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Abstract 
Cinnamon bark (Cinnamomum zeylanicum Syn C. verum, family: Lauraceae) is 
one of the oldest traditional medicines for inflammatory- and pain-related 
disorders. The objective of the present study was to evaluate the efficacy of the 
polyphenol fraction from Cinnamomum zeylanicum bark (CPP) in animal 
models of inflammation and rheumatoid arthritis. Dose-response studies of CPP 
(50, 100, and 200 mg/kg) used in a separate set of in vivo experiments were 
conducted in acute (carrageenan-induced rat paw edema), subacute (cotton 
pellet-induced granuloma), and sub-chronic (AIA, adjuvant-induced established 
polyarthrtis) models of inflammation in rats and the acetic acid-induced writhing 
model of pain in mice. Effects of CPP on cytokine (IL-2, IL-4, and IFNγ) release 
from Concanavalin (ConA)-stimulated lymphocytes were also evaluated in vitro. 
CPP showed a strong and dose-dependent reduction in paw volume, weight 
loss reversal effects against carrageenan-induced paw edema, and cotton 
pellet-induced granuloma models in rats. CPP (200 mg/kg p.o. for 10 days) 
showed a significant reduction in elevated serum TNF-α concentration without 
causing gastric ulcerogenicity in the AIA model in rats. CPP also demonstrated 
mild analgesic effects during acute treatment as evidenced by the reduction in 
the writhing and paw withdrawal threshold of the inflamed rat paw during the 
acetic acid-induced writhing model and Randall-Selitto test. CPP was found to 
inhibit cytokine (IL-2, IL-4, and IFNγ) release from ConA-stimulated 
lymphocytes in vitro. In conclusion, CPP demonstrated prominent action in 

http://www.scipharm.at/
mailto:sbodhindus@gmail.com
http://creativecommons.org/licenses/by/3.0/


568 B. Rathi et al.:  

Sci Pharm. 2013; 81: 567–589 

animal models of inflammation and arthritis and therefore can be considered as 
a potential anti-rheumatic agent with disease-modifying action. 
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Introduction 
Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease affecting freely 
movable joints, such as hand, knee, and shoulder joints. The symptoms of active RA 
include pain, swelling, morning stiffness, warmth, redness, and limited functioning of the 
joints. The systemic ramifications of the disease, apart from morbidity and mortality, 
include cardiopathy, nephropathy, vasculopathy, pulmonary, and cutaneous disorders [1]. 
Although the cause of rheumatoid arthritis is unknown, autoimmunity plays a pivotal role in 
both its chronicity and progression, and RA is considered to be a systemic autoimmune 
disease. Existing treatment therapies for RA usually focus on anti-inflammatory activity. 
They help to manage the process of inflammation and thus may also help in the repair 
process. Medications like nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, 
and analgesics are used to suppress symptoms, while disease-modifying anti-rheumatic 
drugs (DMARDs) and biological response modifiers are often required to inhibit or halt the 
underlying immune process and prevent long-term damage. Therefore, the search for 
safer drugs for the management of rheumatoid arthritis for chronic use is still on. 

Cinnamon bark (Cinnamomum zeylanicum Syn C. verum, family: Lauraceae) is one of the 
oldest herbal medicines mentioned in many traditional texts for inflammation [2] and pain 
related to disorders such as enteralgia (acute intestinal pain), bronchitis, and rheumatism 
[3]. It is native to Sri Lanka Mayanmar (Burma) and the southern coastal strip of India. In 
Chinese traditional medicine, cinnamon is indicated as an analgesic and antipyretic 
against colds, fever, headache, myalgia (mascular pain), arthralgia (arthritic pain), and 
amenorrhea (failure of menstruation). In Indian traditional literature including Ayurveda and 
'Materia Medica of India and their Therapeutics', many other valuable actions are 
attributed to cinnamon bark and oil [4].  

Many scientific pharmacological investigations have also reported on the anti-inflammatory 
potential of bark of many species of cinnamon [3, 5, 6]. The anti-inflammatory action of the 
Japanese species Cinnamomum seiboldii [7] and Cinnamomi cortex [8] has been 
attributed to a series of tannins. An herbal ophthalmic medicament called Ophthacare, 
which contains 0.5% cinnamon, was tested for its anti-inflammatory activity on ocular 
inflammation in rabbits and found to be effective [9]. The antinoiceptive activity (analgesic) 
[10] and antipyretic (fever-reducing) activity of cinnamon (C. verum) bark [7] were also 
reported.  

Another important activity is the immunomodulatory effects exerted by cinnamon. An 
interesting fact about cinnamon is that it can act both as an immunostimulant and an 
immunosuppressant depending on the species and dose [11]. In vitro inhibitory activity 
against the complement formation has been documented for cinnamon cortex and 
cinnamon oil [11]. The extract of cinnamon bark is reported to have anticomplementary 
activity [12] and immunosuppressive activity [13, 14]. Cinnamon bark’s potential for 
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relieving inflammation and pain, and enhancing the immune system, makes it a good 
candidate as an antiarthritic agent.  

Furthermore, cinnamon polyphenol extract (CPE) from the cinnamon bark of various 
varieties has shown potential for the management of certain human health conditions. 
Procyanidins or condensed tannins are flavonoid oligomers whose building blocks are 
(+)-catechin and (−)-epicatechin. They are oligomeric end products of the flavonoid 
biosynthetic pathway and are now identified and recognised for their favourable effects in 
human beings. Based on the linkage between the successive monomeric units, 
procyanidins are classified as Types A, B, or C procyanidine polyphenols.  

Recently, the immunomodulatory effect of the water extract of cinnamon on anti-CD3-
induced cytokine responses and p38, JNK, ERK1/2, and STAT4 activation [13] has been 
shown. CPE is known to affect immune responses by regulating anti- and pro-
inflammatory and GLUT gene expression as seen in an in vitro study on mouse RAW264.7 
macrophages [15]. However, a functional outcome of these effects in an animal model of 
rheumatoid arthritis has not been investigated. 

The objective of the present work is aimed to investigate the functional effects and 
probable mechanism of action of polyphenols isolated from Cinnamomum zeylanicum bark 
(CPP) in an animal model of acute inflammation and established rheumatoid arthritis in 
rats. CPP was tested against animal models of acute (carrageenan-induced), subacute 
(cotton pallet granuloma), and chronic (Freund's complete adjuvant, FCA, induced 
established poly arthritis) models of inflammation. CPP was also tested for its potential 
analgesic activity against inflammaotoy pain and ulcerogenicity. 

Results and Discussion 
Characterization of CPP 
As an initial chemical characterization of the CPP, total phenolic content was determined 
and found to be 860 mg of gallic acid equivalant (GAE) per g. As an additional 
characterization, an HPLC study was performed. The HPLC spectra showed the presence 
of polyphenols with a similar absorption pattern to procyanidines with two bands of 
maximum absorption around a retention time of 30 to 38 min, which matches with the 
trimer and tetramer of proanthocyanidins polyphenols as reported earlier [16] and 
suggests the predominance of polyphenolic compounds in CPP (Fig. 1).  

Effect of CPP against carrageenan induced rat paw edema in rats  
As shown in Table 1, subplanter administration of carrageenan caused an increase in the 
paw volumes of rats (an increase of 2.63 ml within 3 hours) which indicates edema 
formation (inflammation) in rat paws. Acute oral administration of celecoxib (10 mg/kg) 
prevented the edema formation significantly (P < 0.001) and showed an increase in the 
paw volume by 1.42 ml (45.79% inhibition) at 3 hours. Acute oral administration of CPP 
showed dose-dependent inhibition of carrageenan-induced edema (21.83, 33.19, and 
39.97% inhibition) at 50, 100, and 200 mg/kg, p.o., respectively, at 3 h.  
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Fig. 1.  HPLC spectra of CPP at 280 nm. 

None of the treatments showed significant inhibition of paw edema at 1 h after 
carrageenan administration. However, at 2 h, CPP showed significant inhibition of paw 
edema at a dose of 200 mg/kg (37.27% inhibition).  

Effect of CPP on pain threshold during the Randall-Selitto test in rats 
The pain threshold was measured mechanically at 3 h and pressure levels at which rats 
elicited the response of struggling, squealing, or vocalization were taken as the pain 
threshold. Vehicle control rats showed a PWT of 66 g. Celecoxib (10 mg/kg, p.o) increased 
paw withdrawal latency (PWT) by 36.4%, whereas CPP (100 and 200 mg/kg, p.o.) 
increased PWT by 16.66 and 20.73%, respectively. However, CPP (50 mg/kg, p.o.) did not 
increase PWT significantly as compared with the vehicle-treated rats. Thus, CPP 
demonstrated mild analgesic activity on the pain responses elicited by the mechanical 
stimulus.  

Effect of CPP in cotton pellet granuloma in rats  
Implantation of cotton pellets produced granuloma formation, which was measured by 
weighing the dried pellet after 7 days post-implantation. In the vehicle-treated rats, the 
mean cotton pellet weight was increased by 123% (from 20 g to 44.67 g). After seven days 
of treatment with celecoxib (10 mg/kg/day) and CPP (50, 100, and 200 mg/kg/day), the dry 
weights of the cotton pellet granuloma were found to reduce by 43.51%, 27.31%, 34.40%, 
and 38.92%, respectively, which was significant as compared with the weights of 
granuloma tissues in the vehicle control rats (Table 2). 
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Tab. 1.  Effect of CPP against carrageenan-induced rat paw edema in rats 
Treatment  
(dose,  
mg/kg,  
route) 

Mean Paw Volume (mL.) ± SEM PWT in  
Randall-Selitto 

assay at 3 h 
(g ± SEM)  

(% increase) 

0 h 1 h 2 h 3 h 

Vehicle  
control 

2.60  
± 0.07 

3.65  
± 0.21 

4.81  
± 0.21 

5.23  
± 0.13 

66.00  
± 7.8 

Celecoxib  
(10, p.o.) 

2.75  
± 0.07 

3.55  
± 0.15 
(23.44) 

4.43  
± 0.17 
(24.04) 

4.18c 
± 0.29 
(45.79) 

90.00c 
± 7.9 
(36.4) 

CPP  
(50, p.o.) 

2.79  
± 0.07 

3.70  
± 0.19 
(12.76) 

4.72  
± 0.17 
(12.81) 

4.84  
± 0.37 
(21.83) 

74.3  
± 4.08  
(12.63) 

CPP  
(100, p.o.) 

2.72  
± 0.10 

3.24  
± 0.13 
(12.28) 

4.28  
± 0.05 
(29.54) 

4.48 b 
± 0.09 
(33.19) 

75.00a  
± 4.14 
(16.66) 

CPP  
(200, p.o.) 

2.47  
± 0.10 

3.30  
± 0.10 
(21.05) 

3.91c 
± 0.14 
(37.27) 

4.05c 
± 0.03 
(39.97) 

81.0c 
± 0.97 

(20. 73) 
n=6, Data is represented as Mean paw volume (ml.) ± SEM. and was analyzed 
by Two-way repeated measures ANOVA followed by Bonferroni posttests. 
Significance represented as a P < 0.05, b P < 0.01, c P < 0.001 as compared to 
vehicle at respective time point. PWT…Paw withdrawal Threshold. 

 

Tab. 2.  Effect of CPP in cotton pellet granuloma- and acetic acid-induced writhing 
model in rats 

Treatment Mean weight of cotton pellet  
granuloma ± S.E.M. 

(% Inhibition) 

Mean number of writhes  
against acetic acid 

(% analgesia) 
Vehicle control 44.67 ± 1.60 29.17 ± 0.48 

Celecoxib (10, p.o.) 25.23 ± 0.47c 

(43.51) 
13.83 ± 0.60c 

(52.59) 

CPP (50, p.o.) 32.47 ± 0.49c 

(27.31) 
25.33 ± 1.05  

(13.16) 

CPP (100, p.o.) 29.30 ± 0.81c 

(34.40) 
23.83 ± 1.30  

(18.31) 

CPP (200, p.o.) 27.28 ± 1.25c 

(38.92) 
22.00 ± 1.53a 

(24.58) 

n=6, Data is represented as Mean value ± SEM. and was analyzed separately for each parameter by 
One-way ANOVA followed by Dunnett’s t test. Significance represented as a P < 0.05, c P < 0.001 as 
compared to vehicle control. 
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Tab. 3.  Effect of CPP on Body weight, Paw edema, and serum TNFα levels at baseline, 
Day-12 and Day-21 post-sensitization in FCA-induced established polyarthritis 
(AIA model) 

Parameter Day Mean Parameter value (dose in mg/kg) 
AIA Celecoxib (10) CPP (50) CPP (100) CPP (200) 

Body  
weight (g) 

0 171.00  
± 1.67 

170.17  
± 1.99 

170.17  
± 1.99 

173.33  
± 3.02 

170.33  
± 4.29 

12 141.00a 
± 2.16 

159.17a 
± 2.75 

159.17a 
± 2.75 

162.50a  
± 1.84 

158.00a  
± 2.19 

21 136.33  
± 2.40 

188.33b 
± 3.00 

188.33b  
± 3.00 

195.17b  
± 1.60 

197.67b  
± 3.38 

Paw Volume 
(ml) –  
Injected – Left 

0 2.67  
± 0.14 

2.47  
± 0.17 

2.56  
± 0.13 

2.13  
± 0.08 

2.47  
± 0.15 

12 5.75a 
± 0.09 

5.28a 
± 0.16 

5.59a 
± 0.16 

5.18a 
± 0.18 

5.25a  
± 0.85 

21 5.65  
± 0.09 

3.18b  
± 0.06 

4.24b  
± 0.26 

3.31b 
± 0.17 

3.40b 
± 0.62 

Paw Volume 
(ml) –
Contralateral – 
Right  

0 2.16  
± 0.15 

1.99  
± 0.13 

1.96  
± 0.14 

2.18  
± 0.03 

2.03  
± 0.41 

12 3.44a  
± 0.11 

3.42a 
± 0.09 

3.42a 

± 0.29 
3.65a 
± 0.08 

3.60a 
± 0.59 

21 3.90  
± 0.16 

2.81  
± 0.14 

3.78  
± 0.45 

3.15  
± 0.08 

2.26b  
± 0.05 

TNFα levels 
(pg/ml)  

0 20.05  
± 0.25 

28.86  
± 0.48 – – 33.53  

± 0.42 

12 49.63a 
± 2.53 

47.82a  
± 2.94 – – 47.45a 

± 2.03 

21 52.58  
± 2.44 

33.72b 
± 2.70 – -– 37.40b  

± 2.83 
n=6, Data is represented as Mean parameter value ± SEM. The data for each parameter was separately 
analyzed by Two-way repeated measures ANOVA followed by Bonferroni posttests. Significance 
represented as a P < 0.001 as compared with baseline (day-0) values of same treatment group. b P < 
0.001 as compared to Day-12 values of same treatment group.  

 

Tab. 4.  Effect of CPP on IL2, IL-4, and IFN-γ in ConA-stimulated lymphocytes in vitro 

Treatment Cytokine concentration ± S.E.M. (pg/ml) 
 IL-2 IL-4 IFNγ 
Control 1.94 ± 0.24 25.02 ± 1.03 20.41 ± 0.54 
ConA (40 µl) 589.00 ± 8.8a 114.75 ± 3.89a 277.74 ± 7.26a 

CPP (100 μl, 0.4%) 10.27 ± 0.26b 41.22 ± 1.90b 21.98 ± 1.03b 

Each reading is mean of triplicate readings obtained from ELISA assay. Data was 
analyzed by Two-way ANOVA followed by Bonferroni posttests. a P < 0.001 as 
compared with Control, b P<0.001 as compared with ConA treated group test. 
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Effect of CPP against acetic acid-induced writhing in rats 
The mean number of writhes induced by the intraperitoneal administration of acetic acid 
(0.1 ml, 0.6% v/v) was 29.17 in the vehicle control group which confirms the induction of 
abdominal pain (Table 2). The mean numbers of writhes were significantly reduced in 
animals pretreated orally with celecoxib (13.83 writhes, 52.59% reduction) and CPP (22 
writhes, 24.58% reduction). However, CPP did not exhibit a significant reduction in writhing 
at an acute oral dose of 50 mg/kg or 100 mg/kg (Table 2). 

Effect of CPP against FCA-induced established polyarthritis (AIA model) 
Effect on Body weight in the AIA model 
Immunization of rats with FCA produced a gradual and significant (P < 0.001) decrease in 
the body weight of rats as observed on day-12 of the study in all rats (Table 3). The 
decrease was sustained in adjuvant-induced arthritic rats treated with the vehicle (AIA 
control). Nine days of daily oral administration (day-12 to day-21) of CPP (50, 100, and 
200 mg/kg/day) and celecoxib (10 mg/kg/day) caused a dose-dependent and significant (P 
< 0.001) reversal of the FCA-induced body weight decline as seen on day-21.  

Effect on paw edema in the AIA model 
The immunization of rats by a subplanter injection of FCA induced a local inflammatory 
reaction in the injected paw (primary response) and a secondary response in the non-
injected (contralateral) paw in 12 days post-immunization (Table 3). The significant 
increase in paw volumes was observed both in the injected and non-injected 
(contralateral) paws on day-12 of the study in all rats (Table 3) confirming the induction of 
arthritis in rats. Oral treatment of CPP (50, 100, and 200 mg/kg/day) and celcoxib (10 
mg/kg/day) from day-12 to day-21 (9 days), brought upon a dose-dependent and 
significant (P < 0.001) reduction in the paw volumes in FCA-injected paws (Table 3). On 
the other hand, contralateral paw volumes were significantly reduced only by CPP (200 
mg/kg/day for 9 days) treatment (P < 0.001) (Table 3). Celecoxib (10 mg/kg) and CPP (50 
and 100 mg/kg) did not show a significant reduction in contralateral paw volumes on day-
21 post-immunization (Table 3). 

Effect on serum TNFα levels in the AIA model 
Administration of FCA into the sub-plantar region of rats significantly (P < 0.001) 
increased the serum TNFα concentration on day-12 in all the rats (Table 3). The serum 
TNF-α concentration continued to be at higher levels in the adjuvant-induced arthritis 
control (AIA) group as seen on day 21 (Table 3). Serum TNF-α concentration was 
significantly (P < 0.001) decreased on day 21 in rats treated with CPP (200 mg/kg/day) 
and celecoxib (10 mg/kg/day) for 9 days as compared to corresponding levels on day-12 
(Table 3). 

Effect on gastric mucosa in the AIA model 
The gastric mucosal superficial layer of sections of stomach samples of rats removed from 
normal non-arthritic (Figure 2A) rats was found to be smooth. The mucosal epithelial layer 
of the stomach sections of FCA-induced arthritic rats after subacute treatment with the 
vehicle (Figure 2B) and CPP at oral dose of 200 mg/kg (Figure 2D) were also found to be 
normal and smooth with mild capillary dilation. However, the superficial layer of the gastric 
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mucosa of rats treated with the subacute treatment of celecoxib (10 mg/kg, p.o.) had 
multiple areas of erosions and hemorrhage (Figure 2C). 

 
Fig. 2.  Photomicrograph of sections of stomach on Day 21 of the study. The figures 

show sections of stomach of rats with absence of arthritis (A) and FCA-induced 
arthritis-induced rats with 10-day treatment of vehicle (distilled water) (B), 
celecoxib (10 mg/kg, p.o.) (C) and CPP (200 mg/kg, p.o.). Arrow indicates 
erosion with hemorrhage at the superficial part of the mucosa. Stained with 
hematoxylin and eosin (H&E) X 200. 

Effect of CPP on Concanavalin (Con-A)stimulated lymphocyte culture in vitro 
The levels of IL2, IL4, and IFNγ in normal lymphocytes (non-stimulated) were 1.94, 25.02, 
and 20.41 pg/ml, respectively (Table 4). The ConA-stimulated proliferation of the splenic 
lymphocyte culture showed a significant (P < 0.001) increase in cytokine expression (IL-2, 
IL-4, and IFNγ levels were 589, 114.75, and 277.74 pg/ml, respectively). CPP treatment 
brought about a significant (P < 0.001) reduction in IL-2, IL-4, and IFNγ levels (Table 4) of 
ConA-stimulated lymphocytes and showed IL-2, IL-4, and IFNγ levels of 10.27, 41.22, and 
21.98 pg/ml respectively. 

Discussion 
Although NSAIDs, DMARDs, and corticosteroids appear to be highly efficient drugs in the 
treatment of rheumatoid arthritis, they may cause side effects that can range in severity 
from mild to serious. The major adverse drug reactions (ADRs) associated with NSAIDs 
are gastrointestinal (ulceration or bleeding) with effects on other systems. During their 
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clinical use, gastrointestinal toxicities especially as upper gastrointestinal adverse events 
such as perforation, ulceration, and bleeding are reported in about 20% of patients taking 
long-term NSAIDs which is a major clinical limitation [17]. Besides, some NSAIDs were 
recently withdrawn from the market because of the risk of heart attacks and stroke, and 
some other NSAIDs contained a ‘Black Box’ Warning in the package-inserts, addressing 
the risk of suffering from heart attacks and/or stroke [18, 19]. On the other hand, other 
arthritis therapies such as DMARDs and biological agents had risks of immune 
suppression and serious infection, respectively, with long-term usage. 

Proanthocyanidins (procyanidin, oligomeric proanthocyanidin (OPC), leukocyanidin, 
leucoanthocyanin, and condensed tannins) are a class of flavanols. The cinnamon 
polyphenol extract (CPE) is water-soluble and can be standardized to proanthocyanidins 
[20]. Proanthocyanidins are essentially polymer chains of flavonoids such as catechins 
[21]. The anti-inflammatory action of many species of cinnamon has been attributed to the 
polyphenolic component such as tannins [7] and procyanidins [21]. Therefore, we have 
successfully prepared the standardized polyphenol fraction from the hydroalcoholic extract 
of Cinnamomum zylanicum bark (labelled as CPP) and evaluated it against animal models 
of inflammation and arthritis. Total phenolic content (TPC) of CPP was also determined by 
the well-established Folin-Ciocalteu reagent method [22] and was found to be 860 mg 
GAE/g in the present study. 

The carrageenan-induced rat paw edema is an in vivo test for the evaluation of acute 
inflammatory activity. The recognition of different mediators for different phases of the 
carrageenan-induced edema has important implications for interpreting the anti-
inflammatory effects of the drugs. The development of such edema in the rat paw is a 
biphasic event. The initial phase of the edema has been attributed to the release of 
histamine and serotonin which is then maintained during the plateau phase because of 
kinin-like substances [23]. Further, involvement of histamine and serotonin with other 
mediators in the pathogenesis of rheumatoid arthritis was also reported by many workers 
[24–26]. Effectiveness of the test compounds in the first hour after carrageenan injection is 
indicative of their antihistaminic and/or anti-serotonin action. Second, the accelerating 
phase of carrageenan edema is attributed to the release of prostaglandins [27].  

Our test compound, CPP was not effective in the first hour of treatment but was found to 
be effective in the third hour at 100 mg/kg and at higher doses, suggesting prostaglandin 
inhibition as a possible mechanism of the action effect (Table 1). Tissue granulation is one 
of the distinctive features of inflammation, which is composed of a marked infiltration of 
macrophages and neovascularisation. This condition can be induced in rats by 
subcutaneous implantation of a sterile cotton pellet. The implanted material induces the 
host’s inflammatory response and modulates the release of inflammatory mediators which 
finally leads to tissue proliferation and granuloma formation [28]. The cotton pellet-induced 
granuloma is closely related to the formation of antibodies and the resultant inflammation 
involves the infiltration of macrophages and neutrophils, and the proliferation of fibroblasts. 
The multiplications of small blood vessels as well as the proliferation of fibroblasts are the 
characteristic features at the repair phase of inflammation [29]. Such proliferating cells 
penetrate the exudates, producing a highly vascularized reddened mass known as 
granulation tissue [30]. In our study, CPP showed strong (P < 0.001) and dose-dependent 
inhibition of cotton pellet granuloma and is indicative of its potential to hasten the repair 
phase of inflammation.  
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Analgesia is an important ancillary property of all anti-inflammory agents. Most of the anti-
inflammatory drugs increased the pain threshold in various animal models [31]. This is 
natural because many endogenous chemical mediators of inflammation play a part in 
generating pain impulses (for example histamine, serotonin, prostaglandins), and some 
other mediators such as bradykinin and cytokines are involved in the prolongation of the 
sensation of the pain [32]. 

The syndrome of writhing—lengthwise stretches of the torso accompanied (usually) by 
concave arching of the back—produced by acetic acid, was sensitive and a well-accepted 
method for the evaluation of mild analgesic nonsteroidal anti-inflammatory compounds 
[33–35]. The writhing test is also largely employed as an assay of visceral nociception, 
which represents a major clinical problem [36]. Writhing, thought to be reflexive in nature, 
is produced by a caudally directed wave of abdominal wall muscle constrictions and 
elongations, and is often followed by a characteristic hind limb extension. Acetic acid 
stimulates several inflammatory mediators such as cytokines and eicosanoids, which 
indirectly sensitizes the pain nerve endings and causes the abdominal constriction [37]. In 
the present study, intraperitoneal administration of acetic acid induced a severe writhing 
response, whereas CPP showed a mild reduction in acetic acid-induced writhing at 200 
mg/kg, p.o.  

The pain threshold of the inflamed edematous right hind rat paw was subjected to constant 
force, and examined by the Randall-Selitto assay method [38]. In the present study, CPP 
could show only mild reduction (20%) in the pain latency threshold (PWT) of carrageenan-
induced rat paw edema as shown in the Randall-Selitto assay (Table 1). The mild 
analgesic effect shown by CPP is indicative of stimulus propagation or cytokine blockage 
in the pain nervous fibers as the basis of the analgesic effect.  

Adjuvant-induced arthritis (AIA) in rats is commonly used to evaluate compounds that 
might be of potential use as drugs for the treatment of rheumatoid arthritis and other 
chronic inflammatory conditions. Injection of Freund’s adjuvant suspended in mineral oil 
(Freund’s complete adjuvant, FCA) into rats produces an immune reaction that 
characteristically involves inflammatory destruction of cartilage and bone of the distal joints 
with concomitant swelling of surrounding tissues. FCA induced a series of cellular events 
leading to T-cell activation and polyarthritis [39].  

AIA is a rather aggressive and monophasic form of arthritis; usually, the disease is quite 
severe and finally leads to complete ankylosis and permanent joint deformations. The 
progression of arthritis was confirmed in our study by the increase in edema (paw volume). 
The diseases progressed until day-12 and then became quiescent. CPP halted the 
progression which was evident by a significant decrease shown in the paw volume 
(Table 3). 

The inflammation associated with AIA is dependent on prostaglandin E2 (PGE2) 
generated by cyclooxygenases (COXs) [40, 41]. Besides, the role of cytokines like TNF-α 
and IL-1 has also been implicated in this model [42]. In the present study, CPP treatment 
for 10 days reduced paw volumes of arthritic paws in rats. Therefore, the anti-inflammatory 
action of CPP can be attributed to prostaglandin and/or cytokine inhibition. These results 
are also in line with reports that the anti-inflammatory action of cinnamon bark has been 
attributed to polyphenolic components such as tannins [7] and procyanidines [21]. The 
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inhibition of lipid peroxidation, capillary permeability and fragility, and enzymes such as 
phospholipase A2, cyclooxygenase, and lipoxygenase was reported as the alleged 
mechanism for cinnamon tannins and polyphenols [7, 21]. However, the absence of the 
analgesic effects of CPP as indicated in the acetic acid-induced writhing model (Table 2) 
suggested cytokine inhibition rather than prostaglandin inhibition as the potential 
mechanism for the anti-inflammatory effect of CPP. 

One of the most prominent and serious side effects of NSAIDs is the occurrence of 
gastrointestinal damage (ulcerogenicity). In the present study, for subacute treatment, 
CPP (200 mg/kg p.o. for 10 days) did not cause ulcers in the established AIA in rats 
(Figure 2). Further, cinnamon bark extract and polyphenols have been shown to possess 
cytokine inhibitory effects in vitro [15, 43]. An in vitro pre-challenge with cinnamon extract 
is reported to suppress lipopolysaccharide (LPS)-induced cytokine expression [44]. The 
absence of ulcerogenicity, and mild analgesic potential with good anti-inflammatory 
activity, is in line with the view that CPP has disease-modifying potential. In addition, 
cytokine inhibition emerges as the probable mechanism for CPP which is well-supported 
by its cachexia-reducing effects shown in established AIA-induced polyarthritis in rats in 
the present study.  

Cytokines are known to regulate several events in immune response including cell co-
operation, proliferation, differentiation, and death. Research has also suggested that 
skeletal muscle protein loss is dependent upon the signaling activities of both TNF-α and 
IFN-γ, and that nuclear factor kappa B (NFκB) activity is needed for these cytokines to 
induce muscle damage [45]. In chronic inflammation, an activated immune system can 
release a series of pro-inflammatory cytokines, including tumor necrosis factor- (TNFα). 
RA progression is associated with an imbalance of Th1/Th2 and overproduction of 
antigen-specific immunoglobulin [46]. Several cytokines (TNF-α, IL-1, IL-6, and GM-CSF) 
and activated B cells, T-cells, and antigen-presenting cells play a crucial role in RA joint 
inflammation. The efficacy of anti-TNFα and anti-IL-1 agents in the treatment of RA 
patients is established [47, 48]. In the present investigation, the effect of CPP on serum 
TNFα release from FCA-induced arthritic rats at a dose of 200 mg/kg was estimated. In 
our study, AIA rats showed a significant increase in serum TNFα levels on day 12. CPP 
treatment (for 10 days) showed a significant reduction in elevated TNFα levels in AIA rats 
on day 21 of the study (Table 3). AIA in rats is also a useful model of inflammatory 
cachexia that mimics the human pathophysiology in many important ways [49]. Secondary 
reactions in AIA are characterized by immune responses, inflammation, and severe weight 
loss (cachexia). In our study, the test compound CPP significantly protected rats from AIA-
induced cachexia (Table 3). Cachexia associated with RA persists even after joint 
inflammation improves [50]. Further, rheumatoid cachexia leads to muscle weakness and 
a loss of functional capacity, and is believed to accelerate morbidity and mortality in 
rheumatoid arthritis [51]. Excess production of the inflammatory cytokines is known to 
have a definite role in the development of rheumatoid cachexia. TNFα is probably the 
central mediator of muscle wasting in RA, and is known to act synergistically with 
interleukin-1β to promote cachexia [51].  

Cytokines elaborated by activated T-cells play a major role in the regulation of immune 
responses. When environmental substances (molecules or microbes) gain access to the 
body, these substances (termed antigens) are recognized as foreign by antigen receptors 
that are expressed on the surface of lymphocytes. In an attempt to further understanding 
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of the role of cytokines in the mechanism of CPP, we have analyzed T-cell-derived 
cytokines in the spleen lymphocyte supernatant isolated from mice. The proliferation 
response of T-cells to a polyclonal mitogen, ConA, in culture supernatant and their 
cytokine secretion profiles are well-documented [52]. These cytokines are normally 
produced by the body during an immune response [53]. In our study, the test compound 
CPP was found to inhibit cytokines (IL-2, IL-4, and IFN γ) in ConA-stimulated spleen cell 
culture supernatant (Table 4). IL-2 is necessary for the development of T-cell immunologic 
memory, one of the unique characteristics of the immune system, which depends upon the 
expansion of the number and function of antigen-selected T-cell clones. IL-2 is also 
necessary during T-cell development in the thymus for the maturation of regulatory T-cells 
(Tregs) [54] which results in autoimmunity. IL-4 is an important immune cytokine which 
regulates the function of lymphocytes and macrophages [55]. Several lines of evidence 
exist confirming the role of Th2 cell activation and production of cytokines such as IL-4 in 
RA and other autoimmune diseases [56–58]. Further, circulating IFN γ can be detected in 
patients with autoimmune diseases like RA [59]. These results suggest the inhibitory 
effects of CPP on lymphocyte proliferation and the reduction of autoimmunity as a 
probable basis for the disease-modifying anti-rheumatic effects of CPP in RA.  

Taken together, our results indicated cytokine inhibition as the probable mechanism of 
action of CPP against rheumatoid arthritis. Further, the lack of analgesic action and 
ulcerogenicity pointed to CPP as a disease-modifying anti-rheumatic drug (DMARD). 
DMARDs suppress the rheumatoid process and bring about a remission, but do not have 
non-specific anti-inflammatory or analgesic action. CPP can provide added advantages 
such as lack of gastric and cardiovascular side effects. Cinnamon bark extract had been 
reported to inhibit gastric secretions [11] and irradiate H. pylori, a bacteria known to 
exacerbate gastric acidity and ulcers [60, 61]. Cinnamon bark was also expected to have 
protective effects on the cardiovascular system due to its potent antioxidant capacity  
[62–66].  

In conclusion, CPP showed good ameliorative effects in animal models of inflammation 
and rheumatoid arthritis and can be explored as a DMARD. 

Experimental 
Animals 
Male Wistar rats (130–200 g) or Swiss albino mice (20–25 g) were obtained from the 
National Toxicology Centre, Pune, India. The animals were housed in polypropylene cages 
at a temperature of 24 ± 1 °C in 12h:12h dark–light cycle, with free access to standard 
pellet feed (Chakan Oil Mill, India) and filtered water. All experiments were carried out 
between 08:00 h and 17:00 h in a quiet laboratory at an ambient temperature. The 
research protocol (No: CPCSEA/48/08) was approved by the Institutional Animal Ethics 
Committee (IAEC) and as per Indian norms laid down by the Committee for the Purpose of 
Control and Supervision of Experimental Animals (CPCSEA), New Delhi. 

Chemicals 
For the in vivo studies, carrageenan and FCA (Sigma-Aldrich, St.Louis MO, USA), acetic 
acid (Pure Chem. Limited Ltd, Pune, India), carboxymethylcellulose (Qualigens, Mumbai, 
India), anaesthetic ether (Batch No. 30, TKM Pharma, Hyderabad), and the BD-OptEIA kit 
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for TNF α estimation (BD Pharmingen, U.S.A) were purchased from the respective 
vendors. All other chemicals used were of analytical grade. 

For the in vitro studies, fetal calf serum (FCS) and culture media were purchased from 
GIBCO BRL (Grand Islan, NY, USA). RPMI1640 (Sigma-Aldrich, St.Louis MO, USA) and 
Concanavalin A (ConA, Calbiochem, USA) were purchased from the respective vendors. 
Starch, ethanol, and all other chemicals were purchased from reputed local manufacturers. 
All plasticwares that were used for the in vitro studies were purchased either from Nalgene 
Nunc (Naperville, IL, USA) or Falcon (Becton Dickinson Labware, USA).  

Extraction and characterization of CPP from Cinnamon bark 
Cinnamon bark (1000 g) pieces were dried and pulverized to make powder (16 mesh). The 
powder was extracted with 6 L of a 95% ethanol-water mixture over a period of 10 h with 
the help of an extractor having a perforated bottom sieve of the 200 mesh size. The 
bottom eluent was recycled repeatedly. The eluent was collected and concentrated at low 
temperature to get a paste. The paste was dissolved in 2000 ml of distilled water and the 
pH was adjusted to 3 with phosphoric acid and insolubles were filtered. The clear filtrate 
was passed through a layer of activated neutral alumina column (comprising a dry charge 
of 400 ml of alumina). The adsorbed material on the column was eluted with ethyl alcohol, 
and concentrated to get powder of CPP (also known as IND02) (Yield: 28 g). The obtained 
compound, CPP, was charactrized by HPLC and the total phenolic content was 
determined. 

Determination of Total Phenolic Content (TPC) of CPP 
Total phenolic content was determined with the Folin-Ciocalteu reagent according to a 
procedure described by Singleton and Rossi [22]. An aliquot of 1 ml of the extract solution 
in methanol was mixed with 1 ml of the Folin-Ciocalteu reagent (previously diluted with 
water 1:1 v/v), 3 ml of saturated sodium carbonate (Na2CO3) solution (about 75 g/l), and 
4 ml of water. The mixture was allowed to stand at room temperature for 25 min and was 
then centrifuged at 5000 rpm for 10 min. Absorbance of the supernatant was measured at 
755 nm using a spectrophotometer (Shimadzu). Gallic acid was used as a reference 
standard, and the results were expressed as milligram gallic acid equivalent (mg GAE)/g 
dry weight of CPP.  

Anti-inflammatory activity against carrageenan-induced rat paw edema 
Anti-inflammatory activity was evaluated on the basis of the inhibition of the carrageenan-
induced hind paw edema [67, 68]. Each rat in the experimental group (six rats each) was 
treated orally with 50, 100, and 200 mg/kg body weight of CPP, 1 h before subplanter 
injection of the edematogenic agent, carrageenan (0.1 ml of a 1% suspension prepared in 
0.9% NaCl) to the left hind paw of rats with a 26 gauge needle. One group of rats was 
treated orally with 10 mg/kg body weight of celecoxib as a standard drug. The separate 
vehicle control group was also maintained. Paw volume was measured immediately after 
the carrageenan injection (time 0) and at 1, 2, 3, and 24 h using a plethysmometer (Model 
7150, Ugo Basile, Italy). The mean difference in paw volume (ml) was calculated with 
baseline (0 h) values for each rat. Percent (%) inhibition of paw volume was calculated 
with a reported formula [69] from the mean difference in mean paw volume (ml.) in treated 
(Vt) and control (Vc) groups according to the equation: % inhibition = (Vt/Vc)*100.  
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Analgesic activity in the Randall-Selitto assay against carrageenan-induced rat paw 
edema 
The pain stimulus of each rat was measured at the 3rd h after the carageenan-injected 
paw with the help of the Randall-Selitto analgesymeter (Ugo basile Model 7200) by the 
method reported earlier [38]. The apparatus was set up to apply a force of 0–500 g 
increasing from zero. The paw withdrawal threshold (PWT) was taken at the point at which 
the rat started to react (vocalized or struggled). The rats that did not attempt to remove 
their paws or vocalize before the 5000 g point (cut-off pressure) were discarded. Paw 
withdrawal threshold (PWT) was considered as a measure of pain latency. The percent 
increase in PWT was calculated as compared with the PWT of the vehicle control rats.  

Anti-inflammatory activity against cotton pellet granuloma  
Subcutaneous implantation of pellets of compressed cotton provokes foreign body 
granuloma [70]. Male Wistar rats (175 to 200 g) were divided randomly in six groups with 
six rats in each group. The rats were fasted for 6 h before oral administration of the test 
compounds. Group 1 was the control group, Group 2 was the vehicle (distilled water)-
treated; group 3 was celecoxib-treated (10 mg/kg p.o.) and Groups 4, 5, and 6 were CPP 
(50,100, and 200 mg/kg)-treated groups, respectively. Cotton rolls were cut and made into 
pellets weighing 20 mg each and sterilized in an autoclave at 100 °C for 30 min. Four 
individual pellets were inserted in each ether-anesthetized animal by making small 
subcutaneous incisions in both axillae and groin regions. The incisions were sutured by 
sterile catgut. After recovery from anesthesia, the animals were placed in individual cages 
and treated orally with test drugs for seven days starting from the day of cotton pellet 
implantation. The animals were anaesthetized again on the 8th day and cotton pellets 
were removed surgically, freed from extraneous tissue, incubated at 37 °C for 24 h, and 
dried at 55 °C to constant weight. The weight of the cotton pellet before implantation was 
subtracted from the weight of the dried dissected pellets. Thus any increment in the dry 
weight of the pellets was taken as a measure for granuloma formation. The mean weight 
was calculated for pellets from the group of rats receiving drugs and compared with the 
mean values for the control.  

Analgesic activity against acetic acid-induced writhing in mice 
Male Swiss albino mice (20-25 gm) were divided into the following groups containing six 
animals in each group. Rats form Group I were administered orally with the vehicle 
(distilled water) and called the vehicle control. Rats from Group II were administered with 
celecoxib (10 mg/kg, p.o.). To rats of Group III, IV, and V were administered orally with 
CPP at a dose of 50, 100, and 200 mg/kg. After 60 min, all rats were administered with an 
intraperitoneal injection of acetic acid (10 ml/kg, 0.6%). After 20 min, acetic acid induced 
the writhing response (the abdominal min according to the procedures described [71]). The 
percent analgesia was calculated from the mean number of writhes in the vehicle control 
group (Wv) and that of the treatment group (Wt) as per formula: % analgesia = 
100*[(Wv−Wt)/Wv].  

Antiarthritic Activity of CPP against adjuvant-induced established polyarthritis (AIA)  
Induction of arthritis was performed according to the earlier described method [72] as 
modified for therapeutic schedule. AIA was induced in 6 to 8 week-old rats by a single 
intradermal injection of 0.1 ml Freund’s complete adjuvant (FCA) into the footpad of the 
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right hind paw. FCA contains 0.6 mg heat-inactivated Mycobacterium tuberculosis, H37Ra 
(Difco Laboratory, Detroit, MI, USA) emulsified in a sterile mixture of paraffin oil, saline, 
and Tween 80. Arthritis was allowed to develop for the next 12 days. On day 12, animals 
were randomly assigned to one of the following treatment groups: Group 1: adjuvant –
induced arthritis controls (AIA controls), Group 2: arthritic rats treated with celecoxib (10 
mg/kg/day), and Group 3 to 5: arthritic rats treated CPP (50, 100, and 200 mg/kg/day), 
respectively. These groups of rats were orally treated once daily with the following 
treatment: Group 1: vehicle (distilled water), Group 2: celecoxib (10 mg/kg, p.o.), and 
Group 3 to 5: CPP (50, 100, or 200 mg/kg) from day 12 to day 21 by oral feeding needle.  

The body weights of rats were recorded at the baseline (day 0), and day12 and day 21 of 
the study. The difference in body weight was calculated relative to that at day 0, allowing 
monitoring of the decrease in body weight gain associated with arthritis [73]. Swelling of 
hind paws was monitored by using a plethysmometer (UGO Basile Italy) at day 0 and 12 
and 21 days after the FCA injection [74].  

On day 21, rats were sacrificed and ulcerogenicity was investigated on stomach tissue 
samples. The stomach was dissected out, sectioned along the greater curvature, washed 
with saline, and the glandular portion was examined macroscopically for the number and 
size of mucosal lesions. The stomach pieces were placed in 10% buffered formaldehyde 
solution (Merck) and embedded in paraffin pastilles (Merck). Serial sections of 5 mm were 
cut and stained with Hemotaoxylin and Eosin (H&E) (Merck). Mounting of the specimen 
was done by using Distrene Phthalate Xylene (D.P.X.) and examined under microscope 
for photomicrographic analysis [75]. 

Serum TNFα measurement in AIA rats 
The blood samples were collected on day 0, day 13, and day 21 of post-FCA inoculation. 
Serum was separated and stored at −20 °C until the assay. Serum TNF-α was estimated 
by the BD-OptEIA kit (BD Pharmingen, U.S.A.) using the manufacturer‘s protocol. Briefly, 
50 µl of ELISA diluent was added to each well followed by the TNF- α standards and 
samples were incubated at room temperature for 2 h. After thorough washing, 100 µl of the 
detection antibody (biotinylated anti-rat monoclonal TNF-α antibody) was added to each 
well and incubated for 1 h at room temperature. After thorough washing, 100 µl of avidin-
horseradish peroxidase conjugate was added to each well and incubated for 30 min at 
room temperature. After incubation, 100 µl of the substrate reagent (3,3',5,5'-tetramethyl-
benzidine, TMB) was added. The reaction was stopped using 1 N H2SO4 and the plates 
were read at 450 nm within 30 min of stopping the reaction. All results were converted to 
pg/ml using the standard curve on linear-log graph paper as suggested by the protocol 
[76]. 

IL2, IL4, and IFNγ concentration measurement in ConA-stimulated lymphocytes in 
vitro 
Three male Swiss albino mice (20–25 g) were sacrificed by cervical dislocation. The mice 
were dissected and spleens were removed. The spleens were then dried on a paper and 
used for the isolation of lymphocytes. Spleen cells were obtained by squeezing the spleen 
through a nylon mesh in a petriplate containing Roswell Park Memorial Institute (RPMI) 
medium. The hypotonic shock was given to RBCs by hypotonic NH4Cl solution. 
Lymphocytes were washed three times using ice-cold RPMI medium containing 10% fetal 
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calf serum (FCS) conditioned media. All the cells were harvested in test tubes, centrifuged 
at 5000 rpm for 5–7 times, and resuspended in 5 ml medium. Then 25 μl of the cell 
suspension and 475 μl of methylene blue was mixed and cells were counted with a 
hemocytometer. Spleen cells were cultured with ConA and the culture supernatants were 
collected 72 h. after stimulation. The supernatants were used for IL-2, IL-4, and IFNγ 
estimation by the enzyme-linked immunosorbent assay (ELISA) kit (Pharmingen, San 
Jose, California, USA) as per manufacturer’s instructions [77].  

Two million lymphocytes were placed in each well of a 24-well culture plate. Group 
distribution and incubation of cells were as follows: 1. Untreated cells served as a control, 
2. ConA(10 μg/ml)-stimulated lymphocytes served as a positive control group, 3. ConA(40 
μl)-stimulated lymphocytes in the presence of CPP (100 μl, 0.4% i.e. 40 μg/100 μl). The 
final 24-well culture plate (1 ml) concentration of three different groups was as follows: (1) 
Control Cells (220 μl) + FCS (120 μl) + RPMI (660 μl), (2) ConA-treated cells (220 μl) + 
FCS (120 μl) + ConA (40 μl) + RPMI (620 μl), and (3) CPP-treated cells (220 μl) + FCS 
(120 μl) + ConA (40 μl) + RPMI (520 μl) +IND 02 (100 μl). Lymphocytes were cultured for 
72 h at 37°C in 2 ml culture medium in a 95% air/5% CO2 atmosphere in a CO2 incubator 
until assaying. 

Levels of IL-2, IL4, and IFNγ were estimated by commercially available ELISA kits (BD-Opt 
EIA kits, BD Pharmingen, U.S.A.) using the manufacturer’s protocols. Samples were 
acidified with 1 N HCl and incubated at room temperature for 15 min, neutralized with 1 N 
NaOH, and used for the sandwich ELISA procedure. Ninety-six-well high-binding ELISA 
plates (BD Falcon ELISA plates) were coated with 100 μl of capture antibody (either with 
anti-rat IL-2 or IL-4 or IFNγ) and maintained overnight at 4 ºC. The plate was brought to 
room temperature the next day and was blocked by 200 μl of assay diluent and incubated 
for 2 h. After washing, 100 μl of standards (provided with the kit) and samples were added 
to each well and incubated for 1 hour. Then 100 μl of biotinylated antimouse IL-1β was 
used as the detection antibody. After thorough washing, 100 μl of avidin-horseradiish 
peroxidase conjugate was added to each well and incubated for 30 min at room 
temperature. After incubation, 100 μl of the substrate reagent (3,3’,5,5’- tetramethyl-
benzidine, TMB) was added. The reaction was stopped with 1 N H2SO4 and the 
absorbance was read at 450 nm in an ELISA plate reader (Biotek Instruments Inc, USA). 
All the results were converted to pg/ml using the standard curve on linear-log graph paper 
as suggested by the protocol. 

Statistical analysis 
The carrageenan-induced rat paw edema experiment (paw volume), FCA-induced 
established polyarthritis, AIA model (body weight, paw volume, and TNFα levels), and 
ConA-stimulated lymphocytes in vitro experiment (IL2, IL-4 and IFN-γlevels) were 
analysed by separate two-way ANOVA followed by Bonferroni post-tests. The data 
obtained in the cotton pellet granuloma experiment (mean weight of cotton pellets) and 
acetic acid-induced writhing model in rats (mean number of writhes) were analysed by 
separate one-way ANOVA followed by Dunnett’s t-test. P < 0.05 was considered 
significant. 
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