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Protein kinases are crucial drug targets in cancer therapy. Kinase inhibitors are promiscuous in nature due to

the highly conserved nature of the kinase ATP binding pockets. PERK has emerged as a potential therapeutic

target in cancer. However, PERK inhibitors GSK2606414 and GSK2656157 also target RIPK1 whereas AMG44

is more specific to PERK. To understand the structural basis for the selectivity of PERK ligands to RIPK1 we

have undertaken a detailed in silico analysis using molecular docking followed by molecular dynamics

simulations to explore the selectivity profiles of the compounds. Although the binding sites of PERK and

RIPK1 are similar, their binding response to small molecules is different. The docking models revealed

a common binding mode for GSK2606414 and GSK2656157 in the RIPK1 binding site, similar to its

cognate ligand. In contrast, AMG44 had a strikingly different predicted binding profile in the RIPK1

binding site with both rigid docking and induced fit docking settings. Our study shows a molecular

mechanism responsible for dual targeting by the GSK ligands. More broadly, this work illustrates the

potential of molecular docking to correctly predict the binding towards different kinase structures, and

will aid in the design of selective PERK kinase inhibitors.
1. Introduction

Kinase inhibitors oen display a high degree of promiscuity due
to the structural similarity of their ATP binding sites.1 Large
scale in vitro binding experiments have identied several
previously unknown off-target kinase interactions,2,3 and small
molecules that selectively target a kinase within a subfamily can
have off-targets in a different family. The selectivity prole can
thus limit the clinical applications of an inhibitor, and
uncharacterized off-target effects oen lead to toxicity. Lack of
understanding of selectivity can lead to misinterpretation of
preclinical and clinical outcomes. In the current study, we
investigate the cross-reactivity of Protein kinase RNA-like
endoplasmic reticulum kinase (PERK) inhibitors. PERK, acti-
vating transcription factor 6 (ATF6) and inositol-requiring
enzyme 1a (IRE1) are the three main endoplasmic reticulum
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(ER) resident transmembrane proteins that sense endoplasmic
reticulum (ER) stress levels and initiate the unfolded protein
response (UPR). PERK is a eukaryotic initiation factor 2 alpha
(eIF2a) kinase. Upon activation, PERK's cytoplasmic kinase
domain dimerizes initiating trans-autophosphorylation of the
activation loop and subsequent phosphorylation of eIF2a at
Ser51.4 Phosphorylated eIF2a (P-eIF2a) binds to eIF2B resulting
in a shutdown of global protein synthesis which in turn reduces
the protein load to the ER.

Pharmacological PERK inhibition has been shown to reduce
tumor growth in mouse xenogra models.5,6 PERK inhibition is
also proven benecial in neurodegenerative conditions such as
prion disease, frontotemporal dementia and Parkinson's
disease.7,8 Prominent PERK inhibitors include ATP-competitive
kinase inhibitors GSK2606414 (GSK414),5 GSK2656157
(GSK157)5 and Compound 44 from Amgen (AMG44)9 amongst
others.10 GSK414 and GSK517 are selective with respect to other
eIF2a kinases such as PKR, GCN2, HRI and also have good
overall kinome-wide selectivity.5 However, both GSK414 and
GSK157 compounds were recently shown to inhibit receptor-
interacting kinase 1 (RIPK1) with nanomolar potency.11 RIPK1
is involved in the TNFa mediated inammatory signaling
pathway and necroptosis.12 Independently, GSK414 was shown
to also inhibit tyrosine kinase receptor c-KIT.13 Interestingly, the
structurally different PERK inhibitor AMG44 does not appear to
inhibit RIPK1 or c-KIT.11,13 Hence, AMG44 is proposed to be
a better tool compound to probe for PERK signaling despite the
lack of tissue distribution data of the compound. On the other
RSC Adv., 2020, 10, 367–375 | 367
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hand, GSK414 crosses the blood-brain barrier (BBB) when orally
delivered, making it a better choice of inhibitor for central
nervous system (CNS) applications.7 Clearly, selective PERK
inhibitors that can cross BBB will have a wide range of clinical
applications.

With the aim of understanding PERK inhibitor cross-
reactivity, we analyzed the binding proles of GSK414,
GSK157, and AMG44 in the RIPK1 active site. We used
computational modeling methods to compare the protein-
ligand interaction ngerprints between the two targets. We
use molecular docking and molecular dynamics (MD) simula-
tions for analyzing the binding modes of the compounds.
Docking methods have been widely used in virtual screening for
kinase targets and kinase drug repurposing.14–16 MD simula-
tions provide atomistic insight into the dynamic behavior of
protein-ligand complexes as a function of time.17 Rationalizing
the selectivity prole with differences in binding modes will
enable the design of selective PERK inhibitors. Despite large-
scale kinome-wide screens used for selectivity proling, poten-
tial off-targets are oen not detected or underestimated. As an
alternative strategy we propose to employ computational
methods to perceive selectivity using available structural data.
2. Methods
2.1. Selection and preparation of protein structure and
ligands

The co-crystallized structures of PERK in complex with GSK414
(PDB 4G31), GSK157 (PDB 4M7I) and AMG44 (4X7N), and RIPK1
in complex with Compound 8 (PDB 4NEU), were downloaded
from the protein data bank.18 The structures were superposed
and binding sites were visually inspected in Maestro.19 Selected
structures were prepared using Schrödinger protein preparation
wizard.20 Briey, the protein structures were analyzed for
missing loops and added if necessary using Prime,21 followed by
addition of hydrogen atoms, protonation, and generation of
tautomeric states (for Asp, Glu, Arg, Lys and His) for pH of 7.2.
Schrodinger OPLS3 force eld22 was used for protein-energy
minimization.

Small molecules were prepared using LigPrep.23 Hydrogen
atoms were added and different protonation states and ioni-
zation states for each ligand were generated for a pH range of 7
� 2. All possible stereoisomers and tautomeric states were also
generated. Finally, the OPLS3 force eld22was used for geometry
optimization and energy minimization to generate low energy
3D conformers of the ligands.
2.2. Identication of RIPK1 similar binding sites

The ProBis server24 was used to identify structurally similar
protein binding sites to the RIPK1 kinase active site, using the
RIPK1 crystal structure PDB 4NEU as query. Binding sites with
similar geometrical and physicochemical properties were
identied by the ProBis algorithm, and the hits ranked using
a standardized Z-score. The ProBiS Z-score is a statistical
measure of structural signicance of local structural
368 | RSC Adv., 2020, 10, 367–375
alignments. The protein structures with Z-score > 2.0 are
considered to be signicantly similar to the query.
2.3. Key interaction points (KIPs)

The RIPK1 co-crystal structure and docked complexes were used
for calculation of KIPs. Individual electrostatic and hydro-
phobic contributions to the interaction energy of amino acid
residues within 5 Å of the ligand were investigated. The elec-
trostatic (kcal mol�1) and hydrophobic contributions (score in
arbitrary units) were calculated for each complex by using
MOE.25 The interaction energy patterns are represented as heat
maps using gnuplot.26
2.4. Druggability assessment of the ATP binding site

The SiteMap module27 in Schrödinger was used to calculate the
binding site properties for the crystal structures of PERK and
RIPK1. SiteMap default parameters were used to calculate
properties such as the volume of the pocket, the enclosure/
exposure, and the degree of hydrophobicity. Initially, the Site-
Map algorithm searches over a grid to identify “site points”,
from which contour maps (“site maps”) are generated. The
hydrophilic, hydrophobic, Dscore and SiteScore properties are
calculated by the formulae:

Grid_philic ¼ vdW_energy + oriented-dipole_energy

Grid_phobic ¼ vdW_energy � 0.30 � oriented-dipole_energy

Dscore ¼ 0.094 sqrt(n) + 0.60e � 0.324p

SiteScore ¼ 0.0733 sqrt(n) + 0.6688e � 0.20p

where n is the number of site points (capped at 100), e is the
enclosure score, and p is the hydrophilic score (capped at 1.0).
SiteScore > 0.80 is an indicative for promising drug-binding
site.27 Dscore or druggability score penalizes the increasing
hydrophilicity and is thus used as a druggability measure for
a pocket. In general, Dscore < 0.83 is considered as “undrug-
gable”, 0.83–0.98 as “difficult to drug” and >0.98 as
“druggable”.27
2.5. Molecular docking

The compounds were docked using Glide28 program using
default settings unless specied. The OPLS3 force eld22 was
used for the docking protocol. The prepared protein structures
were used for generating receptor grids for the docking, using
cubic grids with a side length of 20 Å. No constraints were
applied for grid generation. The grid center was set at the
centroid of the bound ligand in the kinase active site. Prepared
ligands were docked using standard precision (SP) mode by
enabling exible ligand sampling for docking procedure. The
default parameters of 0.8 scaling factor for van der Waals radii
of the nonpolar ligand atoms and 0.15 partial charge cutoffwere
used. Post-docking minimization was performed on all poses
and 20 best conformations for each ligand were saved. The
default scoring function Glide Docking Score28 was calculated
This journal is © The Royal Society of Chemistry 2020
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and used for sorting the poses. The chosen docking settings
were veried to successfully predict the known crystallographic
ligand binding mode of PDB 4NEU.

2.6. Induced t docking

The induced t docking (IFD) program in the Schrödinger suite
was also used in docking studies.29 The program combines
Glide docking with Prime conformational renement. Initially,
the ligands were docked using a soened potential with Glide
SP. The Coulomb-vdW scaling factors were changed to 0.5 for
both protein and ligand, and amaximum of 20 poses generated.
The generated poses were further processed by Prime for side-
chain renements within 5 Å of the binding site, for better
accommodation of the ligands. Thereaer, the systems were
minimized with the OPLS3 force eld.22 In the nal step, the
ligands were redocked using Glide SP into the optimized
protein structures generated within 30 kcal mol�1 of the lowest
energy structure obtained aer Prime renement to generate 20
poses per system. The poses were ranked using the calculated
IFD score (IFDScore ¼ 1.0 � GlideScore + 0.05 � PrimeEnergy),
and analyzed manually with the ligand interactions visualized
and rendered using Maestro 9.8.19

2.7. Molecular dynamics simulations

The Desmond program30 in Schrödinger suite 2017-2 was used
to carry out classical MD simulations for the co-crystal struc-
tures and selected docked poses. Each protein-ligand complex
was solvated in a simple point charge (SPC) model31 using an
orthorhombic box with periodic boundary conditions. The
overall charge of each system was neutralized by adding Na+ or
Cl� ions as appropriate. The NPT ensemble available within the
Desmond package was used for minimization and relaxation of
system. Each simulation was run for a total of 100 ns with
a recording interval of 100 ps. The temperature and pressure
were kept constant at 300 K and 1.01325 bar, respectively,
throughout the simulations. Data analyses such as root mean
square deviations (RMSD) and ligand interaction ngerprints
were performed using the simulation interaction diagram (SID)
program in Schrödinger.

2.8. Prime molecular mechanics-generalized born surface
area (MMGBSA) calculations

The Prime module in Schrödinger suite 2017-2 was used to
compute the ligand binding energies through the use of
a physics-based MMGBSA method.32,33 MMGBSA free energy of
binding (DG bind) is calculated for the docked poses and Des-
mond trajectories using the equation:32

DG bind ¼ EComplex � ELigand � EReceptor

where EComplex, ELigand, and EReceptor are the energy calculations
done in Prime MM-GBSA of the optimized complex (complex),
optimized free ligand (ligand), and optimized free receptor
(receptor). The OPLS3 force eld and VSGB solvation model
were used in the calculations. Frames were extracted at every 10
ns of the MD simulations to calculate ‘average dG Bind’.
This journal is © The Royal Society of Chemistry 2020
3. Results and discussion
3.1. Comparison of RIPK1 and PERK active sites

The PERK and RIPK1 crystal structure active sites were super-
posed to investigate the sequence and structure similarity in the
ATP binding region. The binding sites align well, with a C-alpha
atoms RMSD of 1.9 Å. Residues Val31, Lys45, Val76, Met92,
Asn99, Asp156 (RIPK1 numbering) are conserved between the
two systems (Fig. 1). The analysis also revealed small but
signicant differences between the two binding sites. Instead of
the hinge b-strand Cys890 residue in PERK, RIPK1 has Met95
that is engaged in hydrogen bonds with the inhibitor, and
Glu93, Tyr94, Glu96, Leu159 in RIPK1 corresponds to residues
Gln888, Leu889, Lys892, Gly956 in PERK, respectively. The Ca-
helix is closer to the ligand binding site in RIPK1 compared to
PERK. In RIPK1, Met67 and Glu63 are oriented towards the
active site, Glu63 forms a hydrogen bond with the inhibitor,
while Glu62 and Lys65 point away from the binding site. Simi-
larly, in PERK the Ca-helix residues Glu638, Val639 and Leu642
are rotated towards the active site and Lys 640 is pointing out.
These differences in the Ca-helix leads to the formation of
unique lipophilic pockets that can give rise to different inhib-
itor interaction landscapes between the two proteins (Fig. 1A
and B).

Since structurally similar binding sites are more likely to
bind similar scaffolds, we used the ProBiS server24 to search for
binding sites similar to the RIPK1 active site. As expected we
found RIPK1 and RIPK2 structures in the database as top hits
with high Z-scores of 5.31 and 4.07. PERK is also found among
the top hits of binding sites similar to RIPK1, with a Z-score of
3.72 as shown in Fig. 1C. Interestingly, RIPK3 had a lower (yet
still very high) Z-score value of 3.69 (Fig. 1C and Table S1‡). The
physicochemical properties of the PERK and RIPK1 active sites
were calculated, showing similar Dscore and SiteScore values
(Table 1). Notably, the AMG44 binding site has a larger volume
compared to the other two. Taken together, PERK and RIPK1
display similar binding sites, which explains some of the
specicity issues observed experimentally. The compounds
GSK414, GSK157 and Cmpd8 are similar in shape with acces-
sible surface area of 666, 652, and 649 Å2 respectively (Fig. 1D).
Furthermore, GSK414 and GSK157 share a common indoline
scaffold, GSK414 has a triuoromethyl phenyl substituent
whereas GSK157 has a methylpyridine substituent. Cmpd8 has
an aminoisoquinoline scaffold with a tert-butyl oxazole
substituent. AMG44 is chemically distinct with a (2-
methylquinolin-6-yl)benzoyl group and a diphenyl pyrazol
substituent, and a signicantly larger accessible surface area of
800 Å2.
3.2. Receptor modeling and cross docking of PERK
inhibitors

Self-docking of Cmpd8 in RIPK1 gave a high docking score of
�14.8 kcal mol�1 and low RMSD of 0.25 Å compared to the
crystallographic ligand pose (Fig. 2A) verifying the selected
docking methodology. In agreement with the experimental
results,11 both GSK414 and GSK157 ligands were found to dock
RSC Adv., 2020, 10, 367–375 | 369



Fig. 1 (A) Superposition of binding sites of RIPK1 (PDB ID 4NEU) and PERK (PDB ID 4G31) shown in cyan and green, respectively. (B). Structure-
based sequence alignment of the active sites, the sequence numbering (above/below) is based on the PDB structures 4NEU and 4G31 for RIPK1
and PERK, respectively. Residues are colored by residue type, blue is hydrophobic, red is acidic, green is basic and others are orange. (C) Binding
sites similar to RIPK1 was calculated using ProBiS server.24 PDB/Chain ID: 4NEU.A was used as a query. Selected kinase hits are labeled (see Table
S1‡ for the complete list). (D) 2D chemical structures of the small molecule inhibitors of RIPK1 (Cmpd8) and PERK (GSK414, GSK157 and AMG44).
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to the RIPK1 binding site with strikingly similar poses to its
cognate ligand (Cmpd8), and with high docking scores of �13.3
and �11.6 kcal mol�1, respectively (Fig. 2B and C). The 3D
docking pose of the best conformer for each compound is
shown in Fig. 2. In contrast, with conventional molecular
docking settings AMG44 did not dock to RIPK1 active site.
Superposition of the crystallographic pose of AMG44 bound to
PERK into the RIPK1 active site, revealed several clashes which
could be the reason for lack of docking (Fig. 2D). Notably, the
RIPK1 crystal structure used for docking (PDB 4NEU) is co-
crystalized with a relatively small-sized ligand (Cmpd8) and
thus the binding pocket might not readily accommodate
a bigger ligand in rigid docking. The result obtained is,
however, in agreement with the experimental nding that
AMG44 has no measurable affinity for RIPK1.11

The KIP values were calculated for the docked complexes and
the per residue electrostatic and hydrophobic energy contribu-
tions depicted as heat maps (Fig. 2F and G). The electrostatic
KIPs of the docked structures display several favorable inter-
actions (colored blue) such as Glu63, Glu93, Tyr94, Met95,
Table 1 Calculated pocket properties27 of the kinase active site in the R

Protein PDB code Ligand name/PDB ID Dscore Site

PERK 4G31 GSK414/0WH 1.20 1.14
4M7I GSK157/27D 1.18 1.13
4X7N AMG44/3Z5 1.13 1.09

RIPK1 4NEU Cmpd8/Q1A 1.23 1.18

370 | RSC Adv., 2020, 10, 367–375
Ala155, Asp156 common between the GSK compounds and
Cmpd8 (Fig. 2F). The compounds also share several hydro-
phobic interactions (Fig. 2G) including residues such as Val31,
Ile43, Leu145, Leu157 (colored brown). The repulsive interac-
tion with Lys45 is observed in all the docked complexes
(Fig. 2F). We performed similar analysis and calculated KIP
values for the PERK co-crystal structures. The corresponding
residue in PERK, Lys621 also showed repulsive interactions with
GSK414 and GSK157, whereas it established a favorable elec-
trostatic interaction with AMG44 (Fig. S1‡). To summarize, the
KIPs highlight that the PERK inhibitors GSK414 and GSK157
share a bindingmode highly similar to the co-crystallized RIPK1
inhibitor.
3.3. Induced-t docking analysis: modeling RIPK1 receptor
exibility produce unique binding mode for AMG44

To test the impact of receptor relaxation, we performed IFD of
the compounds into the RIPK1 binding site. A quantitative
analysis of the ligand interactions was made to compare with
IPK1 and PERK crystal structures

Score Size Hydrophilic Hydrophobic Volume (Å)3

267 0.71 2.21 521.70
258 0.79 1.98 569.72
308 0.89 1.55 772.09
200 0.71 2.96 350.55

This journal is © The Royal Society of Chemistry 2020



Fig. 2 Glide SP Docking. Predicted bindingmode of PERK inhibitors GSK414, GSK517 and AMG44 in RIPK1 active site. Close-up view of the RIPK1
active site (PDB ID 4NEU). The protein is rendered with ribbons and key residues are shown as sticks (cyan). (A) Superposition of docked pose
(green) of Cmpd8 onto the co-crystallized structure (red). The docked pose of (B) GSK414 (orange), (C) GSK157 (yellow). (D) AMG44 did not dock
in the RIPK1. Superposition of the co-crystallized pose of AMG44 in PERK into the RIPK1 active site (blue) shows steric clashes (orange). (E) Co-
crystal structure of PERK (green) in complex with AMG44 (blue); PDB ID 4X7N. Per amino-acid interaction energy map of PERK inhibitors docked
inside the binding site of RIPK1 using conventional docking studies (PDB ID 4NEU): (F) electrostatic energy values (kcal mol�1) and (G) hydro-
phobic score (arbitrary units).

This journal is © The Royal Society of Chemistry 2020 RSC Adv., 2020, 10, 367–375 | 371
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the results from the Glide binding modes. The GSK414 and
GSK157 interaction network of the IFD docked poses were
similar to those from the Glide SP docking study (Fig. 3).
Interestingly, with the induced-t docking protocol, AMG44 was
able to be accommodated in the RIPK1 active site as the changes
in the binding site allowed the diphenylpyrazolidin-3-one ring
to be incorporated. However, the compound did not form the
canonical H-bond with Met95 despite the high Glide score of
�15.5 kcal mol�1 and IFD score of �602.9 kcal mol�1. AMG44
also lacked the important electrostatic interactions corre-
sponding to residues Asp24, Glu93, Tyr94, Met95 (Fig. 3E and
F). In contrast to the favorable Lys621 interaction in the PERK
co-crystal (Fig. S1‡), AMG44 induced t docking in RIPK1 shows
Fig. 3 Induced fit docking (IFD) of PERK inhibitors GSK414, GSK517 and
(PDB ID 4NEU). The protein is rendered with ribbons and key residues ar
GSK414 (orange), (C) GSK157 (yellow) show similar binding poses as those
mode compared to the PERK co-crystal (Fig. 2E). Per amino-acid interac
4NEU) obtained from the IFD docking: (E) electrostatic energy values (kc

372 | RSC Adv., 2020, 10, 367–375
a repulsive interaction with Lys45. Collectively, using the active
site exibility, AMG44 is able to attain a docking pose in RIPK1,
but with very different interaction pattern compared to Cmpd8,
GSK414 and GSK157.
3.4. MD simulations analysis

The co-crystal structure of RIPK1 in complex with Cmpd8 and
IFD docked poses of GSK414, GSK157 and AMG44 were indi-
vidually prepared and subjected to MD simulations using the
Desmond program.34 MD simulations were performed for
a total of 100 ns and trajectories were analyzed for ligand RMSD
values and interaction ngerprints of the compounds in the
active site over time as shown in Fig. 4.
AMG44 in the RIPK1 active site. Close-up view of the RIPK1 active site
e shown as sticks (cyan). IFD binding modes of (A) Cmpd8 (green), (B)
obtained using Glide SP. (D) AMG44 (blue) displayed a distinct binding

tion energy map of PERK inhibitors in the binding site of RIPK1 (PDB ID
al mol�1) and (F) hydrophobic score (arbitrary units).

This journal is © The Royal Society of Chemistry 2020
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The native RIPK1 ligand Cmpd8 isoquinolin-1-amine ring
establishes a strong pair of hydrogen bonds with Met95
throughout the simulation. Additional hydrogen bonds with
Glu63 and Asp156 are constantly present and contribute to the
overall ligand stability. Other prominent ligand contacts in the
binding site include Val76, Met92, Leu145, Leu157. The same
interaction trend was observed in the GSK414 simulation where
the pyrimidin-4-amine ring engages in hydrogen bonds with
Met95 and Glu93. The hydrogen bond with Asp156 is also
consistent during the simulation, as were the hydrophobic
contacts with Leu145, Leu157. The key difference compared
with the Cmpd8 is the absence of the Glu63 hydrogen bond.
Additional GSK414 contacts include Ile43, Met67, Tyr94 and
Ala155. Similarly, GSK157 also engages in hydrogen bonds with
Met95, Glu93 and Asp156. The hydrophobic interactions
include Met67, Tyr94, Leu145, Ala155 and Leu157. The strong
and consistent interaction patterns observed with GSK414,
GKS157 and the low RMSD deviations support the tight-binding
nature of the ligands in the RIPK1 active site. In general, the
hydrogen bonding was largely mediated by Glu63, Glu93, Met95
and Asp156 residues in the active site.
Fig. 4 RIPK1 MD simulation analysis. (A) RMSD profiles of the compoun
protein–ligand contacts during the course of 100 ns MD simulation. H-b
purple and blue, respectively.

This journal is © The Royal Society of Chemistry 2020
In contrast, the same interaction pattern was not observed in
the AMG44 simulation. The compound did not engage in
a hydrogen bond with Met95 or Glu93 (Fig. 4B). Also there were
no hydrophobic interactions with the residues Leu145, Ala155
and Leu157. Instead, the ligand was stabilized through alter-
native hydrophobic interactions with Met66, Met67, Val75,
Met92, Tyr128 and Leu129 caused by the structural changes
during the IFD procedure. The intermolecular hydrogen bonds
determined for each frame of the 100 ns MD simulation are
depicted in Fig. S3.‡ The number of hydrogen bonds formed by
Cmpd8, GSK414 and GSK157 systems are larger than the
AMG44 system (Fig. S3‡) with an average of 4.71, 2.86, 2.82, and
0.96 respectively. Despite acquiring a strikingly different inter-
action prole, AMG44 was stable during the simulation with
a low ligand RMSD (Fig. 4A).

In addition, active site geometric stability analysis (RMSD)
was performed on the simulated trajectories in order to
compare the active site uctuations upon ligand binding.
AMG44 showed a higher RMSD with an average of 2.86 Å
compared to the other compounds as shown in Fig. S2.‡ The
hydrogen bond analysis and active site geometric stability
ds during the MD simulations. (B) Interaction fraction plots depicting
onds, hydrophobic interactions and water bridges are shown in green,

RSC Adv., 2020, 10, 367–375 | 373
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analysis indicate that Cmpd8, GSK414, and GSK157 are more
stable during the MD simulation compared to AMG44.

MMGBSA binding free energies were calculated for the single
best docked structure and the ensemble-average structures
from the MD simulation. The results along with the corre-
sponding docking scores are listed in Table S2.‡ In general, the
calculated binding energies are in the same range for all the
compounds. Notably, compared to the other compounds,
AMG44 has a lower Coulomb energy component (MMGBSA dG
Bind Coulomb); �5.86 kcal mol�1 for single IFD docked struc-
ture and �10.91 kcal mol�1 in MD based calculation (Table
S2‡). The weak electrostatic interaction of AMG44 (as shown in
Fig. 3E) from the induced t docking correlates with the low
Coulomb energy obtained from the MMGBSA calculations.
Taken together, these data show that GSK414 and GSK157 have
similar interaction proles as the RIPK1 native ligand, whereas
AMG44 binds differently in the binding site of RIPK1.

4. Conclusions and perspective

Selectivity is a major concern in kinase drug discovery. The
concept of polypharmacology associated with kinase inhibitors
has gained much interest in cancer therapy.35–37 The clinical
efficacy of kinase inhibitors however does not solely depend on
their selectivity proles, but is also dependent on other factors
such as potency, tissue distribution, toxicity, and drug resis-
tance. A less selective inhibitor may in some cases be thera-
peutically benecial based on functional activity versus off-
target effects and their biological relevance. To this end, off-
target effects must be carefully evaluated in order to broaden
the clinical applications of inhibitors and avoid unwanted
clinical outcomes.

In this study, using a computational molecular modeling
approach, we have determined the potential binding modes of
PERK inhibitors GSK414 and GSK157 in the RIPK1 active site.
PERK and RIPK1 kinase binding sites showed high structure
and sequence similarities. Selectivity to either target can be
achieved by accounting for the differences in the electrostatic
potential interaction proles in the binding site. Consistent
with the available experimental studies, molecular docking was
able to correctly predict the dual targeting nature of GSK414 and
GSK157 under conventional molecular docking and IFD
settings. IFD of AMG44 resulted in a unique binding mode with
a good docking score and MMGBSA binding energy, but that
lacked the canonical interaction in the active site and displayed
higher active site exibility in the MD simulation. While the
computational analysis alone cannot rule out the possibility of
the AMG44 binding to RIPK1, we speculate that the weak elec-
trostatic interactions is a main reason for lack of RIPK1 inhi-
bition by AMG44.11 Weak electrostatic interactions can limit
a compound's ability to compete with the endogenous ATP,
resulting in no functional effect in kinase assays.

Despite not engaging in any crucial ligand interactions, the
AMG44 still had a high docking score highlighting the limita-
tions of the scoring functions.38,39 Therefore, counter screens
using docking methods should be carefully evaluated and the
results should not be prioritized based on docking scores alone.
374 | RSC Adv., 2020, 10, 367–375
In particular, the results show possibilities for further
improvement of RIPK1 inhibitors by investigating substitutions
patterns that could mediate favorable interaction with Lys45. A
consensus scoring may help reduce the number of false posi-
tives predictions,38,40 and prior knowledge of ligand interactions
and custom scoring functions can improve the docking accu-
racy.41 In addition, long MD timescales are oen needed to rule
out false binding.42 The strategies used in the current study
provide a computational toolkit to assess the similarity of
protein binding sites and thereby predict the potential off-target
interactions of small molecule inhibitors.
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