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The brain is the central and most complex organ in the nervous system, comprising
billions of neurons that constantly communicate through trillions of connections
called synapses. Despite being formed mainly during prenatal and early postnatal
development, synapses are continually refined and eliminated throughout life via
complicated and hitherto incompletely understood mechanisms. Failure to correctly
regulate the numbers and distribution of synapses has been associated with many
neurological and psychiatric disorders, including autism, epilepsy, Alzheimer’s disease,
and schizophrenia. Therefore, measurements of brain synaptic density, as well as early
detection of synaptic dysfunction, are essential for understanding normal and abnormal
brain development. To date, multiple synaptic density markers have been proposed and
investigated in experimental models of brain disorders. The majority of the gold standard
methodologies (e.g., electron microscopy or immunohistochemistry) visualize synapses
or measure changes in pre- and postsynaptic proteins ex vivo. However, the invasive
nature of these classic methodologies precludes their use in living organisms. The
recent development of positron emission tomography (PET) tracers [such as (18F)UCB-
H or (11C)UCB-J] that bind to a putative synaptic density marker, the synaptic vesicle
2A (SV2A) protein, is heralding a likely paradigm shift in detecting synaptic alterations
in patients. Despite their limited specificity, novel, non-invasive magnetic resonance
(MR)-based methods also show promise in inferring synaptic information by linking
to glutamate neurotransmission. Although promising, all these methods entail various
advantages and limitations that must be addressed before becoming part of routine
clinical practice. In this review, we summarize and discuss current ex vivo and in vivo
methods of quantifying synaptic density, including an evaluation of their reliability and
experimental utility. We conclude with a critical assessment of challenges that need to
be overcome before successfully employing synaptic density biomarkers as diagnostic
and/or prognostic tools in the study of neurological and neuropsychiatric disorders.
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INTRODUCTION

Neurons are the fundamental units of the brain through
which all bodily functions are coordinated. To achieve this
level of global control, neurons communicate with each other
through a network of synapses: the fundamental information
processing units in the brain, which receive, process and transmit
all the information (Stampanoni Bassi et al., 2019). In the
central nervous system (CNS), the synapses can be classified as
different types depending on: (1) the part of the presynaptic
neuron connected to the postsynaptic neuron (axoaxonic,
axosomatic, and axodendritic synapses), (2) the mechanism
of information transmission between neurons (electrical or
chemical synapses) or, in the case of chemical synapses, (3) the
type of neurotransmitter involved in this transmission (excitatory
and inhibitory synapses) (Torres and Varona, 2012; Caire et al.,
2021). For the purpose of this review, we will exclusively
focus on the (bipartite) chemical synapse — when a chemical
(neurotransmitter) transduces an electrical impulse into chemical
information (receptor binding) via a gap between a presynaptic
and a postsynaptic neuron (synaptic cleft). This type of synapse
is, by far, the most utilized in the CNS and, therefore, the main
target of the existing methods to visualize or quantify synapses.
Currently, these methods rely on detecting any one of the
elements present in the presynaptic or the postsynaptic neuron,
be it a morphological feature such as a change in dendritic spines
(small dynamic protrusions located along the dendrites), or
variations in the expression of a specific protein from the synaptic
vesicle cycle or the postsynaptic density (PSD, an electron-dense
structure located beneath the postsynaptic neuron’s membrane,
usually at the tip of the dendritic spine) (see Figure 1).

Recently, the interest in quantifying synaptic density has
significantly increased. However, the concept of synaptic density
has never been formally defined, which is reflected in the
difficulties faced by researchers when measuring this parameter,
and the controversy interpreting the results obtained with
different methods. To understand the implications of measuring
synaptic density, we should first consider how the number
of synapses in the brain changes throughout life. During
embryonic, neonatal, and adolescent brain development, new
synapses are continually formed through a process known as
synaptogenesis, after which they are either strengthened or,
when no longer useful, eliminated through synaptic pruning
(Oberman and Pascual-Leone, 2013; Power and Schlaggar, 2017).
Although some synaptogenesis continues throughout life, the
main assemblage of neural connections in an individual is
likely completed by the end of adolescence, and this underpins
the correct functioning of the nervous system (Peter, 1979;
Paolicelli et al., 2011; Sakai, 2020). Thus, the concept of synaptic
density is used to mean the net number of surviving synapses
which changes very little in adulthood, except due to the
influence of neurodevelopmental abnormalities, or during some
neurodegenerative disorders (Lepeta et al., 2016).

The importance of correct synaptic organization is highlighted
by emerging evidence that early life problems with either
synaptogenesis or synaptic pruning may underpin many
disorders of the nervous system (Cardozo et al., 2019). This

includes disorders that are considered neurodevelopmental in
origin (such as autism or schizophrenia), as well as psychiatric
disorders (such as depression), and even neurodegenerative
diseases that emerge later in life, despite having a proposed
lengthy prodromal phase [such as Alzheimer’s disease (AD)].
Moreover, synapse loss is a hallmark of disorders that are
traumatic in nature — such as stroke or brain injury —
and even epilepsy (Murphy and Corbett, 2009; Rabiner, 2018;
Jamjoom et al., 2021). More research in this field is needed
to fully understand the importance of synapses, their number
and organization, for proper function of the healthy CNS. What
is unquestionable is that synaptic organization is dynamic and
delicate, and that even small alterations at any developmental
point may lead to profound imbalances and a variety of
symptoms to sufferers. Research into autism, for example, has
highlighted a possible relationship between abnormal brain
development, symptomatology, and an excess of synapses via
inadequate synaptic pruning (Neniskyte and Gross, 2017).
Schizophrenia, on the other hand may be linked to excessive
synaptic pruning within the prefrontal cortical brain circuitry
(Sekar et al., 2016; Obi-Nagata et al., 2019; Keshavan et al., 2020;
Germann et al., 2021). Synaptic loss in cortical and hippocampal
brain areas in AD is well documented and robustly linked to
cognitive symptoms of memory loss, and deficits in attention
and thought organization (Selkoe, 2002; Knobloch and Mansuy,
2008; Scheff et al., 2014; Jackson et al., 2019; Colom-Cadena et al.,
2020). This line of research resulted in the emergence of a novel
theory positing that many, if not all neurodegenerative disorders
are likely to be synaptopathies: disorders featuring disturbances
in neuronal connectivity, in which the loss of synapses often
features earlier than any other core symptoms (Grant, 2012;
Lepeta et al., 2016; Luo et al., 2018). For example, synaptic
pathology is present even in early stages of Huntington’s and
Parkinson’s diseases (Li et al., 2003; Imbriani et al., 2018), as well
as in related neurodegenerative disorders such as amyotrophic
lateral sclerosis (ALS) and frontotemporal dementia (Taoufik
et al., 2018; Fogarty, 2019).

Given the importance of appropriate synaptic numbers and
connections in the living brain, accurate ways to determine their
density are needed for research and diagnosis of psychiatric
and neurological conditions. However, counting synapses and
measuring their density is not a novel concept. Indeed, a
plethora of validated methods exist, albeit the majority are
performed ex vivo. The measurement of synaptic density in vivo
is substantially more challenging and novel imaging methods are
attempting to achieve this.

In this review, we first briefly summarize the existing ex vivo
methods for measuring synaptic density and comment on their
applications in neuroscience. Although all the methods and
concepts outlined can and have been used in clinical as well
as in preclinical research, here we focus on examples from
preclinical (non-human) studies since the majority of ex vivo
evaluations tend to be undertaken in experimental animal
models. Furthermore, we provide a critique of these approaches,
showcasing their strengths and weaknesses. We then discuss the
current and emerging methods that attempt to measure synapses
in vivo, and we comment on their utility in different settings,
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FIGURE 1 | Chemical synapse and targets for measuring synaptic density. (A) The main components of the bipartite synapse: a presynaptic and a postsynaptic
neuron, separated by a synaptic cleft. In this synapse we have highlighted the two main targets involved in the methods currently available to quantify or assess
synaptic density levels: (B) the dendritic spines (whose density and morphology are typically evaluated with different ex vivo methods) and (C) the proteins involved in
synaptic transmission, including synaptic vesicle (SV), presynaptic and postsynaptic proteins present in excitatory and inhibitory synapses (which are quantified
through ex vivo and in vivo methods). Adapted from “Synaptic Cleft (Horizontal),” by BioRender.com (2021). Retrieved from
https://app.biorender.com/biorender-templates.

as well as the degree of their validation against gold standards.
The overall aim of this review is to underline the importance
of studying synaptic density in both the healthy brain and in
neurological and neuropsychiatric disorders, as well as to help
the reader select the most suitable tools with which to measure
synaptic density for their own research.

MEASURING SYNAPTIC DENSITY
EX VIVO

To date, the gold standard methods for measuring synaptic
density are conducted ex vivo (i.e., in post-mortem tissues)
and involve either high resolution electron microscopy (EM),
immunohistochemistry (IHC) or both. Although these methods
preclude the longitudinal evaluation of the animals or patients
under assessment — therefore unable to follow the development
of a pathology or the response to treatment — they nevertheless
tend to be more direct and specific, allowing more detailed
analyses than in vivo methods due to their superior spatial
resolution. These techniques focus predominantly on one of
the three main aspects of the synapse: structure and spatial
organization (EM), the morphology and density of dendritic
spines (EM and histology), and the expression of proteins in
the pre- and postsynaptic neurons, especially in the presynaptic

active zone and the postsynaptic density (PSD) area (immuno-
EM and IHC).

This section covers the assessment of synapses by EM and
IHC, including some examples of applications in preclinical
research. Although alternative, non-imaging ex vivo methods to
measure parameters related to synaptic density exist (such as
Western Blot and proteomics), they are beyond the scope of this
review and are covered in other reviews such as (Ippolito and
Eroglu, 2010; Patrizio and Specht, 2016).

Electron Microscopy
Electron microscopy (EM) is the gold standard method to
quantify changes in synaptic density, being the only technique
that allows direct visualization of the synapse and its molecular
organization due to its ultra-high spatial resolution (nanometer
range) (Figure 2). Successful applications of EM have led to major
breakthroughs in the field of neuroscience, such as the discovery
of synaptic vesicles (Wells, 2005), the nature of dendrite spines
as sites of synaptic contact (Gray, 1959), and the existence of
cells other than neurons (such as astrocytes) involved in synaptic
transmission (tripartite synapse) (Ventura and Harris, 1999).

There are two main types of electron microscopes, both
employed to assess synaptic density: transmission (TEM) and
scanning (SEM) electron microscopes. Although both use an
electron source, they provide different information about the
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FIGURE 2 | Image of a cortical glutamatergic synapse of an adult C57BL/6
mouse. The image was obtained on a Jeol 1010 transmission electron
microscope (Jeol, Tokyo, Japan) at 80,000× magnification. (A) Presynaptic
neuron, with synaptic vesicles indicated with red arrows. (B) Synaptic cleft.
(C) Dendritic spine of a postsynaptic neuron, with postsynaptic density
(electron-dense zone juxtaposed to the postsynaptic membrane) indicated
with a blue arrow. Image courtesy of Nuria García Font, see García-Font et al.
(2019) for more information about the methodology.

sample and are used for distinct purposes. In a TEM, the
electrons pass through the tissue sample before they are
collected. This system offers high spatial resolution (<50 pm)
and provides valuable information about the inner structure of
the synapse (e.g., area of active zone and number of docked
presynaptic vesicles). However, the samples must be very thin,
requiring complex preparation to avoid artifacts, and the images
obtained are two-dimensional (2D) projections of the sample
(micrographs). By contrast, SEMs scan the surface of the sample
with a focused beam of electrons to provide a three-dimensional
(3D) image, which can be used to study synapse morphology or
measure dendritic spine volume and density within a brain region
(Borczyk et al., 2019). However, the resolution of SEM (∼0.5 nm)
is lower than TEM.

Based on the characteristics of these microscopes, variations
have been developed to overcome their limitations (sample
preparation, resolution, and 2D vs. 3D acquisition) and to allow
combination with other techniques. Some examples of these
derived methods are electron tomography (which uses TEM
to generate a high-resolution 3D image), immuno-EM [which
combines the use of gold-labeled antibodies with EM (D’Amico
and Skarmoutsou, 2008; Liu et al., 2019)], array tomography
[which combines the use of immunofluorescence (IF) with SEM
to depict the specific components of the synapse (Micheva and
Smith, 2007; Collman et al., 2015)], and focused ion beam
milling-SEM (FIB-SEM, which allows the actual quantification of
the density of synapses in a brain area through the automatization
of the steps of sectioning and image acquisition (Merchan-Pérez,
2009; Santuy et al., 2020).

Electron Microscopy in Preclinical Research
In preclinical research, EM has mainly been applied to map
synaptic structures and regional densities in the brain of
healthy wild type (WT) animals (Kaplan and Hinds, 1977;
Harris and Weinberg, 2012; Santuy et al., 2018). Several
studies have also explored the concept of synaptic plasticity
through different paradigms such as: (1) evaluating how the
PSD and dendritic spines modify their shape and structure
after a chemically induced long-term potentiation (Borczyk
et al., 2019), (2) studying synaptic reorganization and reactive
synaptogenesis/synaptic loss in response to a lesion (DiFiglia
et al., 1988; Marrone et al., 2004; Kim and Jones, 2010; Li Q. et al.,
2018), or (3) analyzing the effect of maturation and aging in the
synapse (Kaplan and Hinds, 1977; Harris and Weinberg, 2012;
Fan et al., 2018; Santuy et al., 2018). These studies emphasize both
the existence of synaptic remodeling (even during adulthood)
and the presence of compensatory mechanisms for a decrease in
synaptic density (such as the increase in the size and surface area
of the remaining connections) (Scheff et al., 1991; Dawirs et al.,
1992; Calì et al., 2018).

The use of EM to study synapses in the context of
neurodevelopmental and neurodegenerative animal models
remains limited, partially due to its spatial restrictions as well as
laborious and lengthy analytical methods. Predominately, studies
have focused on understanding changes in synaptic density in
relation to AD, in mouse models such as Tg2576 (AD model
expressing human mutant form of the amyloid precursor protein,
APP). This research confirmed the expected decrease in synapses
in regions known to be affected by AD pathology — such as the
hippocampal dentate gyrus or the entorhinal cortex (Dong et al.,
2007) — and showed improvements in synaptic deficits after
experimental treatments (Pérez-González et al., 2014; Xiao et al.,
2020). Most importantly, these findings served either to clarify
previous inconsistencies regarding synaptic loss measured with
other methods (such as synaptophysin IHC (Dong et al., 2007))
or to corroborate results obtained by using different techniques
(Pérez-González et al., 2014; Fan et al., 2018).

Several other neurodevelopmental and neurodegenerative
disease models have shown alterations in synaptic density. These
include, for example, a decrease in the synapse-to-neuron ratio in
the Ts65Dn mouse model of Down syndrome (Ayberk Kurt et al.,
2004), an absence of life-long changes in total synaptic density
(number of synapses and synapses onto spines) in the R6/2
mouse model of Huntington’s disease (Savage et al., 2020), and a
decrease in spine density and ultrastructural spine abnormalities
in the A53T-BAC-SNCA mouse model of Parkinson’s disease
(Parajuli et al., 2020).

Limitations
Despite the multiple possibilities of EM for the study
synaptic density, its use in clinical and preclinical research
is restricted due to the ex vivo nature of this technique,
the high costs of purchasing and maintaining electron
microscopes, and the complexity and skillset required for
the data acquisition and analysis.

Furthermore, the brain tissue must be carefully processed,
which typically involves the use of specific aldehyde fixatives
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and chemical compounds to preserve the ultra-structure of
the synapse. Subsequently, the tissue is embedded in a resin
to be sectioned in ultrathin sections (<150 nm) using an
ultramicrotome. As these treatments themselves can induce
artifacts or changes in the synaptic structure (Siksou et al.,
2009), specialist training is required. Because of these barriers,
the applications of EM and its combination with other ex vivo
techniques remain limited.

Finally, the magnification power of electron microscopes
comes with a trade-off of reduced field of view and sample
size, hampering both global and multi-regional analyses of the
brain. Nevertheless, recent improvements in EM methods for
imaging large volumes may soon facilitate the visualization of
larger brain areas (Kasthuri et al., 2015) or even the whole brain
(Mikula et al., 2012).

Histology and Immunohistochemistry
While EM is arguably the best and most direct method to study
synapses ex vivo, histology and IHC are the most common,
owing to their wider accessibility, ease of use and lower
cost. These techniques are employed with two main purposes:
to evaluate the morphology and density of dendritic spines
— present predominantly, but not exclusively, in excitatory
synapses (Scheuss and Bonhoeffer, 2014) — and to detect
changes in the expression of pre- and postsynaptic proteins with
specific antibodies.

Histological quantification of dendritic spine morphology
and density has been of much interest in the study of normal
and pathological brain conditions, due to the important role
of these structures in most excitatory synapses (Nimchinsky
et al., 2002); their involvement in synaptic plasticity, learning
and memory processes (Mahmmoud et al., 2015; Ma and Zuo,
2021); and the presence of abnormal spines in many brain
disorders (Fiala et al., 2002; Blanpied and Ehlers, 2004; Herms
and Dorostkar, 2016). The quantification of spines — the number
of (visible) spines per micrometer of dendrite — is considered
to represent an index of synaptic density and functionality,
due to the presence of these structures in most synapses.
Recent research has highlighted the existence of a bidirectional
relationship between spine maturation/functionality and synapse
stability. For example, it was reported that even subtle changes
in spine structure or motility can affect synaptic transmission
(Wong, 2005; Lordkipanidze et al., 2013; Obashi et al., 2021), and
that an increase in synaptic strength promotes the emergence and
maturation of spines (Hotulainen and Hoogenraad, 2010; Fortin
et al., 2012).

Among the ex vivo methods used to visualize changes in
spine morphology and density in brain sections, Golgi staining
is the oldest and most commonly used. This impregnation
method involves the accumulation of heavy metal ions (silver or
mercury) on the surface of a small subset of neurons, allowing
the visualization of their entire structure, including the dendritic
spines. Since its inception, this method has been improved (Pilati
et al., 2008), modified to make it faster (e.g., Golgi-Cox method
(Ranjan and Mallick, 2010)), and even combined with other
techniques such as EM (Fairén, 2005) or tissue clearing and
fluorescence (Vints et al., 2019). Despite the relevance and utility

of Golgi staining, it also presents disadvantages such as random
and unpredictable cell staining (Mancuso et al., 2013). Therefore,
alternative methods have been developed, such as staining with
the carbocyanine dye DiI — a fluorescent dye whose insertion
into the lipid membrane of the neurons allows the visualization of
their architecture (Gan et al., 2000; Cheng et al., 2014; Ba̧czyńska
et al., 2021) — or the use of Lucifer Yellow or XFP [green (GFP),
yellow (YFP), cyan (CFP) and red (RFP)] fluorescent proteins
that label the entire neuronal structure (Feng et al., 2000). All
these techniques allow quantification of potential changes in
spine morphology and density when combined with manual and
automatic analysis of maximum intensity projection (2D images)
or 3D and even 4D image reconstruction (Dickstein et al., 2016;
Basu et al., 2018; Kashiwagi et al., 2019; Ba̧czyńska et al., 2021).
Moreover, the in vivo visualization of spine dynamics is possible
in freely moving animals, thanks to the combination of transgenic
mice expressing genetically tagged fluorescent proteins (such as
PSD-95:GFP, or Thy1-YFP mice) and new microscopy methods
(such as two-photon microscopy) (Niell et al., 2004; Yang et al.,
2014; Garré et al., 2017).

Immunohistochemistry and particularly IF (which involves
the use of a secondary antibody chemically conjugated to a
fluorescent dye) has been extensively used to evaluate changes
in the expression of pre- and postsynaptic proteins as indices of
synaptic density. One of the advantages of this technique is the
possibility of differentiating between excitatory and inhibitory
synapses, owing to the availability of multiple antibodies that
target proteins predominantly expressed in these synapses (e.g.,
excitatory synapses express PSD-95 whereas inhibitory synapses
express gephyrin) (van Spronsen and Hoogenraad, 2010; Sheng
and Kim, 2011; McLeod et al., 2017; Favuzzi and Rico, 2018).
Such differentiation of targets has been an important tool in the
study of selective gains and losses of synapses in diseases such as
AD (Lauterborn et al., 2021). Moreover, the ability to distinguish
between synaptic proteins has also led to the discovery that PSD-
95 and neuroligin-1 are among the key regulators of the ratio
between the number of excitatory and inhibitory synapses in
the brain, the imbalance of which has been hypothesized as an
underpinning factor of some brain disorders (Prange et al., 2004;
Keith, 2008). In contrast, most presynaptic proteins, including
SV2A and synaptophysin, are expressed in both excitatory and
inhibitory synapses, allowing a global quantification of synaptic
density. Such quantification is mostly performed by first applying
a background correction and then analyzing the distribution,
number, or intensity of the immunoreactive puncta (Ippolito
and Eroglu, 2010; McLeod et al., 2017; Guirado et al., 2018),
or evaluating the mean fluorescence intensity within a region
(Shihan et al., 2021).

A summary of the synaptic proteins most commonly used in
the analysis of synaptic density is shown in Table 1.

Histology and Immunohistochemistry in Preclinical
Research
Histological examination of synapses in preclinical research has
hitherto contributed to many important scientific discoveries
in animal models of different brain disorders. As an example,
abnormal spine morphology, density, and function have been
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TABLE 1 | Main pre- and post-synaptic proteins used as synaptic density markers.

Localization Proteins Role in synapse Present in... References

PRESYNAPSE

Vesicle

vGLUT (1–3) Vesicular storage – glutamate Excitatory synapses*, astrocytes, microglia Fremeau et al., 2004; Martineau et al., 2017

vGAT Vesicular storage – GABA/glycine Inhibitory synapses* Chaudhry et al., 1998; Saito et al., 2010

Synapsin1, 2 Regulates the number of SVs available All synapses, astrocytes Bogen et al., 2009; Cesca et al., 2010

Synaptophysin-1 (a, b) Regulates endocytosis All synapses, astrocytes Kwon and Chapman, 2011; Verstraelen et al., 2020

Synaptotagmin-1 Calcium sensor – regulates exocytosis All synapses, astrocytes Yao et al., 2010; Bragina et al., 2012; Kiessling et al.,
2018

SV2 (A) Regulates exo- and endocytosis All synapses Bartholome et al., 2017; Heurling et al., 2019

Active zone
Bassoon Assembly and organization of active zone with

Piccolo
All synapses Dieck et al., 1998; Waites et al., 2013; Gundelfinger

et al., 2016

Vesicle fusion
machinery

SNAP-25 Vesicle fusion, calcium regulation, member of
SNARE

All synapses, astrocytes Irfan et al., 2019; Urbina and Gupton, 2020

Syntaxin-1 Vesicle fusion, member of SNARE All synapses, astrocytes Vardar et al., 2016; Urbina and Gupton, 2020

vAMP Vesicle fusion, member SNARE All synapses, astrocytes Urbina and Gupton, 2020

Adhesion Neurexin Formation/differentiation synapses All synapses Südhof, 2008, 2017

POSTSYNAPSE

Adhesion Neuroligin (1–4) Formation/maintenance synapses 1,3,4 in excitatory vs. 2 in inhibitory synapses Südhof, 2008; Hu et al., 2015

Scaffold

SNAP-25 Postsynaptic receptor trafficking, spine
morphogenesis, and plasticity

Excitatory synapses Antonucci et al., 2016; Hussain et al., 2019

PSD-95 (a, b) Regulates postsynaptic localization of
excitatory receptors

Excitatory synapses de Bartolomeis and Fiore, 2004; Keith, 2008

Homer (1–3) Synaptogenesis Excitatory synapses Sala, 2005; Verpelli et al., 2012

Shank (1–3) Synaptogenesis, spine maturation Excitatory synapses Sala, 2005; Monteiro and Feng, 2017

Gephyrin Brings and stabilizes inhibitory receptors at the
postsynapse

Inhibitory synapses Choii and Ko, 2015

SVs, synaptic vesicles; SNARE, synaptosomal-associated (SNAP) receptor.
*vGLUT and vGAT can coexist in some excitatory and inhibitory synapses (Zander et al., 2010).
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related to cognitive deficits and reported in neurodevelopmental
disorders such as Down syndrome or autism (von Bohlen
und Halbach, 2010; Varghese et al., 2017; Torres et al., 2018).
For instance, the Ts65Dn mouse model of Down syndrome
exhibits a decrease in spine density but an enlargement of these
structures, which seems to correlate with the severity of cognitive
impairment (Belichenko et al., 2004, 2007). In autism models,
mutations in genes coding for postsynaptic proteins such as
Shank3 result in modifications of dendritic spine morphology,
suggesting a relationship between synaptic protein expression
and spine morphology (Durand et al., 2012; Jiang and Ehlers,
2013; Zatkova et al., 2016; Guo et al., 2019).

However, not all the alterations in dendritic spines and
synaptic protein concentration are associated with genetic
factors: some of them are the result of internal changes (e.g.,
alterations in proteins such as Reelin), learning processes or
environmental changes such as stress and isolation (Lieshoff and
Bischof, 2003; Murmu et al., 2006; Bosch et al., 2016). Therefore,
changes in spine density/morphology and in concentrations of
different pre- and postsynaptic proteins have been extensively
studied as markers and potential therapeutic targets of diverse
pathologies and disorders (de Bartolomeis and Fiore, 2004;
Dorostkar et al., 2015; Duman and Duman, 2015; Herms and
Dorostkar, 2016; Ba̧czyńska et al., 2021).

Histology and Immunohistochemistry in Animal Models of
Epilepsy
Epilepsy is characterized by the presence of uncontrolled and
recurrent seizures, which are bursts of electrical neuronal activity.
As most of this excitatory activity affects the dendritic spines,
multiple research groups have studied the relationship between
seizures and changes in the morphology and density of these
structures (Wong and Guo, 2013; Tiwari et al., 2020; Xie et al.,
2020). Specifically, spine density of the hippocampal and cortical
pyramidal neurons appears to be reduced immediately after
acute seizures, whereas it is recovered during the transition
phase (period without seizures) and reduced, again, during the
later chronic phase (period with recurrent spontaneous seizures)
(Isokawa, 1998; Guo et al., 2012; Xie et al., 2020).

Interestingly, this alteration in spine density seems to precede
neuronal death and has been suggested as a potential reason
behind the cognitive and memory deficits observed in this
disease (Wong, 2005). However, the results of combining in vivo
imaging (two-photon microscopy) of dendritic spines with
electroencephalography (EEG) during focal neocortical seizures
suggest that the presence of electrographic seizures only creates a
predisposition toward, but not necessarily causes, dendritic spine
degeneration (Rensing et al., 2005).

Another way to study changes in synaptic density during
epileptogenesis is to quantify synaptic proteins such as SV2A,
synaptophysin or synaptotagmin (see Figure 3). Indeed, these
proteins are mostly decreased in preclinical models of epilepsy,
which could be reversed by pharmacological treatments or
by exposure to an enriched environment (van Vliet et al.,
2009; Hanaya et al., 2012; Salaka et al., 2021), confirming the
aforementioned utility of synaptic IHC as biomarker of epilepsy.
On the other hand, reports of increases in the expression

FIGURE 3 | Representative hippocampal labeling of the synaptic vesicle
protein synaptotagmin-1 in a control (A) and (B) epilepsy [kainic acid rat
model of temporal lobe epilepsy (Levesque and Avoli, 2013)]. Both images
were obtained using the polyclonal rabbit anti-Syt1 (Abcam, Cambridge, MA;
Cat#ab131551); dilution 1:100 (overnight, 4◦C). The secondary antibody was
donkey anti-Rabbit Alexa Fluor488-conjugated (Thermo Fisher Scientific,
Oregon, United States; Cat#A-21206); dilution 1:500 (45 min, RT). DAPI was
used to counterstain (blue). The images were obtained with a scanning laser
microscope (Leica TCS SP5 with AOBS, Leica Microsystems IR GmbH,
Germany) with a 20 × magnification and similar exposure time. Note a
decrease in synaptotagmin-1 labeling in the epileptic rat (3 months after kainic
acid administration), compared to the control. Images were obtained at
GIGA-CRC in vivo imaging and the GIGA-Imaging platform, ULiège (Belgium).

of the same markers (Contreras-García et al., 2018; Wang
et al., 2018), highlight the possible presence of compensatory
mechanisms including, for example, an increase in GABAergic
neurotransmission (Ohno et al., 2012).

Histology and Immunohistochemistry in Animal Models of
Alzheimer’s Disease
Changes in the morphology and density of dendritic spines have
been postulated as main reasons for the synaptic and neuronal
loss observed in AD. Therefore, dendritic spines are promising
targets for new treatments (Knobloch and Mansuy, 2008; O’Neal
et al., 2018; Ettcheto et al., 2020). Pathological extracellular
deposits of amyloid-betaqq (A) protein, or Aβ plaques, seem
to have a major role in the aberrant spine morphology and
decrease in spine density observed in AD models (Dorostkar
et al., 2015; Marttinen et al., 2018). Interestingly, A plaques were
associated with elevated activity of calcineurin, which affects
the morphology and density of dendritic spines through the
inhibition of peptidyl-prolyl isomerase Pin1 signaling (Stallings
et al., 2018; Reza-Zaldivar et al., 2020). This led to O’Neal
et al. (2018) suggesting that an FDA approved calcineurin
inhibitor be tested in AD patients. However, evidence from the
Tg2576 mouse model of AD suggests that early decreases in
spine density correlate with cognitive impairment and emerge
before any measurable accumulation of insoluble A protein
(Jacobsen et al., 2006).

Measurements of pre- and postsynaptic proteins have
also been used as markers of synaptic density in AD
models. Such investigations led to the discovery, in the 2xTg
(APP/PS1) mouse, of an association between reduced SV2A and
gephyrin in the nucleus accumbens (NAc), increased intracellular
Aaccumulation, and decreased glycinergic (inhibitory) miniature
synaptic currents (Fernández-Pérez et al., 2020).
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Histology and Immunohistochemistry in Animal Models of
Neuropsychiatric Disorders
Alterations in the morphology and density of dendritic spines,
and in the expression of pre- and postsynaptic proteins have been
associated not only with different neuropsychiatric disorders
including depression and schizophrenia, but also with addiction
to drugs of abuse such as psychostimulants (Robinson and Kolb,
1999; Blanpied and Ehlers, 2004).

In animal models of stress and depression, the reported
changes in spine morphology and density seem to be strongly
influenced by multiple parameters, including the model used,
the sex and genetic strain of the animals, and the brain
region analyzed (Murmu et al., 2006; Bock et al., 2011;
Duman and Duman, 2015; Qiao et al., 2016). Most studies
reported a decrease in spine density in the prefrontal cortex
and hippocampus — regions typically atrophied in people
suffering from depression and associated with the severity of
the disease (Taylor et al., 2014)— but an increase in spine
density in the amygdala and the NAc. Importantly, some
of these alterations could be rescued by treatments with
antidepressants such as ketamine (Krzystyniak et al., 2019; Ali
et al., 2020). However, the existence of contradictory results
— e.g., the absence of spine loss or even an increase in
spine density in some animal models (Fox et al., 2020)—
highlights the importance of creating standardized protocols
and improving replicability between laboratories. Regarding
the measurement of synaptic proteins, the evaluation of
vesicular GABA transporter (vGAT) and gephyrin in mice that
underwent chronic social defeat stress is more in agreement
with the results observed in humans, where there was a
significant decrease in both these synaptic markers in the NAc
(Heshmati et al., 2020).

In schizophrenia, the research evaluating changes in dendritic
spines is more consistent, with multiple laboratories reporting
decreases in spine density and dendritic arborization in brain
regions such as the primary visual cortex, the prefrontal
cortex and the subiculum (Moyer et al., 2015; Tendilla-
Beltrán et al., 2019; Chen P. et al., 2021). Despite some
contradictory results, several studies have suggested that a
reduction in microtubule-associated protein 2 (MAP2) — a
constituent of the PSD — is one of the reasons for the
observed spine density decrease (Gu et al., 2008; Jaworski
et al., 2009). In agreement with the notion of decreased spine
density in schizophrenia, lower levels of PSD-95 have also
been found in the frontal cortex and ventral hippocampus
of the sub-chronic phencyclidine (PCP) mouse model of
schizophrenia (Gigg et al., 2020). A recent meta-analysis
reviewed research quantifying multiple synaptic measures
(dendritic spine density, PSD number and PSD protein
expression levels) in post-mortem human brain tissue, from
different methods (Golgi staining, IHC and EM) (Berdenis van
Berlekom et al., 2020). The results of this meta-analysis are
consistent with those obtained in preclinical research, with
most studies highlighting a significant decrease in synaptic
density in the brain of patients with schizophrenia compared to
healthy controls.

Limitations
There are several aspects to consider when using histological
and IHC techniques to quantify synaptic density. Some of
these are related to the nature of the target. For instance, the
evaluation of spine density should be considered only as a
partial biomarker of synaptic density, since not all synapses are
formed on dendritic spines, which are absent in most inhibitory
interneurons (Markram et al., 2004). The quantification of
pre- and postsynaptic proteins, commonly present in chemical
synapses, also disregards the existence of electric synapses
and their important role in brain development (Szabo, 2004;
Todd et al., 2010) and in the adult nervous system (Connors
and Long, 2004; Pereda, 2014), especially in local inhibitory
circuits (Galarreta and Hestrin, 2001; Vervaeke et al., 2012).
Furthermore, it is important to carefully select which synaptic
protein will be used as a synaptic density marker, since they are
not only disease-specific but also have differential expressions
across time and brain regions. For example, there is a selective,
regional protein loss in AD patients, with some hippocampal
postsynaptic proteins being less affected by the disease, while
others present even an increase in their expression (Clare
et al., 2010, de Wilde et al., 2016). Additionally, multiple
studies have highlighted the presence of presynaptic proteins not
only in neurons, but also in astrocytes. For instance, cultured
astrocytes seem to express proteins such as synaptobrevin-2 (the
so-called vesicle-associated membrane protein 2 or vAMP2),
synaptotagmin-1, synaptophysin and SNAP-25 (Maienschein
et al., 1999; Wilhelm et al., 2004; Singh et al., 2014), which
is involved in the release (exocytosis) of glutamate-containing
vesicles (Zhang et al., 2004; Crippa et al., 2006; Mielnicka and
Michaluk, 2021). Recently, the vesicular glutamate transporter
(vGLUT) has also been found in microglia (Brioschi et al.,
2020). These studies highlight the importance of employing
multiple antibodies (markers) and even different methods to
measure synaptic structure and density before reaching any
conclusion about how these are affected in neurological and
neuropsychiatric disorders.

Other limitations of histology and IHC derive from the
methodology itself: despite the existence of multiple antibodies
to target pre- and postsynaptic proteins, some of them have poor
labeling performance (e.g., lack of specificity and/or sensitivity)
and, therefore, are not suitable to quantify synaptic density
(Verstraelen et al., 2020). This specificity problem could explain
the contradictory results obtained with some of these antibodies,
which urges the development of new and more specific antibodies
to precisely quantify synaptic density. In the case of IF, a bias in
the measurement of synaptic density could also be introduced by
the characteristics of the fluorophore and the fluorescence signal,
which is expected to fade over time, precluding comparison of
images obtained at different time points.

Finally, the intrinsic characteristics of the image acquisition
and analysis are also a source of bias. In this regard, confocal
laser-scanning microscopes often produce partial and distorted
results due to their insufficient spatial resolution. A clear example
is the bias in estimating spine density from 2D images, where
many spines can be hidden from the field of view depending on
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their position on the dendrite. In recent years, the refinement of
optical brain clearing techniques and tissue expansion-enabled
imaging — extensively reviewed elsewhere (Gómez-Gaviro et al.,
2020; Parra-Damas and Saura, 2020; Ueda et al., 2020) — have
opened the door to a faster and more precise visualization of
synapses, facilitating the study and the analysis of neural circuits
even in deep brain structures (Hama et al., 2011) or living animals
(Iijima et al., 2021). Additionally, the development of super-
resolution fluorescence microscopy techniques — such as 3D
stimulated emission depletion (STED) microscopy (Vicidomini
et al., 2018; Sahl and Hell, 2019) or super-resolution shadow
imaging (SUSHI) (Tønnesen et al., 2018)— has improved image
resolution and decreased the presence of artifacts, enabling a
more precise assessment of alterations in spine structure and
density. However, these methods are not yet widely accessible and
still require manual or semi-manual processing of images due to
the absence of sufficient 3D data to properly implement machine
learning algorithms (Ruszczycki et al., 2012; Belthangady and
Royer, 2019).

Other Post-mortem Methods:
Autoradiography
Imaging synaptic density in post-mortem tissue is also possible
with autoradiography, which involves imaging the distribution
of molecules labeled with radioisotopes [e.g., hydrogen-3 (3H) or
iodine-125 (125I)] in tissue sections (see Figure 4).

This technique presents two variations: in vitro
autoradiography, which involves incubating mounted tissue
with a radiolabeled ligand, and ex vivo autoradiography, which
involves injecting a radiolabeled ligand at tracer concentrations
(hence radiotracer) into a living animal before collecting, cutting,

FIGURE 4 | SV2A autoradiography with [3H]UCB-J, performed in an adult
C57BL/6 mouse. (A,B) Two representative autoradiographs showing
[3H]UCB-J labeling. (C) 3H standard for quantification (ART-123A American
Radiolabeled Chemicals Inc., United States). Slices (20 µm) were mounted
onto a glass slide (SuperfrostTM) and incubated with 3 nM [3H]UCB-J
(Novandi Chemistry AB, Sweden). Once dried, the slide was placed into
light-tight cassettes with the radioactive standard slide and a hyperfilm
(Amersham 8 × 10 in Hyperfilm Scientific Laboratory Supplies,
United Kingdom). Films were exposed for 2 weeks before being developed in
a Protex Ecomax film developer (Protec GmbH & Co, Germany). Images
acquired at BRAIN Centre, King’s College London, London, United Kingdom.

and mounting the tissue. In both forms, images of the radioligand
distribution are acquired from the brains processed post-mortem
(Maurer, 1984; Ishiwata et al., 1999; Griem-Krey et al., 2019).
Autoradiography has proved useful for characterizing newly
developed positron emission tomography (PET) tracers, due
to its simplicity and relatively low cost, providing information
about the metabolism of the radiotracers, ligand selectivity and
target localization (Solon, 2012; Manuel et al., 2015; Griem-Krey
et al., 2019). Furthermore, autoradiography provides higher
spatial resolution images than PET (µm vs. mm), which enables
the quantification and localization of binding in small anatomical
structures of rodent brains (Schmidt and Smith, 2005). However,
this method also has some limitations, such as the unsuitability
for longitudinal studies, or the limited information that it
provides about radiotracer kinetics (Kuhar and Unnerstall, 1985;
Schmidt and Smith, 2005).

The use of autoradiography for quantification of synaptic
density in preclinical research has been made possible by the
development of SV2A radiotracers, described in more detail in
the following section. These radiotracers have been used to map
the expression of the presynaptic SV2A protein in the brain
of WT and transgenic animals (Menten-Dedoyart et al., 2016;
Varnäs et al., 2020), to evaluate changes in synaptic density in
the 6-hydroxydopamine (6-OHDA) model of Parkinson’s disease
and the quinolinic acid model of Huntington’s disease (Thomsen
et al., 2021), and to study the effect of different drugs and
treatments (Onwordi et al., 2020; Binda et al., 2021; Halff et al.,
2021; Raval et al., 2021b).

MEASURING SYNAPTIC DENSITY IN
VIVO

Even though the spatial resolution of in vivo techniques is
significantly poorer than that of ex vivo methods, measuring
synaptic density in vivo presents many advantages, such as the
possibility of quantifying the number of synapses longitudinally,
which may result in earlier diagnosis of brain disorders.
This characteristic has recently promoted the use of these
techniques as important biomarkers in neurodegenerative and
psychiatric disorders.

In this section we cover the most used in vivo techniques,
which explore two different aspects of the synapse: the
concentration of the SV2A protein (SV2A PET tracers), and the
concentration of glutamate (gluCEST).

Assessing Synaptic Density by Positron
Emission Tomography
The last decade has seen a significant rise in the synthesis and
use of SV2A PET tracers. These radioactive compounds are
commonly designated as synaptic density radiotracers due to their
affinity and specificity for the SV2A protein: a transmembrane
presynaptic protein present in synaptic vesicles that plays
an important role in synaptic transmission — specifically in
the calcium-dependent release of neurotransmitters (through
its interaction with synaptotagmin-1) — and in synaptic
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vesicle recycling (interacting with synaptotagmin-1 and stonin-
2) (Mendoza-Torreblanca et al., 2013; Bartholome et al., 2017).
Traditionally, this protein has been associated with epilepsy for
three main reasons: (1) SV2A is the molecular target of the
antiepileptic drug levetiracetam, (2) SV2A knockout mice suffer
from seizures from postnatal day 7 and die 2 weeks later, and (3)
the brain expression of SV2A in animal models and patients with
epilepsy is lower than in healthy controls (Crowder et al., 1999;
Lynch et al., 2004; Klitgaard and Verdru, 2007; van Vliet et al.,
2009; Sills, 2010).

The discovery of the relationship between SV2A and epilepsy
triggered the development of the first SV2A radiotracer, [3H]ucb
30889, with the aim to identify levetiracetam’s binding sites in
the rat brain and spinal cord (Gillard et al., 2003; Lambeng
et al., 2005). Despite its utility, the extremely long half-life
(>12 years) of tritium precluded the use of this radiotracer
in humans. In 2013, the creation of the first PET-suitable
radiotracer, [18F]UCB-H, allowed the in vivo measurement of
changes in SV2A brain levels in both humans and animals
(Bretin et al., 2013; Warnock et al., 2014; Becker et al., 2017;
Serrano et al., 2018). Since then, other PET radiotracers have
been developed, such as [11C]levetiracetam (Cai et al., 2014),
[11C]UCB-A (Estrada et al., 2016), and [11C]UCB-J (Nabulsi
et al., 2016). The latter, [11C]UCB-J, displays higher specific
binding capacity than [18F]UCB-H, with also a high brain uptake,
fast in vivo kinetics and rapid metabolism. Nevertheless, the half-
life of carbon-11 (11C, 20.4 min) is significantly shorter than that
of fluorine-18 (18F, 109.8 min), which precludes the routine use
of [11C]UCB-J as it requires an on-site cyclotron for its synthesis.
New radiotracers, such as [18F]SynVesT-1 — previously called
[18F]SDM-8 and [18F]MNI-1126 — and [18F]SynVesT-2 (also
named [18F]SDM-2) are supposed to overcome this problem by
combining the specificity for SV2A and the fast in vivo binding
kinetics of [11C]UCB-J with the longer half-life of [18F]UCB-H
(Li S. et al., 2018; Constantinescu et al., 2019; Cai et al., 2020; Patel
et al., 2020; Sadasivam et al., 2021).

The development of these novel SV2A PET tracers occurred
in parallel with the discovery of the important role of SV2A
in the onset and development of multiple neurological and
neuropsychiatric disorders, opening the door to a wide spectrum
of applications (Mattheisen et al., 2012; Stockburger et al., 2015;
Cortès-Saladelafont et al., 2016; Li and Kavalali, 2017; Heurling
et al., 2019). Nevertheless, it was not until 2016 that the full
potential of these radiotracers was unveiled: the possibility to
detect changes in synaptic density in vivo (Finnema et al.,
2016; Morris, 2016; Mercier et al., 2017) through regional
quantification of brain SV2A expression.

Synaptic Vesicle 2A Positron Emission Tomography
Tracers in Preclinical Research
The use of SV2A PET tracers in preclinical research has been
key to improving their synthesis, specificity, and kinetics, as well
as to enable the in vivo quantification of synaptic density in a
wide spectrum of neurological and neuropsychiatric disorders
(Rabiner, 2018; Cai et al., 2019; Constantinescu et al., 2019).
For example, (Serrano et al., 2020) explored changes in synaptic
density at different time-points of the rat lifespan (late puberty

to adulthood) evaluating in parallel how epileptogenesis affects
the brain. This study showed an increase in synaptic density
throughout the lifespan of healthy animals, in line with the
recently reported increases in gray and white matter volumes
(MacNicol et al., 2022). These results support the idea of brain
plasticity in which synapses are continuously being formed and
strengthened, highlighting the potential of quantifying SV2A
in vivo to detect aberrancies in brain development.

In the following subsections we give an overview of the
use of SV2A PET tracers in preclinical research. Given the
relative novelty of some of these tracers, relatively few preclinical
studies have been published to date. Furthermore, SV2A PET
tracers are increasingly used in clinical research, where they have
been successfully used to map out synaptic changes in AD and
Progressive Supranuclear Palsy (Passamonti et al., 2017; Holland
et al., 2020, 2021; O’Dell et al., 2021; Tuncel et al., 2021) as well
as in other conditions such as depression (Holmes et al., 2019),
schizophrenia (Onwordi et al., 2020), cannabis use disorder
(D’Souza et al., 2020), and human immunodeficiency virus (HIV)
(Weiss et al., 2021).

Synaptic Vesicle 2A Positron Emission Tomography Tracers
in Animal Models of Epilepsy
Even though the development of SV2A tracers was motivated
by epilepsy research, only three articles have been published to
date in this area: two clinical proof-of-concept studies about the
ability of [11C]UCB-J radiotracer to detect a decrease in synaptic
density in patients with temporal lobe epilepsy and unilateral
mesial temporal sclerosis (Finnema et al., 2016, 2020), and one
preclinical study exploring in vivo changes in SV2A during the
development of temporal lobe epilepsy (Serrano et al., 2020). The
latter observed a progressive and region-dependent decrease in
[18F]UCB-H binding (and, by extension, a decrease in synaptic
density) in epileptic animals, with significant differences between
groups even before the onset of seizures. Furthermore, the results
obtained in vivo during the chronic phase of epilepsy were
confirmed ex vivo with SV2A IF, highlighting not only the utility
of SV2A PET as an epilepsy biomarker, but also the reliability of
this in vivo technique.

Synaptic Vesicle 2A Positron Emission Tomography Tracers
in Animal Models of Alzheimer’s Disease
[11C]UCB-J and [18F]SynVesT-1 have been used to study
synaptic loss in two AD mouse models, ArcSwe and APP/PS1
(Sadasivam et al., 2021; Xiong et al., 2021), as well as to evaluate
the potential effect of treating AD pathology with a Fyn kinase
inhibitor, saracatinib (Toyonaga et al., 2019). Even though the
methods employed to analyze radiotracer binding are different
in these studies, they all reach the conclusion that there is a
significant decrease in synaptic density in the hippocampus of AD
animals, which can be rescued with saracatinib, and measured
in vivo with SV2A PET radiotracers.

Synaptic Vesicle 2A Positron Emission Tomography Tracers
in Animal Models of Neuropsychiatric Disorders
In psychiatric research, [11C]UCB-J has been used to measure
synaptic density deficits in the Sapap3 knockout model of
obsessive-compulsive disorder, through a longitudinal PET study
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in which an early decrease in radiotracer binding was reported
in several brain regions of this model, including in the cortex,
striatum, thalamus, and hippocampus (Glorie et al., 2020).

Limitations
A general limitation of PET imaging is the difficulty in
quantifying radiotracer binding, which usually requires drawing
multiple blood samples at precise time-points to calculate the
concentration of non-metabolized radiotracer in arterial plasma
(arterial input function) (Laruelle, 2002; Acton et al., 2004). Even
though non-invasive alternatives have been proposed — such
as deriving the input function from the image, or the use of a
reference region with no specific uptake — these methods also
present associated problems, and their accuracy must be assessed
before their routine use (Tomasi et al., 2012; Lammertsma, 2017;
Serrano et al., 2018). With respect to the use of SV2A radiotracers,
their results (although promising) must be taken with caution
since they rely on three aspects: (1) the reliability of using SV2A
as synaptic density marker in a specific disease, (2) the variability
of SV2A expression due to external stimulus, and (3) the ability
of the radiotracer to bind to the SV2A protein.

Regarding the first aspect, a selective loss and gain of different
synaptic proteins has been reported in AD (Sze et al., 2000; de
Wilde et al., 2016), with some contradictory results about changes
in SV2A. For instance, several authors have reported unchanged
SV2A levels in the middle frontal gyrus (Metaxas et al., 2019), the
hippocampus, entorhinal cortex, caudate nucleus, and occipital
cortex (Sze et al., 2000) in post-mortem samples from AD
patients. In contrast, the in vivo comparison of healthy volunteers
and AD patients with [11C]UCB-J PET showed a 41% reduction
in hippocampal binding in the AD group (Chen M.K. et al.,
2018). Interestingly, other synaptic proteins show a differential
expression in AD, with the presynaptic proteins being more
affected by the disease than the postsynaptic ones (de Wilde
et al., 2016). These studies highlight the necessity of combining
ex vivo and in vivo techniques and measuring different pre-
and postsynaptic proteins to obtain a more reliable measure of
synaptic density in a specific disease.

Concerning the second aspect, although SV2A expression
is constant inside synaptic vesicles and presents a small
intervesicle variation (Mutch et al., 2011), the number of
synaptic vesicles in the presynapse is closely related to synaptic
activity and functionality (Valtorta et al., 1990; Rizzoli and
Betz, 2005). The number of synaptic vesicles, therefore, is
expected to increase in the presence of a stimulus, raising the
question whether the binding of SV2A radiotracers provides a
stable measure of synaptic density or primarily reflects brain
activity in the moment of scanning. This question has been
recently tackled by Smart et al. (2021) where the effect of
stimulating the visual cortex on the [11C]UCB-J binding was
assessed through the measurement and comparison of three
kinetic parameters: tissue influx (K1), volume of distribution
(VT) and binding potential (BPND). The results highlighted
the stability of VT and BPND during cortical stimulation
and corroborated their utility as in vivo markers of SV2A
levels and, for instance, as potential markers of synaptic
density. On the contrary, K1 values increased during the

visual stimulation and were significantly correlated with cerebral
blood flow and fMRI BOLD signal assessed with the same
paradigm. K1, therefore, reflects the radiotracer influx and
should be considered an index of synaptic function rather
than a synaptic density measure. In addition to the presence
of a stimulus during the scan, a recent unpublished study
(Miranda et al., 2021) has also suggested an effect of anesthesia
on the measure provided by SV2A PET tracers. Specifically,
the use of prolonged isoflurane anesthesia seems to produce a
significant increase in [18F]SynVesT-1 uptake, compared with
quickly anesthetized or awake animals. These results highlight
the importance of maintaining similar and stable conditions
between and within subjects to avoid potential bias in the
quantification of SV2A levels.

Finally, the availability, conformation, and electrostatic
properties of SV2A vary across the exocytosis process (Lynch
et al., 2008; Shi et al., 2011; Correa-Basurto et al., 2015). Further
studies should be carried out to determine how these changes
affect the ability of the different SV2A PET radiotracers to
recognize and bind to this presynaptic protein.

Assessing Synaptic Density by MRI
While PET is the gold standard for in vivo molecular and
metabolic imaging, it has the disadvantages of ionizing radiation,
limited accessibility, and high cost. There are several MRI
methods that provide cheaper, less invasive alternatives. For
example, structural MRI can measure changes in cortical
thickness as well as whole brain morphometry and regional
deformations resulting from abnormal development or disease.
However, structural MRI is neither specific nor direct and it
does not have a resolution high enough to detect synapses per
se, although some authors have attempted to connect regional
variation of brain structures by MRI to the underlying synaptic
spine densities (Keifer et al., 2015) or to plastic changes related
to synaptic remodeling (Lerch et al., 2017). MR-based molecular
imaging methods that can measure glutamatergic function may
provide more promising indices of synaptic density.

Magnetic Resonance Spectroscopy and Chemical
Exchange Saturation Transfer
MRI most commonly involves imaging 1H nuclei (i.e., protons),
which in biological tissue are predominately found in water
molecules. In contrast, MR spectroscopy (MRS) is a technique
that can detect and quantify concentrations of various
metabolites: the different protons of each metabolite have
slightly different resonant frequencies and thus produce different
peaks in an MR spectrum. But because these metabolites are
found in much lower abundance than water, they produce
much lower signal, limiting the spatial and temporal resolution
of MRS techniques.

Chemical exchange saturation transfer (CEST) MRI is
a method that overcomes the problem of low metabolite
concentrations by exploiting the phenomenon of chemical
exchange, whereby the protons of certain molecules exchange
with those of water. The sensitivity of CEST MRI is increased by
up to two orders of magnitude compared to MRS via continuous
magnetic saturation of metabolite protons and subsequent
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FIGURE 5 | Representative images of GluCEST MRI of a 5xFAD and a WT mouse. (A) Structural T2-weighted image (T2WI) in the coronal plane. (B) GluCEST maps
of the corresponding T2WI showing reduced GluCEST effects in an aged (7-month old) 5xFAD mouse compared with the WT. (C) Correlation between GluCEST and
Synaptophysin concentration. Figure extracted and modified from Igarashi et al. (2020).

exchange with bulk water protons over a period of seconds.
This enables spatial mapping of metabolite concentrations at
resolutions comparable to conventional MR imaging techniques.
The basic principles of CEST MRI are covered in greater detail in
a review by Wu et al. (2016).

Among the different CEST MRI methods, glutamate CEST or
GluCEST is sensitive to changes in levels of glutamate, the main
excitatory neurotransmitter in the brain, which can be detected
by targeting the amine proton at an offset frequency of 3 ppm
(Cai et al., 2012).

MR Spectroscopy and GluCEST in Preclinical
Research
Previous studies using EM have shown that the highest
levels of glutamate in the rat hippocampus are in the axon
terminals of excitatory neurons (Bramham et al., 1990) and
that glutamate levels correlate strongly with synaptic vesicle
density (r = 0.94) in rat spinocerebellar mossy fiber terminals
(Ji et al., 1991). However, the relationship between glutamate
levels and synaptic density is not simple and can be altered in
pathological conditions. For instance, a recently published study
(Onwordi et al., 2021) showed that the correlation between the
glutamate-to-creatine ratio measured by MRS and the [11C]UCB-
J distributed volume ratio is only significant in healthy volunteers
(hippocampus and anterior cingulate cortex) and not in patients
with schizophrenia.

The relationship between glutamate levels and synaptic
density has been further explored in animal models of
neurodegeneration through the GluCEST sequence. For example,
the GluCEST signal was associated with synaptophysin IHC
in the PS19 mouse model of tauopathy, with both showing a
decrease in the CA3 hippocampal region and the thalamus but
not in the dentate gyrus or the entorhinal cortex (Crescenzi
et al., 2014). GluCEST signal was also decreased in different
mouse models of AD, such as the APP/PS1 and the 5xFAD
models. In the APP/PS1 mouse, the GluCEST signal correlated
with the glutamate-to-creatine ratio measured by MRS (Haris

et al., 2013), while in the 5xFAD model, the decrease in glutamate
was correlated with ELISA-based synaptophysin measurements
[see Figure 5, extracted from Igarashi et al. (2020)]. This result
suggests a relationship between the in vivo levels of glutamate and
the ex vivo levels of synaptophysin, a presynaptic protein typically
used as synaptic density marker.

Limitations
A technical limitation of GluCEST, as with many MRI methods,
is its molecular specificity. Cai et al. estimated that 70–75% of
the GluCEST signal comes from glutamate and the remaining
25–30% from creatine, GABA, and other molecules (Cai et al.,
2012). More recently, a simulation study reported that glutamate
contributes to about 60% of the GluCEST signal at 3.2 ppm
at 7T and neutral pH, with this contribution increasing with
decreasing pH and increasing field strength (Khlebnikov et al.,
2019). Thus, the specificity of GluCEST can be maximized in
preclinical studies conducted at ultra-high field strengths.

Additionally, the target selected to evaluate synaptic
density is a limitation itself: the quantification of glutamate
produces a bias in the measurement of synaptic density,
since it only considers the number of glutamatergic synapses,
disregarding the existence of other synapses in the brain,
such as inhibitory or electric synapses. To date, and despite
the ability of MRI to provide a measure of synaptic function
(i.e., with functional MRI or fMRI), there is no other MRI
sequence able to provide a better measure of synaptic density.
Therefore, further improvements and different targets are
necessary to obtain a reliable MRI biomarker of changes in
synaptic density.

DISCUSSION

The brain changes constantly throughout the lifespan. The
pursuit of understanding this plasticity has always been at the
forefront of the neuroscientific community, considered as the
path to neuroscience’s holy grail: to fathom the biological reason
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FIGURE 6 | Representative brain images comparing synaptic density and function in the same rat. The images represent the uptake of two radiotracers: (A)
[18F]UCB-H (concentration of SV2A protein, synaptic density marker) and (B) [18F]FDG (glucose metabolism, synaptic function marker). Both images were acquired
40-60 min after intravenous radiotracer injection (36 and 20 MBq, respectively). Scans were performed 24h apart, followed by a T2-weighted MR image to allow a
better comparison between both PET scans through manual rigid-body co-registration with PMOD software. The white arrows represent the main differences in
uptake between both radiotracers. While synaptic density and function are similar in multiple brain areas, regions such as the prefrontal cortex and cerebellum seem
to have relatively higher glucose metabolism (synaptic function) than concentration of SV2A (synaptic density). Images obtained at GIGA-CRC in vivo imaging,
ULiège (Belgium).

TABLE 2 | Summary of main methods for imaging brain synaptic density.

Methodology Synaptic target Advantages Shortcomings

EX VIVO EM Visualization of synapse: synaptic
structure and synaptic density

Allows the actual visualization of the
number of synapses Possibility to

differentiate between inhibitory and
excitatory synapses.

Expensive and time-consuming Requires a
complex sample preparation, which can affect
the results and limit the combined use of other

ex vivo techniques

Histology and
IHC

Morphology and density of dendritic
spines and expression of pre/post

synaptic proteins

Cheap and accessible to all laboratories
Possibility to differentiate between inhibitory

and excitatory synapses

Some antibodies present specificity/sensitivity
problems that can bias the results Not all

synapses involve dendritic spines (e.g., electric
synapses) and not all synaptic proteins are

affected in all diseases

IN VIVO SV2A PET
TRACERS

Expression of the presynaptic protein
SV2A

Allows the in vivo evaluation of synaptic
density Validated to be used in both animals
and humans, allowing translational research

Lower spatial resolution than the other methods
and more difficult to quantify accurately
Requires facilities adapted to work with
radioactivity and the administration of a

radiotracer It is not possible to differentiate
between inhibitory and excitatory synapses

MRI Glutamate concentration Higher spatial resolution than PET Does not
require a pre-treatment or administration of

a substance/drug.

Low specificity and sensitivity compared to PET
Glutamate is not a good marker: it can also be
found in astrocytes, and it does not account for

inhibitory synapses

EM, electron microscopy; IHC, immunohistochemistry; SV2A, synaptic vesicle 2A protein; PET, positron emission tomography; MRI, magnetic resonance imaging.

behind our singularity. In this quest, synaptic density is one
of the gateways toward this goal, since the synapse is the
functional unit of the brain (Mayford et al., 2012). Over the
years, various ex vivo and in vivo methods have been developed
to measure changes in synaptic density, structure, and function,
each one of them targeting different aspects of the synapse.
Importantly, although various studies often conflate synaptic
density and synaptic function (Chen M.K. et al., 2021; Raval

et al., 2021a; van Aalst et al., 2021), we must bear in mind that
these two are different — although related — concepts that may
sometimes lead to different results (see Figure 6). This distinction
is also reflected in the methodology employed to quantify
synaptic density, predominantly carried out in post-mortem
tissue (e.g., EM and IHC), whereas synaptic function is by default
linked to experiments in living tissues, using electrophysiology,
electroencephalography, or brain imaging with [18F]FDG PET
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and fMRI. Moreover, synaptic density appears to be a more stable
biomarker than synaptic function which, due to the nature of
the target measured (i.e., electrical activity, glucose and blood
oxygenation), can be affected by both internal and external
stimuli, such as tissue preparation for ex vivo assessments (Kirov
et al., 1999) or anesthesia used during PET or MRI scanning
(Fueger et al., 2006; Aksenov et al., 2015; Spangler-Bickell et al.,
2016; Paasonen et al., 2018; van der Linden and Hoehn, 2022),
as well as physiological fluctuations during live animal imaging
(Harris et al., 2018; Steiner et al., 2020).

In this review, we have briefly presented the most commonly
used methods for quantifying synaptic density, focusing on
their applications in preclinical studies of neurodevelopmental
and neurodegenerative disorders. Even though many of these
methods lead to the same conclusion — the existence
of degeneration, synaptic density loss or dendritic spine
abnormalities in models of neurological diseases — all of them
also have limitations (e.g., resolution, specificity, sensitivity, and
complexity) that should be considered when interpreting the
results (see Table 2). To overcome some of these limitations,
alternatives are being explored, such as the combination of
existing techniques, or the development of brand-new methods
to quantify synaptic density.

With respect to the combined use of existing techniques, array
tomography marries the ex vivo methods of IF and volumetric
EM, enabling the quantification of precise molecular targets
and the direct visualization of structural changes in synapses
with unprecedented specificity and spatial resolution (Micheva
and Smith, 2007; Prieto and Cotman, 2017). An example of
combining in vivo methods is the use of PET and MRI techniques
[e.g., (11C)UCB-J PET and fMRI], which may help shed light on
the relationship between synaptic density and synaptic function.
For example, a reduction in [11C]UCB-J binding has recently
been associated with aberrant neural network function and
inversely correlated with the depressive symptomatology in
patients with major depressive disorder (Holmes et al., 2019).

Regarding the development of new methods to measure
synaptic density, the use of genetically encoded fluorescent
molecules as indicators of neuronal activity is particularly
promising (Hamel et al., 2015; Lin and Schnitzer, 2016). These
molecules, when examined with multiphoton microscopes (e.g.,
two-photon microscopy) (Lecoq et al., 2019), allow imaging of
different processes involved in synaptic transmission in freely
behaving animals, such as vesicle release (Sankaranarayanan
et al., 2000; Ferro et al., 2017; Bensussen et al., 2020) or
intracellular calcium dynamics (Chen et al., 2013; Ziv et al.,
2013; Sheffield and Dombeck, 2015; Yang et al., 2016). These
techniques, even though they offer the possibility of obtaining a
high-resolution visualization of synaptic transmission elements,
also suffer from limitations such as a narrow depth of field
(1.2 mm) (Dunn and Sutton, 2008; Benninger and Piston,
2013). New technologies are quickly emerging to overcome
these limitations, such as gradient-index (GRIN) lenses (Meng
et al., 2019; Chien et al., 2021) and two-photon miniscopes
(miniaturized head-mounted microscopes) (Ghosh et al., 2011;
Silva, 2017; Zong et al., 2017, 2021). These technologies provide
deeper and fast high-resolution volumetric images of dendrites

and spines in freely moving animals, helping to better understand
the functioning of the living brain.

Throughout this review we have explored different methods
for quantifying synaptic density in preclinical research, focusing
on their potential as biomarkers of neurological and psychiatric
disorders. However, we should highlight the translatability of
most of these methods, which are currently being used in clinical
research. In this regard, EM and IHC have been extensively
used to examine synaptic density in post-mortem human brain
samples, with the purpose of mapping neuronal connectivity
in healthy donors (Glantz et al., 2007; Kay et al., 2013; Lewis
et al., 2019; Sherwood et al., 2020), or in the framework of
understanding the pathology behind some of the disorders
tackled in this review (Fourie et al., 2014; Osimo et al., 2019;
Lauterborn et al., 2021). Furthermore, the recent emergence
of multiple SV2A PET tracers has opened the door for the
study of synaptic density in the living human brain, with
exciting implications for clinical practice (Finnema et al., 2016).
These radiotracers have already been used to explore changes
in synaptic density in patients with epilepsy, AD, depression,
schizophrenia, and other diseases, with promising results (Bao
et al., 2017; Chen M.K. et al., 2018; Holmes et al., 2019;
Finnema et al., 2020; Onwordi et al., 2020; Radhakrishnan
et al., 2021). Therefore, although there are still some challenges
to successfully employ synaptic density as a diagnostic and/or
prognostic biomarker for neurological and neuropsychiatric
disorders, current methods of measuring synaptic density
can help us understand both healthy and disordered brain
development and function.
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