
ORIGINAL ARTICLE

PhIN: A Protein Pharmacology Interaction Network
Database

Z Wang1, J Li1,2, R Dang1, L Liang1,2 and J Lin1,2*

Network pharmacology is a new and hot concept in drug discovery for its ability to investigate the complexity of
polypharmacology, and becomes more and more important in drug development. Here we report a protein pharmacology
interaction network database (PhIN), aiming to assist multitarget drug discovery by providing comprehensive and flexible
network pharmacology analysis. Overall, PhIN contains 1,126,060 target–target interaction pairs in terms of shared
compounds and 3,428,020 pairs in terms of shared scaffolds, which involve 12,419,700 activity data, 9,414 targets, 314 viral
targets, 652 pathways, 1,359,400 compounds, and 309,556 scaffolds. Using PhIN, users can obtain interacting target networks
within or across human pathways, between human and virus, by defining the number of shared compounds or scaffolds
under an activity cutoff. We expect PhIN to be a useful tool for multitarget drug development. PhIN is freely available at http://
cadd.pharmacy.nankai.edu.cn/phin/.
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Due to the intrinsic complexity of molecular interactions,
besides target proteins many drugs interact with several
additional targets, which may lead to unwanted side
effects.1–3 The traditional drug design paradigm, a one-target–
one-drug mindset, which has been proven successfully in
drug development for decades, is now challenged by the
clinical attrition figures4 and several studies indicating poly-
pharmacology (which is that drugs interact with multiple tar-
gets).5,6 Especially, single-target drug intervention has been
shown not effective in combating the complex systemic dis-
eases like cancers, AIDS, cardiovascular diseases, and neu-
rodegenerative disorders.7–10 As a consequence, network
analysis, due to its capability of investigating complex relation-
ships, is more and more attractive8,11–15 and network-based
approaches such as network pharmacology,4 network medi-
cine,7 diseases network,16 etc., are emerging. Compared with
the traditional approach to drug discovery, systems-oriented
computational approaches apply and leverage the parallelism
and high-dimensionality of the existing molecular data to con-
struct molecular models to model broader bimolecular sys-
tems.17 Recently, various databases concerning drug–protein,
molecule–protein, and protein–protein interactions were devel-
oped, e.g., VisANT,18 a network platform integrating genes,
drugs, diseases, and therapies; ChemProt,19 a disease chem-
ical biology database; DINIES,20 a web interface for drug–
target interaction prediction; and VNP,21 a database used for
visualizing the disease–target–drug interaction network.

Recently, Paolini et al.6 mapped the human pharmacolog-
ical interaction network using the definition that two proteins
interact if they bind at least 10% of shared compounds with
a difference in potency of only 10-fold below an activity cut-
off of 10 lM, and applied it in network analysis of drug–
target interactions associated with asthma. Using a similar
idea, Hu et al.22 performed a systematic selectivity-centric
analysis of target–ligand interactions and identified more

than 200 molecular scaffolds that are selective for estab-
lished target families.

Although a large amount of ligand–target and target–
target bioactivity data were provided from public data sources,
including PubChem,23 ChEMBL,24 and BindingDB,25 to our
knowledge there are no databases or tools that utilize such
data to provide comprehensive pharmacology interaction
network analysis based on a user-defined interaction. In this
article we report a protein pharmacology interaction network
database (PhIN), aiming to assist multitarget drug discovery
by providing comprehensive and flexible network pharmacology
analysis. Using PhIN, users can obtain interacting target
networks within or across human pathways, between human
and virus, and virus and virus by defining a number of shared
compounds or scaffolds under an activity cutoff. We expect
PhIN to be a useful tool and data source for multitarget drug
development.

METHODS
Data sources and statistics
In consideration of bioactivity data standardization and data
update cycle, we use ChEMBL as the bioactivity data
source. In the current version of PhIN, ChEMBL (v. 18) was
used, which contains about 1,350,000 compound entries
and about 9,400 target entries, with more than 12,400,000
activity measurements, among which about 2,800,000 have
valid ChEMBL-converted values (hereafter referred to as
the pChEMBL value, which is a negative logarithmic of pub-
lished activity; see detail description at https://www.ebi.ac.
uk/chembl/faq#faq67). Only data with pChEMBL values
were used in PhIN. Pathways from SMPDB and viral data
from ICTV (http://www.ictvonline.org/) and ViralZone were
integrated. For a certain target-compound entry, if multiple
potency measurements were reported, their geometric
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mean value was used (hereafter generally referred to as
pChEMBL value). For example, for neostigmine bromide
(CHEMBL54126) and its target acetylcholinesterase
(CHEMBL220), there are 12 corresponding bioactivities,
among which 11 have valid pChEMBL values: 7.66, 8.70,
6.22, 8.04, 7.04, 7.35, 7.51, 7.39, 7.00, 10.37, and 6.70;
therefore, active data used in PhIN is 7.63. Figure 1 shows
the data workflow for PhIN.

Scaffold generation
The scaffold in this study is the “Bemis and Murcko” (BM)26

scaffold, which was widely accepted for scaffold representa-
tion and used in molecular scaffold analysis27,28 and was
employed for scaffold representation. First, the scaffolds of
a target were collected by isolating BM scaffolds of its
ligands; then for each scaffold the maximum pChEMBL
value of a ligand underlying the scaffold was selected as its
activity against the target and the maximum or mean
pChEMBL value of a ligand underlying the scaffold can be
selected as its activity against the target; finally, target pairs
were created depending on their shared scaffolds number
and an activity threshold. For example, the sucrase-
isomaltase (CHEMBL3114) and maltase-glucoamylase
(CHEMBL2074) pair share 11 scaffolds with default search-
ing parameters (shared scaffold 5, pChEMBL value 6)
(Supplementary Figure S1). The RDKit (http://rdkit.org/)
package was used for BM scaffolds generation and there
are 309,556 unique scaffolds, which is downloadable at the
webserver, in current release.

Web interface
The PhIN web interface is built with the Python and Django
framework (v. 1.6.2) (https://www.djangoproject.com/) and
deployed using Nginx (http://nginx.org). Tools used in PhIN
are: JSME,29 a JavaScript-based molecular editor, used for

structure display; Cytoscape.js (http://cytoscape.github.io/
cytoscape.js/), used for network representation; PostgreSQL
(v. 9.3) together with MongoDB (http://www.mongodb.org),
used as a database server (http://www.postgresql.org/); and
RDKit, used for small molecule manipulation.

RESULTS
Polypharmacology interactions network
In PhIN, one of two criteria, compounds criteria or scaf-
folds criteria, is used to define an interacting target pair.
When using compounds criteria, two targets are defined
as interacting if they share a certain number of bound
ligands above a certain pChEMBL value cutoff. Paolini
et al.4 define an interaction target pair if there is at least
a ligand binding to both targets under a certain activity
range, while Hu et al.30 employ a simple definition that
two targets are related to each other if they share at
least five active compounds. Based on the above two
studies, we set the default threshold for activity
(pChEMBL value) and the number of shared ligands to 6
(1 lm)31 and 5, respectively. For example, in the current
database there are 34 and 48 ligands with pChEMBL
above 6 against sucrase-isomaltase (CHEMBL2748) and
maltase-glucoamylase (CHEMBL2074), respectively, and
23 of them are in common, so these two targets are
defined as interactive or related. To give the user a
global view of target–target interactions in PhIN and ena-
ble the user to conduct large-scale analysis, three matri-
ces that contain shared compounds/scaffolds of each
target pair can be found in Supplementary Tables S1,
S2, and S3. Overall, the current database contains
1,126,060 target–target interaction pairs in terms of

Figure 1 Overall data workflow of PhIN database. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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shared compounds and 3,428,020 pairs in terms of
shared scaffolds.

Pathway integration
Pathway data were collected from SMPDB (v. 2.0)32 which
contains 618 pathways of human and were classified into
metabolic pathway, physiological pathway, signaling path-
way, drug metabolism pathway, drug action pathway, and
disease pathway; proteins that are involved in each path-

way were mapped to ChEMBL targets through Uniprot ID,
as in Table 1.

Viral–viral and viral–human target–target interaction
network
Nowadays, viruses are mainly classified by phenotypic
characteristics including morphology, nucleic acid type,
mode of replication, host organisms, and the type of dis-
ease they cause etc. (http://en.wikipedia.org/wiki/Virus_
classification). The ICTV viral system and Baltimore

Table 1 Number of ChEMBL targets mapped to SMPDB

Pathway class Number of pathways Number of targets Number of compounds Number of BM scaffold

Disease pathway 215 294 25,437 8,785

Drug action pathway 238 346 63,342 21,839

Drug metabolism pathways 62 162 25,419 7,901

Metabolic pathways 85 350 32,498 11,353

Physiological pathways 6 105 18,583 7,328

Signaling pathways 15 107 18,995 7,166

For compounds and BM scaffolds, pChEMBL value cutoff is 6.

Figure 2 Search and results interface of PhIN. (a) Query options, including text areas for thresholds of shared number and pChEMBL
value, toggle for network type—compound or scaffold, text area for ChEMBL ID and three tree-like menus. (b) Result network graph of
excitatory neural signaling through 5-HTR 4 and serotonin; external targets of this pathway are also shown. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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classification system33 are the two main schemes and both
of them were integrated into PhIN. Moreover, targets
belonging to viruses also link to ViralZone,34 which was
developed by the Swiss-Prot virus annotation team for pro-
viding comprehensive viral information. PhIN contains 314
viral information. Using PhIN, users can not only obtain a
target–target interaction network within a virus by defining
the shared ligand/scaffold number and pChEMBL value cut-
off, but also the target–target interaction network between
the virus and human. For example, the interaction network
of human immunodeficiency virus type 1 (HIV-1) reverse
transcriptase (Supplementary Figure S2) shows that
besides targets of HIV, there are also connections with cell
lines such as T-cells. Therefore, we hope that PhIN could
be useful in antivirus drug discovery.

Molecule–molecule functional similarity
Drugs with overlapping drug targets are likely to be side
effect similar.35,36 Therefore, PhIN introduces molecule–
molecule functional similarity by defining that functional
similarity of two molecules is determined by their interactive
targets in common (the default thresholds for target num-
bers and pChEMBL values are 3 and 6, respectively). For
example, ziprasidone (CHEMBL708) and clozapine
(CHEMBL42), which are FDA-approved drugs for the treat-
ment of schizophrenia, act against 18 targets in common,

so they are defined as functionally similar although structur-
ally different. Functional similarity might also help to
develop more structurally diversified leads during drug
development. This information represented as a table in
each compound page (Supplementary Figure S3). Users
can enter the ChEMBL ID of a compound, such as
CHEMBL708, at the ChEMBL ID input area at the search
panel to jump to the page that contains a table of function-
ally similar compounds.

Case study
By generating the polypharmacology interactions network
of a signaling pathway, excitatory neural signaling through
5-HTR 4 and serotonin (ENST5S), we will give a step-by-
step example of using PhIN. The 5-HT receptor, a member
of the seven transmembrane spanning the G-protein-
coupled family of receptors, is widely distributed in the cen-
tral nervous system and peripheral tissues.37,38 By searching
and browsing pathway trees, check the excitatory neural
signaling through 5-HTR 4 and serotonin and leave the other
options as their defaults, as shown in Figure 2a. Then click
the submit button, and a network will be created in seconds
(Figure 2b) (however, this depends on the user selection:
the more targets selection, the longer the generation time).
More options for manipulating the network can be found at
the option tab, including node labeling, node filtering by

Figure 3 Pharmacology interaction network of serotonin 4 (5-HT 4) receptor. Nodes is highlighted (green) by pathway (excitatory neu-
ral signaling through 5-HTR 4 and serotonin). Edge width is proportional to number of shared compounds (scaffolds). Interaction infor-
mation between HERG and serotonin 4 (5-HT 4) receptor is shown in the left panel. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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pathway, protein type, or viral type, a toggle for showing a
full network or internal network (in this example, only targets
involved in ENST5S will be shown) and a button for export-
ing the current network as a picture. Clicking on the node
and edge between nodes will display target information and
target-pair information in the left panel (Figure 3). Moreover,
molecular analysis inside the network, including a fingerprint-
based similarity search (an ECFP-like fingerprint imple-
mented in RDKit) and substructure search, can be per-
formed in the “utility” panel. If one of the ligands in a ligand
set of a target, similar to (the Tanimoto coefficient is
employed as threshold) or contains the user-input-structure,
the target will be highlighted in yellow. This will help the user
to find potential targets for the user-input-structure among
the constructed pharmacology interaction network. Full data
underlying the network is at the data tab and can be down-
loaded as a PDF or CSV (comma separated value).

DISCUSSION

The objective of this work was to provide an informative
interaction network for polypharmacology. The definition of
interaction between target pairs is by the shared com-
pounds, which was derived from previous studies.4 This
approach has proven to be useful in target identifica-
tions,5,39 multitarget drug design,40 and side effect predic-

tion.36 We also extended the definition of interaction
between target pairs using shared scaffolds. As stated in
the case study part, we gave a simple example (ENST5S)
of typical use of the PhIN database. From the network, we
can find that 5-HT4 is interacting with the human ether-a-
go-go related gene (HERG), since the two proteins share
five compounds with pChEMBL above 6 (Figure 4).
Because HERG codes for a protein of the alpha subunit of
a potassium ion channel, which is essential for the mainte-
nance of normal cardiac function, inhibition of HERG is
implicated in long QT syndrome, which is a potentially life-
threatening arrhythmia.41–43 Since the edge connection
between ENST5S and HERG indicates that active com-
pounds against ENST5S may also bind to HERG, extra
attention should be paid when selecting hit compounds for
ENST5S. An inside view of shared compounds between
ENST5S and HERG shows that one of the five com-
pounds is a withdrawn drug, Cisapride, in many countries
because of the side effect long QT syndrome.44 This
example shows that PhIN might help researchers to iden-
tify a side target of drugs and avoid the side effect in drug
development. Besides side effect prediction, a selective
optimization of side activities analysis (SOSA) of the phar-
macology network from PhIN can provide a wealth of
opportunities for identifying lead series that already exhibit
interesting mixtures of pharmacology, which follow the
idea of initiating polypharmacology from an integrated

Figure 4 Shared compounds of serotonin 4 (5-HT 4) receptor and HERG at pChEMBL value above 6. [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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pharmacophore that already provides some of the nascent
activity profile rather than attempting to merge and inte-
grate pharmacophores.4,45

PhIN can also assist in target identification and multitar-
get drug design. For example, from the interactive net-
work of the serotonin transporter (5-HT) (CHEMBL228),
with default search parameters, we can find that it inter-
acts with the adrenergic receptor beta protein family
(ADRB) (Supplementary Table S4). Of these shared
compounds, five are approved drugs, and further, one is
an approved drug (carvedilol, ChEMBL723) for ADRB,
which indicates that 5-HT is a potential target for drugs of
the ADRB protein family, and also proteins of the ADRB
protein family are potential targets of drugs for 5-HT. A
related study has shown that paxil (CHEMBL490), one of
the 5-HT reuptake inhibitors, exhibited good binding affin-
ity for ADRB. Multitarget therapeutics, including drug
combinations and drugs with multitargets, are important
for complex diseases such as HIV infection and cancer.
The interaction network created by PhIN may assist such
multitarget drug design. For example, with default search
parameters, the interaction network of HIV-1 shows that
HIV-1 protease and HIV-1 reverse transcriptase shared 15
compounds. Moreover, a molecular search (similarity or
substructure) inside the network can help users to evalu-
ate the structure. For example, if a structure, 2-(1H-imida-
zol-2-yl)-1H-indole (Supplementary Figure S4), is drawn,
and a substructure search inside the network is per-
formed, only HIV-1 reverse transcriptase and HIV-1 prote-
ase were highlighted in yellow, which indicates that this
structure may be a good starting point for designing a
multitarget drug against HIV-1 protease and HIV-1 reverse
transcriptase.

In summary, we constructed a PhIN database by inte-
grating bioactivity data from ChEMBL (a public database) in
terms of shared compounds and scaffolds. Using shared
scaffolds to identify a pharmacology interaction network is
introduced. We also incorporated virus taxonomy data from
ICTV and ViralZone and human pathway data from
SMPDB, which could help readers to study protein pharma-
cology interactions for disease pathways, biological path-
ways, and viral infection. We hope that PhIN will be a
useful source for system pharmacology researchers and
multitarget drug design.

We have released the initial version of PhIN. In the
future, more biological entities, such as gene ontology
terms and disease, as well as more pharmacology data-
bases such as KEGG,46 DrugBank,47 TTD,48 and NCI/
Nature Pathway Interaction Database (http://pid.nci.nih.
gov), and analytical tools, such as the Similarity Ensemble
Approach (SEA)49 and machine learning-based predictive
models,6 will be integrated. In addition, we will update PhIN
according to the databases to keep pace with the ever-
increasing publication data.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?

� Analysis of target-pair interaction in terms of shared com-
pounds has proven to be valuable in drug discovery.
However, to our knowledge, no comprehensive database
that contains such information has been reported.

WHAT QUESTION DID THIS STUDY ADDRESS?

� This study addressed applications of an interacting target
network, which was generated by shared compounds
or a scaffold of a target pair for polypharmacology.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE

� This study reports a Web-based tool that provides an
interacting target network within or across human path-
ways, between human and virus, virus and virus, using
a user-defined target-pair interaction.

HOW THIS MIGHT CHANGE CLINICAL
PHARMACOLOGY AND THERAPEUTICS

� This Web-based tool can be used to assist polypharma-
cology, including target identification, side effect predic-
tion, and multitarget drug design.
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