syringe (Hamilton Bonaduz, GR, Switzer-
land, 32 ga). The syringe was guided stereotaxically to the level
of the striatum with the following coordinates relative to the
bregma: anterior/posterior, +1.0 mm; lateral, 2.5 mm; ventral,
–4.5 mm and 2 μl of LPS solution (250 ng/μl solution) was
infused for a period of 2 min. After LPS injection, the syringe
was left in place for an extra 3 min to allow for complete infu-
sion as previously described (Kim et al., 2000; Nadeau and Rivest,
2002).

OVX rats received an HRT consisting of daily s.c. injection
of either E (25 μg/kg, 1,3,5,10-estratrien-3,17β-diol3-benzoate,
Sigma Aldrich, St. Louis, MO, USA) alone or combined E
(25 μg/kg) and Pr (5 mg/kg, 4-pregnene-30,20-dione, Sigma, St.
Louis, MO, USA) dissolved in sesame oil. Control animals received
s.c. injection of an equivalent volume of sesame oil. The initial
HRT injection started at 2 h post intra-cerebral administration of
LPS. The doses of injected ovarian hormones are within physio-
logical ranges as was previously described (Boling and Blandau,
1939; Mouihate et al., 1998; Mouihate and Pittman, 2003).

IMMUNOFLUORESCENCE
On the third day post LPS injection at 10–12 a.m. [day 3 corre-
sponds to the peak of brain inflammation (Soucy et al., 2005)],
rats were transcardially perfused with phosphate buffered saline
(PBS) solution (NaCl, 137 mM; KCl, 2.7 mM; Na2HPO4, 10 mM;
KH2PO4, 1.8 mM) followed by fixative (10% neutral formalin).
Rat brains were post-fixed overnight, embedded in paraffin and
processed for immunofluorescence. Paraffin embedded brains
were cut at the level of the striatum (5 μm, microtome) and
mounted on superfrost plus slides (VWR, Arlington Heights,
IL, USA). Hydrated brain sections were exposed to a primary
Iba-1 antibody (ionized calcium binding adapter molecule 1;
a microglial marker) made in rabbit (overnight at room tem-
perature, 1:1000; Wako Chemicals USA, Inc., Richmond, VA,
USA), followed by a secondary antibody (2 h, 1:1000; donkey
anti-rabbit IgG (Alexa Fluor 488); Life Technologies, Carlsbad,
CA, USA) as was previously described (Spencer et al., 2008). To
detect newly born neurons, brain sections were incubated in
doublecortin antibody made in goat (overnight at room tem-
perature 1:1000, Santa Cruz Biotechnology, Santa Cruz, CA,
USA) followed by a secondary antibody [2 h; donkey anti-goat
IgG (Alexa Fluor 555); Life Technologies, Carlsbad, CA, USA].
Doublecortin expression was used for monitoring ongoing neu-
rogenesis (Rao and Shetty, 2004; Couillard-Despres et al., 2005).
Labeled brain sections were viewed using a confocal laser scan-
ning microscope (Carl Zeiss Microscopy GmbH). Slides were
re-coded by a laboratory member not involved in doublecortin
and microglial counting to allow for blind observation and
counting of microglial cells at the site of LPS injection and
doublecortin in the RMS. Activated and non-activated microglia
were observed under 40× objective, counted by an experimenter
blind to the rats’ treatment group and evaluated as previously
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described (Spencer et al., 2008). In brief, microglial cells which
have small perikarya and long thin branches were classified as
rested, while those showing large perikarya and short and rela-
tively think processes were considered active microglia (Spencer
et al., 2008).

Microglial cells and doublecortin containing cells were counted
from nine different sections at 20 μm apart from each other. Dou-
blecortin containing cells in the RMS were viewed under a 40×
objective and counted. The total of doublecortin containing cells
is presented. From each of the nine sections, three visual fields
below the site of LPS injection were taken under a 40× objective
and were used for the microglial count. The microglial images
were viewed using ImageJ software (version 1.44) developed at the
National Institute of Health (USA; Schneider et al., 2012), and the
cells were counted using a cell counter macro in ImageJ. The data
are presented as the average of number of microglia/counting area.

ENZYME-LINKED IMMUNOSORBENT ASSAY
In a separate series of experiments, new group of rats was OVX
and received HRT treatment as described above. The OVX rats
were transcardially perfused with PBS and ∼1 mm3 brain tissue at
the site of LPS injection were collected as fresh tissue, snap frozen
in liquid nitrogen and stored in deep freezer (–80◦C) until used
for either western blot or ELISA. TNF-α levels were assayed using
a specific rat ELISA kit (Life Technologies, Carlsbad, CA, USA).
The minimum detectable concentration is 4 pg/ml. The inter-assay
variability is 7.8–9% CV and the intra-assay variability, 4.3–6.9%
CV. All samples were assayed in duplicate and representatives from
all groups were analyzed in the same assay.

WESTERN BLOT
Due to the small amount of brain tissue obtained from each ani-
mal (∼300 μl of protein solution), we were not able to perform
multiple ELISAs for different proinflammatory cytokines. We took
advantage of the availability of an IL-6 antibody suitable for west-
ern blot analysis to explore the impact of HRT on IL-6 expression
in LPS-induced brain inflammation. A different series of west-
ern blot were performed on the same protein extracts to monitor
the expression of the phosphorylated levels of IκB (p-IκB), an
indicator of activation levels of NFκB signaling pathway. Proteins
(60 μg per well) were separated by 12% SDS PAGE, transferred to
a nitrocellulose membrane, and incubated overnight at 4◦C with
primary antibodies to either IL-6 (1:1000, goat antibody from
R&D Systems, Minneapolis, MN, USA), COX-2 (1:2000; rabbit
antibody from Cayman Chemical, Ann Arbor, MI, USA), or p-IκB
(1:2000; mouse antibody from Cell Signaling Technology, Bev-
erly, MA, USA). After washing, the membranes were incubated
for 2 h at room temperature with horseradish-peroxidase con-
jugated secondary antibodies (donkey anti-goat for IL-6, donkey
anti-rabbit for COX-2, or donkey anti-mouse for p-Iκ at a dilution
of 1:2000; Santa Cruz Biotechnology, Santa Cruz, CA, USA). Pro-
tein bands were detected after application of chemiluminescence
substrate (ECL plus kit; GE Healthcare) and exposure to Kodak X-
Omat film (Eastman Kodak). The nitrocellulose membranes were
subsequently stripped with β-mercaptoethanol (Sigma-Aldrich,
St. Louis, MO, USA) and reused to detect the housekeeping pro-
tein actin (1:5000, rabbit antibody from Sigma Aldrich, St. Louis,

MO, USA) or total IκB (t-IκB; 1:2000, rabbit antibody from Santa
Cruz Biotechnology, Santa Cruz, CA, USA). The membranes
were subsequently incubated for 2 h at room temperature with
horseradish-peroxidase conjugated secondary donkey anti-rabbit
(1:2000, Santa Cruz Biotechnology, Santa Cruz, CA, USA) and
protein bands were detected as previously described (Mouihate
et al., 2005; Mouihate et al., 2010).

DATA ANALYSIS
For western blot analysis, densitometric analysis was performed as
previously described (Mouihate et al., 2006, 2010). The ratios of
optical density values of COX-2/actin, IL-6/actin or p-IκB/t-IκB
were calculated and expressed as a multiple of the values in control
animals that received vehicle. Western blot data, TNF-α (ELISA)
levels and doublecortin containing cells (immunohistochemistry)
were compared using one way ANOVA followed by Student–
Newman–Keuls post hoc comparisons (for three treatment groups
(O, E and E + Pr). The number of doublecortin in ipsilateral
and contralateral sides to LPS injection was compared using
Student’s t-test. Counts of activated and resting microglia were
compared using two way ANOVA followed by Student–Newman–
Keuls post hoc comparisons. The significance was accepted at
p < 0.05.

RESULTS
Figure 1 shows resting microglia in the contralateral side to the
LPS injection and activated microglia in the ipsilateral side of LPS

FIGURE 1 | LPS-induced brain inflammation. Immunofluorescent
detection of brain microglia using Iba-1 antibody 3 days after the injection of
either saline (A,C) or LPS (B,D) into the striatum. Microglia show “resting”
features in the contralateral side to the LPS injection (A). Microglial cells
have long processes and small cell bodies. In contrast, microglial cells at
the site of injection of LPS show active features whereby their cell bodies
enlarge, their processes retract and their number increases (B). LPS
injected into the striatum also activates microglia within the corpus
callosum (CC; D). Dashed lines delineate the lower limit of the corpus
callosum. Note the microglial alignment with the white matter axonal tracts
(C,D). Scale bar = 20 μm.
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injection. Microglia in the contralateral side to the LPS injection
elicit features of resting state characterized by small perikarya
and thin branches in both gray matter (Figure 1A) and white
matter such as the corpus callosum (Figure 1C). Intrastriatal
injection of LPS led to a drastic change in both the cell number
and shape of microglial cells in the ipsilateral side (Figure 1B).
This inflammatory response spreads to the corpus callosum,
where microglial cells show large perikarya and small branches
(Figure 1D).

In order to determine whether HRT regimens affect LPS-
induced brain inflammation, microglial activation was assessed
in the inflamed striatal area of OVX rats given either the HRT reg-
imens or vehicle. As can be seen in Figure 2, LPS promoted strong
microglial activation in vehicle-treated OVX rats (Figure 2/left col-
umn, [O]). This microglial activation was not affected by an HRT
consisting of 17β-estradiol alone (Figure 2/middle column, [E]).
However, when OVX rats were given an HRT containing both 17β-
estradiol and progesterone (E + Pr), microglia showed features of
resting state (Figure 2/right column, [E + Pr]). Figures 3A,B show
that the numbers of total microglia and the activated microglia
were high in vehicle treated OVX rats. Such numbers were not
significantly affected by E treatment [E (n = 5) vs. O (n = 4) rat
groups, p > 0.05] but were significantly reduced in the brain of
OVX rats given E + Pr treatment [E + Pr (n = 5) vs. O (n = 4)

rat groups, p < 0.05]. Conversely, E + Pr treatment resulted in a
significant increase in the number of rested microglia [Figure 3B;
E + Pr (n = 5) vs. O (n = 4) rat groups, p < 0.01].

Once activated, microglial cells start to synthesize a set of
proinflammatory cytokines under the control of NFκB signaling
pathway (Ransohoff and Brown, 2012). To test whether HRT effect
on brain inflammatory response is associated with alteration in the
NFκB signaling pathway, we semi-quantified p-IκB as an index of
the activity of NFκB (Ellis et al., 2005; Mouihate et al., 2006; Hay-
den and Ghosh, 2012). As can be seen in Figure 4A, there was
a detectable amount of p-IκB in the striatal region injected with
LPS in the vehicle-treated OVX rats (O). Densitometric analysis
(Figure 4B) showed that these p-IκB levels were not significantly
reduced in E-treated OVX rats treatment [E (n = 5) vs. O (n = 5)
rat groups, p > 0.05]. An HRT containing both E and Pr resulted
in a significant reduction in the levels of p-IκB [E + Pr (n = 5)
vs. O (n = 5) rat groups, p < 0.05]. Once activated, the NFκB
signaling pathway leads to the production of proinflammatory
cytokines, chief among which is the TNF-α (Frei et al., 1987).
As can be seen in Figure 4C, the levels of TNF-α in the LPS-
injected striatal region of OVX rats given vehicle treatment were
not significantly affected in E-treated OVX rats [E (n = 5) vs.
O (n = 5) rat groups, p > 0.05]. However, TNF-α levels were
significantly reduced in the LPS-injected striatum of OVX rats

FIGURE 2 | Hormonal replacement therapy based on combined estradiol

and progesterone dampens microglial activation. Brain inflammation was
induced by intracerebral injection of LPS to OVX rats given either vehicle (O),
estradiol (E) or combined estradiol and progesterone (E + Pr) treatment.
Formalin fixed brains (A–C) show the location of LPS injection. Intracerebral
injection of LPS to vehicle treated rats (O) induces an increased number of

microglial cells expressing Iba1 (D,G). These microglial cells show a round
shape with small processes (dashed arrows). Injection of E alone to OVX rats
did not affect microglial activation (E,H), while the microglial cells in OVX rats
given E + Pr treatment (F,I) show signs of resting state with elongated
processes (arrowheads) and relatively smaller perikarya. Scale bar: 100 μm in
D–F and 20 μm in G–I.
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FIGURE 3 | Combined estradiol and progesterone injections halts

microglial activation. The total number of microglia was high in inflamed
rat brains of OVX rats given either vehicle (O) or estradiol (E). Injection of
both E and progesterone (E + Pr) significantly reduced the number of
microglia (A). The number of resting microglia was very low in the inflamed
brain area of OVX rats given either vehicle or estradiol (B). This low number
of resting microglia was mirrored by an increased number of activated
microgilal cells. The number of resting microglia increased while that of
activated ones decreased in E + Pr treated rats. *E + Pr vs. O groups,
#E + Pr vs. E groups. *,#p < 0.05, **,##p < 0.01.

given E + Pr treatment [E + Pr (n = 5) vs. O (n = 5) rat groups,
p < 0.05]. In addition to TNF-α, COX-2 represents another impor-
tant inflammatory gene activated through the NFκB signaling
pathway (Nadjar et al., 2005). Thus the impact of HRT regimens
on COX-2 protein expression in the inflamed brain was assessed.
Immunoblot and densitometric analysis in Figure 5 show that the
COX-2 protein expression was enhanced when OVX rats received
an HRT regimen consisting of E alone [E (n = 5) vs. O (n = 5)
rat groups, p < 0.05] but was significantly attenuated when both E
and Pr were administered [E + Pr (n = 5) vs. O (n = 5) rat groups,
p < 0.05]. Surprisingly, none of the HRT regimens significantly
altered the levels of IL-6 (Figure 6), a proinflammatory cytokine
which is also under the control of the transcriptional effect of
NFκB.

Evidence strongly suggests that brain inflammation that accom-
panies many neurodegenerative diseases can negatively impact
neuronal survival (Ekdahl, 2012). In the present study, we assessed

FIGURE 4 | Combined estradiol and progesterone injections suppress

NFκB signaling andTNF-α production. The panel in A shows a
micrograph of a western blot detection of the inhibitory κB (t-IκB) and its
phosphorylated form (p-IκB) in the inflamed area of the brain of OVX rats
given either vehicle (O), estradiol (E) or E and progesterone (E + Pr). The
levels of p-IκB were not affected by estradiol treatment. Densitometric
analysis (B) shows that the levels of p-IκB were significantly reduced in
E + Pr rat group. The ELISA measurement of TNF-α levels in the inflamed
brain is shown in C. The levels of TNF-α observed in control group (O) were
not affected by E treatment but were significantly reduced in the brains of
E + Pr rat group. *p < 0.05, ns = not significant.

the impact of the brain inflammatory response to LPS on the
density of newly born neurons. The inflammatory response to
intra-striatal injection of LPS spreads to areas known for the
migration of newly born neurons in the RMS. As can be seen
in Figure 7, the spreading of inflammatory response resulted in a
significant reduction in newly born neurons. We took advantage of
this spreading inflammation to test whether the observed reduc-
tion in brain inflammation after E + Pr treatment is associated
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FIGURE 5 | Combined estradiol and progesterone injections dampen

COX-2 expression. The panel in A shows a micrograph of a western blot
detection of COX-2 in the inflamed area of the brain of OVX rats given
either vehicle (O), estradiol (E) or E and progesterone (E + Pr).
Densitometric analysis (B) shows that the levels of COX-2 were
significantly enhanced by estradiol treatment (E) when compared to control
group (O). On the other hand, E + Pr treatment dampened COX-2
expression (E + Pr). **p < 0.01, *p < 0.05.

with the survival of newly born neurons. LPS-injected vehicle-
treated OVX rats showed a strong inflammatory response which
was associated with reduced number of DCX containing cells in
RMS (Figure 7) when compared to the amount of DCX con-
taining cells in the contralateral side to LPS injection (Figure 7,
Ipsilateral-O vs. Contralateral-O and graph bar in B). Compared
to oil injected rats (Ipsilateral-O), the amount of newly born neu-
rons was higher in the RMS of OVX rats given E + Pr (Figure 7,
Ipsilateral-E + Pr), but not in the RMS of OVX rats given E alone
(Figure 7, Ipsilateral-E). The graph bar in Figure 7C shows that
the number of DCX-containing cells is significantly higher in the
RMS of E + Pr injected rats compared to those given oil or E
alone.

DISCUSSION
In the present paper, we have made several important and novel
observations, (1) E + Pr but not E only based HRT significantly
reduced LPS-induced microglial activation during brain inflam-
mation in OVX rats, (2) the dampening of microglial activation
operates likely by an inhibitory effect of E + Pr on the LPS-activated
NFκB signaling pathway and the product of its target genes; TNF-α
and COX-2, (3) TLR4-mediated brain inflammation reduced the
survival of newly born neurons which were migrating through
the RMS, (4) this reduction in the survival of newly born neu-
rons was partially reverted by an HRT regimen containing both E
and Pr.

FIGURE 6 | HRT does not affect the production of IL-6 protein. The panel
in A shows a micrograph of a western blot detection of IL-6 protein in the
inflamed area of the brain of OVX rats given either vehicle (O), estradiol (E)
or E and progesterone (E + Pr). The panel in B shows densitometric
analysis of the western blot. The levels of IL-6 were slightly but not
significantly increased in the E rat group when compared to O rat group.
These IL-6 levels were not affected by E + Pr treatment (p > 0.05).

While brain inflammation is associated with enhanced reactive
astrocytes and recruitment of peripheral macrophages (Ransohoff
and Brown, 2012), microglia are considered as the main target of
LPS as these glial cells specifically express of TLR4 (Lehnardt et al.,
2002, 2003; reviewed in Lehnardt, 2010), are rapidly activated
during the acute phase of the central nervous system before the
recruitment of peripheral macrophages (Greenhalgh and David,
2014) and forms the main source of inflammatory cytokines
such as TNF-α and IL-6 (Lee et al., 1993; Lafortune et al., 1996;
Hanisch, 2002). Thus, it is likely that the inflammatory pro-
cesses observed in the present study (3 days post LPS injection)
largely reflect microglial activation and its contribution to the
synthesis of inflammatory cytokines (for review see Trotta et al.,
2014).

OVARIAN HORMONES AND BRAIN INFLAMMATION
In vivo studies support the anti-inflammatory effect of 17β-
estradiol in several neurodegenerative diseases (Vegeto et al.,
2006, 2008). However, relatively recent studies strongly sug-
gest that 17β-estradiol promotes proinflammatory response to
bacterial LPS by enhancing the expression of such proinflam-
matory genes as TNF-α and IL-1β (Calippe et al., 2008, 2010)
likely by enhancing the microglial expression of TLR4 (Loram
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FIGURE 7 | Combined estradiol and progesterone injections rescue

neurogenesis in the rostral migratory stream. In A, rat brains were
subjected to a double immunostaining for microglial marker (Iba-1, green)
and a marker of newly born neurons (DCX, red). Microglial cells adopt a
resting state in the contralateral side to LPS injection site (Contralateral-O).
In the ipsilateral side to the LPS injection site, brain inflammation reduced
the number of DCX containing cells in OVX rats given oil treatment
(Ipsilateral-O and the graph bar in B). Estradiol did impact neither

LPS-induced inflammation nor LPS-induced reduction in newly born
neurons (Ipsilateral-E). Brain inflammation was reduced while the number
of newly born neurons was higher in the brain of OVX rats given combined
injection of estradiol and progesterone (Ipsilateral-E + Pr and the graph bar
C). This immunostaining micrograph is representative of 3–6 different
animals in each treatment group. Dashed line denotes the demarcation
between the RMS and corpus callosum (CC). Scale bar = 50 μm;
*p < 0.05.

et al., 2012). The present study shows that 17β-estradiol has
no significant effect on LPS-activated microglia in OVX rats.
It also does not affect the proinflammatory response to LPS
as assessed by the activity of the NFκB signaling pathway and
the levels of TNF-α produced at the site of brain inflamma-
tion. The lack of a 17β-estradiol effect on several key elements
of brain inflammation is in line with our previous observation
in which an HRT based on 17β-estradiol alone did not blunt
neuroimmune responses to systemically injected LPS. In con-
trast, an HRT consisting of 17β-estradiol and progesterone was
able to dampen LPS-induced fever and LPS-activated COX-2
expression in fever controlling area of the hypothalamus (Moui-
hate and Pittman, 2003). Similar to TNF-α, COX-2 is also
under the control of LPS-activated NFκB signaling pathway
(Mouihate et al., 2005; Wu, 2005). Thus, it seems that the damp-
ening effect of the combination of hormonal treatment with
17β-estradiol and progesterone on the brain immune response
operates in similar fashion regardless of the route of the immune
challenge.

While 17β-estradiol alone did not significantly affect markers of
brain inflammation such as microglial activation, NFκB signaling
pathway and the levels of TNF-α, we have noted that this hormone
invariably enhanced the expression levels of COX-2. Owing to

the important role of COX-2 in the formation of such proin-
flammatory prostaglandin as PGE2 (Rivest, 2010), it is possible
that 17β-estradiol has the potential to exacerbate PGE2 mediated
brain inflammation. It is noteworthy that activation of COX-2
can also lead to synthesis of prostaglandins endowed with anti-
inflammatory properties such as PGD2 and its derivative PGJ2

(Gilroy et al., 1999; Petrova et al., 1999; Mouihate et al., 2004). The
synthesis of such anti-inflammatory prostaglandins is unlikely as
LPS-induced activation of microglia and the NFκB signaling were
not affected by 17β-estradiol.

Collectively, our results do not support the idea that hormonal
treatment based on 17β-estradiol alone is neuroprotective, at least
in this brain inflammation model. It is noteworthy that 17β-
estradiol has been shown to be either ineffective or exacerbates
brain damage in other types of brain insults such as ischemic
or hemorrhagic strokes (Harukuni et al., 2001; Carswell et al.,
2004; Bingham et al., 2005; Gordon et al., 2005; Theodorsson and
Theodorsson, 2005; Yong et al., 2005; De Butte-Smith et al., 2007;
Nguyen et al., 2008).

In a series of preliminary data, a group of OVX rats were
given progesterone alone. Progesterone treatment did not elicit
any significant anti-inflammatory response within the brains of
OVX rats given intra-cerebral LPS (see Figure A1 in Appendix)
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probably because progesterone effect is more apparent when the
OVX rats are primed with 17β-estradiol. Indeed, 17β-estradiol
administration increases the expression of progesterone receptors
within female rat brains (Simerly et al., 1996; Scott et al., 2002;
Quadros and Wagner, 2008).

DIFFERENTIAL EFFECT ON TNF-α AND IL-6
The inhibitory effect of combinatory HRT on TNF-α production
was not extended to IL-6. This observation is very peculiar as both
TNF-α and IL-6 genes are under the control of NFκB signaling
pathway, the activity of which was significantly depressed. These
data are akin to our in vivo studies and other’s in vitro obser-
vations where a phytoestrogen (resveratrol compound) inhibited
LPS activated production of TNF-α but not that of IL-6 (Richard
et al., 2005; Mouihate et al., 2006). The mechanism underlying
this selective inhibition of TNF-α is not clear yet. It is possible
that LPS activated IL-6 is mediated through activation of tran-
scription factors other than NFκB. These transcriptional factors,
which include ERK1/2, p38 MAPKs, and NF-IL6 were probably
not affected by the combined HRT (Matsusaka et al., 1993; Zhang
et al., 1994; Rego et al., 2011). In some circumstances, 17β-
estradiol alone or in combination with progesterone has been
shown to stimulate IL-6 production (Verthelyi, 2001; Brooks-
Asplund et al., 2002; Isse et al., 2010), adding more complexity
to the mechanism through which IL-6 gene is affected by ovarian
hormones.

OVARIAN HORMONES AND NEUROGENESIS
Brain inflammation hampers neurogenesis (Monje et al., 2003)
likely via microglia derived TNF-α (Lafortune et al., 1996; Hanisch,
2002; Lambertsen et al., 2009; Nimmervoll et al., 2013). In the
present study, we confirmed that the brain inflammatory response,
as illustrated by microglial activation and TNF-α protein expres-
sion, resulted in decreased number of newly born neurons. This
observation is in line with previous studies demonstrating the
deleterious effect of TNF-α on the survival of neural precursor cells
(Ekdahl et al., 2003; Iosif et al., 2006; Keohane et al., 2010; Ekdahl,
2012). More interestingly, we demonstrated for the first time that
an HRT regimen containing both 17β-estradiol and progesterone,
not only blunted brain inflammation but it also dampened brain
inflammation-induced reduction in newly born neurons. Such
effect was absent when progesterone was omitted from the HRT
regimen.

However, ovarian hormones can also affect neurogenesis
through a sensitization/desensitization to LPS effects. Indeed,
TLR4 receptors are expressed on neural stem cells and play a
major role in neurogenesis (Rolls et al., 2007; Shechter et al., 2008).
There are indications that ovarian hormones can affect the expres-
sion levels of TLR4 in immune competent cells. For example,
17β-estradiol enhances TLR4 expression in macrophages (Rettew
et al., 2009), while progesterone depresses its expression in the
brain of mice with experimental autoimmune encephalomyelitis
(Garay et al., 2012) or that of rats subjected to subarachnoid hem-
orrhage (Wang et al., 2011). Whether ovarian hormones alter the
expression of TLR4 on neural precursor cells and thus prime these
newly born cells to the deleterious effect of LPS is still an open
question.

CONCLUSION
LPS-induced brain inflammation resulted in activated microglial
cells and enhanced levels of molecular markers of inflammation
such as NFκB signaling pathway and its proinflammatory target
proteins (TNF-α and COX-2). HRT based on 17β-estradiol alone
was devoid of anti-inflammatory properties in TLR4-induced
brain inflammation. In contrast, both LPS-activated microglia
and the resulting activated molecular proinflammatory machinery
were significantly reduced in OVX rats given an HRT regi-
men containing 17β-estradiol and progesterone. Interestingly,
the anti-inflammatory effect of complete HRT created conducive
environment for the survival of newly born neurons.
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APPENDIX

FIGURE A1 | HRT based on progesterone only does not affect

LPS-induced microglial activation. Brain inflammation was induced by
intracerebral injection of LPS to OVX rats given either vehicle (O) or
progesterone (Pr) treatment. Intracerebral injection of LPS to vehicle
treated rats induces an activation of microglial cells expressing Iba1
(micrograph in A). These microglial cells show a round shape with small
processes. Injection of progesterone (Pr) to OVX rats did not affect
LPS-induced microglial activation (micrograph in A). HRT consisting of
progesterone (Pr) did not significantly affect LPS-induced microglial
activation (bar graph in B) when compared to the LPS-induced microglial
activation levels seen in rats injected with oil [O (n = 5) vs. Pr (n = 5),
p > 0.05]. Scale bar: 20 μm.
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