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INTRODUCTION 
 

Osteoporosis is a metabolic bone disease commonly 

diagnosed in the elderly [1]. Chronic osteoporosis is 

manifest by progressive brittleness of bones and greater 

incidence of non-stress fractures because of excessive 

bone resorption, low bone mineral density, and 

deterioration of bone micro-structure [2, 3]. Several 

genetic and environmental factors, such as Vitamin D 

deficiency and low estrogen levels, contribute to the 

progression of osteoporosis [4]. However, molecular 

mechanisms underlying osteoporosis remain unclear. 
 

Baicalein (BN) is one of the most abundant flavonoid 

in Scutellaria baicalensis, which is widely used in 

Chinese herbal medicine for various ailments [5]. For 

example, BN reduces cerebrovascular resistance, 

improves cerebral blood circulation, and prevents 

platelet agglutination [5]. BN is clinically used for 

treatment of paralysis in patients with cerebrovascular 

disease [6]. The beneficial effects of BN on 

osteoporosis have also been reported. For example, 

BN acts as a lipoxygenase inhibitor and increases 

bone formation in osteoporosis model mice [7]. 

Moreover, BN promotes osteoblastic differentiation of 

MC3T3-E1 cells via protein kinases and transcription 

factors such as P-4E/BP1 and P-S6K1 [8]. However, 

the molecular mechanisms underlying the therapeutic 

effects of BN on osteoporosis are not clear. 

 

Bioinformatics analysis has been widely used to unravel 

molecular and cellular mechanisms of several human 
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ABSTRACT 
 

In this study, we used bioinformatics and an in vitro cellular model of glucocorticoid-induced osteoporosis to 
investigate mechanisms underlying the beneficial effects of baicalein (BN) against osteoporosis. STITCH database 
analysis revealed 30 BN-targeted genes, including AKT1, CCND1, MTOR, and PTEN. Functional enrichment analysis 
demonstrated that BN-targeted genes were enriched in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways. MIRWALK2.0 database analysis identified 110 enriched KEGG pathways related to osteoporosis. A Venn 
diagram demonstrated that 26 KEGG pathways were common between osteoporosis and BN-targeted genes. The 
top 5 common KEGG pathways were prostate cancer, bladder cancer, glioma, pathways in cancer, and melanoma. 
BN-targeted genes in the top 5 shared KEGG pathways were involved in PI3K-AKT, MAPK, p53, ErbB, and mTOR 
signaling pathways. In addition, glucocorticoid-induced osteoporosis in MC3T3-E1 cells was partially reversed by BN 
through inhibition of AKT, which, by upregulating FOXO1, enhanced expression of bone turnover markers (ALP, 
OCN, Runx2, and Col 1) and extracellular matrix mineralization. These findings demonstrate that BN suppresses 
osteoporosis via an AKT/FOXO1 signaling pathway. 
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diseases [9–11]. Therefore, in this study, we performed 

comprehensive bioinformatics analysis and in vitro 

experiments in the cellular model of glucocorticoid-

induced osteoporosis (GIO) to identify molecular 

mechanisms underlying the therapeutic effects of BN in 

osteoporosis. 

 

RESULTS 
 

BN-targeted genes and the interaction network 

 

We identified 30 baicalein-targeted genes belonging 

to three shells based on STITCH database analysis. 

The interaction network between these 30 baicalein-

targeted genes is shown in Figure 1A. The first shell 

contained genes such as CYP1A2, CYP3A4, CDK4, 

MMP2, AKT1, MMP9, MAPK1, PLAU, ALOX12, and 

ALOX15 and were probably the direct targets of 

baicalein. The second shell included genes such as 

MTOR, RICTOR, TIMP2, RB1, CDKN1A, CDKN1B, 

CDKN2A, CCND3, FOXO1, and CCND1. The third 

shell included genes such as MAP2K1, NOS3, ILK, 

HSP90AA1, PTEN, FOXO3, MDM2, CDKN2C, 
CCND2, and CDKN2B. The network of baicalein-

targeted genes based on interaction weights is shown 

in Figure 1B. AKT1, CCND1, MTOR, and PTEN 

showed the highest interaction weights among the 30 

baicalein-targeted genes.  

PPI network of BN-related genes  

 

The protein-protein interaction (PPI) network of BN-

related genes using Cytoscape (Figure 2A). The baicalein-

targeted genes were ranked according to degree values 

(Figure 2B). The top ten genes based on degree values 

were AKT1, CCND1, PTEN, MTOR, CDK4, CDKN1A, 

CDKN1B, CDKN2A, FOXO3, and FOXO1.  

 

Identification of shared KEGG pathways between 

BN-targeted genes and osteoporosis 

 

We identified 49 enriched KEGG pathways (p <0.05) 

by performing functional enrichment analysis of 

baicalein-targeted genes using DAVID. Furthermore, 

we identified 110 enriched KEGG pathways associated 

with human osteoporosis using the miRWalk2.0 

database. We further identified 26 common KEGG 

pathways between osteoporosis and baicalein-targeted 

genes using the Venn diagram (Figure 3). Among these, 

prostate cancer, bladder cancer, glioma, pathway in 

cancer, and melanoma were the top five common 

KEGG pathways (Table 1). 

 

Identification of baicalein-targeted hub genes 

 

Functional enrichment analysis of BN-targeted genes is 

shown in Figure 4A. Among the 30 BN-targeted genes,

 

 
 

Figure 1. Identification of baicalein-targeted genes. (A) Identification of 30 baicalein-targeted genes using STITCH database. (B) 

Weighted interaction network analysis of baicalein-targeted genes using the STITCH database. The weights of AKT1, CCND1, MTOR, and PTEN 
were highest among BN-targeted genes. 
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Figure 2. PPI network of baicalein-targeted genes. (A) PPI network of baicalein-targeted genes constructed using Cytoscape. (B) A list 
of baicalein-targeted genes in the PPI network ranked by degree connectivity. As shown, the top ten baicalein-targeted genes by degree 
connectivity were AKT1, CCND1, PTEN, MTOR, CDK4, CDKN1A, CDKN1B, CDKN2A, FOXO3, and FOXO1. 

 

 
 

Figure 3. Identification of shared KEGG pathways related to baicalein-targeted genes and osteoporosis. Venn diagram shows 26 
common KEGG pathways by intersecting those related to baicalein-target genes (n=49 KEGG pathways) and osteoporosis (n=110 KEGG 
pathways). 
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Table 1. Top five KEGG pathway and involved genes. 

Term KEGG pathway Baicalein-target genes Adj P-value 

hsa05215 Prostate cancer 

RB1, CDKN1A, MAP2K1, HSP90AA1, CDKN1B, 

CCND1, PTEN, MDM2, MAPK1, AKT1, FOXO1, 

MTOR 

8.67E-13 

hsa05219 Bladder cancer 
RB1, CDKN1A, MAP2K1, CCND1, CDKN2A, 

CDK4, MMP2, MDM2, MAPK1, MMP9 
8.67E-13 

Hsa05214 Glioma 
RB1, CDKN1A, MAP2K1, CCND1, CDKN2A, 

CDK4, PTEN, MDM2, MAPK1, AKT1, MTOR 
8.67E-13 

hsa05200 Pathways in cancer 

RB1, CDKN1A, MAP2K1, CDKN2B, HSP90AA1, 

CDKN1B, CDKN2A, MMP2, PTEN, MMP9, FOXO1, 

MTOR, CCND1, CDK4, MDM2, AKT1, MAPK1 

3.17E-12 

Hsa05128 Melanoma 
RB1, CDKN1A, MAP2K1, CCND1, CDKN2A, 

CDK4, PTEN, MDM2, MAPK1, AKT1 
6.22E-11 

 

AKT1, CCND1, PTEN, MTOR, CDK4, CDKN1A, 

CDKN1B, CDKN2A, FOXO1, HSP90AA1, RB1, MMP2, 

MAPK1, CDKN2B, MMP9, MDM2, and MAP2K1 were 

involved in the top five KEGG pathways. Furthermore, 

we identified CCND1, CDKN1A, RB1, MAPK1, MDM2, 
and MAP2K1 were identified as hub genes (Figure 4B). 

The FDR values, gene counts, and rich factors are shown 

in Figure 4C. The KEGG pathway, hsa05200: pathways 

in cancer, showed the highest FDR value, rich factor, and 

gene numbers (Figure 4C). 

 

Analysis of KEGG pathways related to BN-targeted 

genes 

 

The top 5 baicalein-targeted KEGG pathways were 

associated with apoptosis inhibition, cell cycle 

progression, impaired G1 and G2 cell cycle arrest, 

genomic instability, tumor growth, cell growth and 

proliferation, angiogenesis, G1/S cell cycle progression, 

uncontrolled proliferation, and increased survival 

(Figure 5). This suggested that baicalein regulated 

osteogenesis through PI3K-AKT, MAPK, p53, ErbB, 

and mTOR signaling pathways. 

 

BN partially reverses GIO through suppression of 

AKT expression 

 

We then analyzed AKT phosphorylation levels in 

MC3T3-E1 cells treated with different concentrations of 

baicalein (1 μM, 10 μM, and 100 μM) by ELISA. BN 

treatment significantly reduced p-AKT levels in 

MC3T3-E1 cells; p-AKT levels were significantly

 

 
 

Figure 4. Identification of hub genes. (A) Relationship and interactions between baicalein-targeted genes in the top 5 enriched KEGG 
pathways. (B) Functional enrichment analysis results of baicalein-targeted genes. CCND1, CDKN1A, RB1, MAPK1, MDM2, and MAP2K1 were 
common to all the top five shared KEGG pathways and were designated as hub genes. The top five genes based on degree connectivity were 
AKT1, CCND1, PTEN, MTOR, and CDK4. (C) The FDR values, gene numbers, and rich factor values (ratio of the number of enriched DEGs in the 
KEGG pathway category compared to the total number of genes in that category) of the top five shared KEGG pathways. 
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lower in the 10 μM BN-treatment group compared to 

the 1 μM and 100 μM BN-treatment groups (Figure 

6A). QRT-PCR analysis results showed that the GIO 

treatment significantly decreased the expression levels 

of bone turnover markers such as ALP, OCN, Runx2, 

and Col 1 in MC3T3-E1 cells, but these effects were 

partially reversed by BN (Figure 6B–6E). Furthermore, 

ALP staining assay results showed that BN partially 

rescued impaired extracellular matrix mineralization in 

GIO-treated MC3T3-E1 cells (Figure 6F, 6G).  

 

 
 

Figure 5. Baicalein-targeted genes in the top three KEGG pathways. The list of baicalein-targeted genes among (A) PI3K-AKT, MAPK, 
and p53 signaling pathway genes enriched in prostate cancer;  (B) MAPK, p53, and ErbB signaling pathway genes enriched in bladder cancer, 
and (C) MAPK, p53, and mTOR signaling pathway genes enriched in pathways in cancer. 

 

 
 

Figure 6. BN treatment partially reverses GIO by suppressing AKT. (A) ELISA analysis shows phospho-AKT levels in GIO-induced 
MC3T3-E1 cells treated with BN (1μM, 10 μM, and 100 μM). (B–E) QRT-PCR analysis shows expression levels of bone turnover markers (ALP, 
OCN, Runx2, and Col 1) in GIO model MC3T3-E1 cells treated with BN (10 μM, 10 μM, and 100 μM BN). (F, G) ALP staining results of GIO 
model MC3T3-E1 cells treated with BN (1μM, 10 μM, and 100 μM). The data are represented as means±SD of at least 3 independent 
experiments. 
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BN regulates osteogenesis via AKT/FOXO1 

signaling 

 

QRT-PCR analysis showed that expression of FOXO1 

was significantly increased in BN-treated MC3T3-E1 

cells; FOXO1 levels were highest in the 10 μM BN-

treatment group (Figure 7A). Furthermore, qRT-PCR 

analysis confirmed that AKT levels were significantly 

reduced in AKT-siRNA-transfected MC3T3-E1 cells 

compared to the corresponding controls (Figure 7B). 

AKT silencing significantly increased FOXO1 levels in 

MC3T3-E1 cells (Figure 7C). QRT-PCR analysis

 

 
 

Figure 7. BN regulates osteogenesis via AKT/FOXO1 signaling. (A) QRT-PCR analysis shows FOXO1 levels in GIO model MC3T3-E1 cells 
treated with BN (1μM, 10 μM, and 100 μM). (B) QRT-PCR analysis shows AKT mRNA levels in control-siRNA- and AKT siRNA-transfected 
MC3T3-E1 cells. (C) QRT-PCR analysis shows the levels of FOXO1 in control-siRNA- and AKT siRNA-transfected GIO model MC3T3-E1 cells 
treated with BN (1μM, 10 μM, and 100 μM). (D–G) QRT-PCR analysis shows the levels of bone turnover markers (ALP, OCN, Runx2, and Col 1) 
in control-siRNA- and AKT siRNA-transfected GIO model MC3T3-E1 cells treated with BN (1μM, 10 μM, and 100 μM). (H, I) ALP staining results 
of control-siRNA- and AKT siRNA-transfected GIO model MC3T3-E1 cells treated with BN (1μM, 10 μM, and 100 μM). The data are shown as 
means±SD of 3 independent experiments. 
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showed that FOXO1 silencing significantly reduced 

expression levels of the bone turnover markers (ALP, 

OCN, Runx2, and Col 1) in GIO-treated MC3T3-E1 

cells, but these effects were partially reversed by BN 

treatment (Figure 7D–7G). ALP staining results showed 

that BN treatment partially rescued impaired extra-

cellular matrix mineralization in GIO-treated FOXO1-

silenced MC3T3-E1 cells (Figure 7H, 7I). 

 

DISCUSSION 
 

Osteoporosis is a chronic metabolic bone disorder 

observed commonly in aged individuals, and is 

characterized by low bone mineral density, increased 

brittleness of bone, damaged bone micro-structure, 

and significant increase in the number of non-stress 

fractures [12]. BN is one of the most abundant 

flavonoids in Scutellaria baicalensis and is widely 

used in Chinese herbal medicine to treat various 

human diseases for centuries. [13]. BN promotes 

osteogenic differentiation and bone formation  

[14–16], but the molecular mechanisms underlying 

the beneficial effects of BN on osteoporosis are not 

clear. Pathogenetic mechanisms underlying several 

human diseases have been discovered through bio-

informatics analyses of microarray data and whole-

genome sequencing studies [17].  

 

In the present study, we identified 110 KEGG pathways 

that were associated with differentially expressed genes 

(DEGs) in human osteoporosis and 49 KEGG pathways 

associated with BN-targeted genes. PI3K-AKT, MAPK, 

p53, ErbB, and mTOR signaling pathways were the top 

five shared KEGG pathways among these two groups.  

 

Previous studies have shown that BN-targeted genes in 

the PI3K-AKT signaling pathway were associated with 

osteogenesis [18, 19]. Many studies have shown that 

PI3K-AKT signaling pathway plays a significant role in 

osteoporosis [20, 21]. For an example, a recent study 

demonstrated that inhibition of PI3K-AKT signaling 

pathway delayed osteoporosis progression in post-

menopausal women by suppressing inflammation and 

formation of osteoclasts [22]. Xiao et al demonstrated 

that inhibition of miR-148a ameliorated ovariectomy-

induced osteoporosis via PI3K-AKT signaling pathway 

[23]. In the present study, we showed that BN 

significantly suppressed AKT expression and activation 

in MC3T3-E1 cells. BN treatment also stimulated the 

expression of bone turnover markers and enhanced 

extracellular matrix mineralization in GIO-induced 

MC3T3-E1 cells. These results suggested that the BN 

treatment suppresses osteoporosis via AKT. 

 

FOXO family of transcription factors such as FOXO1, 

FOXO3, FOXO4, and FOXO6 play a crucial role in 

cellular defense mechanisms against oxidative stress 

[24]. Liao et al reported that FOXO1 knockdown 

decreased osteoblast differentiation by suppressing the 

expression of antioxidant enzymes, manganese super-

oxide dismutase and catalase, thereby increasing the 

levels of reactive oxygen species [25]. Feng et al 

demonstrated that inhibition of PI3K-AKT signaling 

pathway significantly increased FOXO1 transcriptional 

activity, which suppressed osteoporosis by enhancing 

antioxidant mechanisms [26]. In our study, we 

demonstrated that BN promoted expression of FOXO1 

by suppressing AKT. We also observed that BN 

treatment and AKT silencing improved osteogenic 

differentiation of GIO-induced MC3T3-E1 cells by 

increasing FOXO1 expression. Therefore, our results 

demonstrate that BN treatment suppresses osteoporosis 

via AKT/FOXO1 signaling pathway. Future studies are 

required to confirm our findings in vivo and further 

investigate mechanisms underlying the beneficial 

effects of BN on osteogenesis. 

 

MATERIALS AND METHODS 
 

Cell culture and transfection  

 

The murine pre-osteoblast cell line, MC3T3-E1, was a 

kind donation from the Shanghai University of Medicine 

and Health Sciences (Shanghai, China). MC3T3-E1 cells 

were grown in α-MEM medium (SH30265.01B; 

Hyclone) containing 10% fetal bovine serum (FBS; 

Gibco) and 1% penicillin and streptomycin at 37° C, 5% 

CO2, and 95% humidity.  MC3T3-E1 cells up to five 

passages were used for experiments. The cells were 

transfected with 50 nM AKT siRNA, 50 nM FOXO1 

siRNA and their corresponding control siRNAs using 

lipofectamine 3000. MC3T3-E1 cells were treated with 

100 μM dexamethasone (CAS: 50-02-2, purity: >98%; 

ACMEC, Shanghai, China) for 7 days to induce the 

cellular GIO model. The cells were treated with 1 μM, 10 

μM, and 100 μM baicalein (Cat. No. HY-N0196-100 mg; 

MedChemExpress) for various time points as indicated. 

 

Quantitative real-time PCR (qRT-PCR)  

 

Total RNA was extracted using TRIzol according to 

manufacturer’s instructions. Then, cDNA synthesis was 

performed using the one-step Prime Script miRNA 

cDNA synthesis kit. Then, qPCR analysis was 

performed using SYBR Premix Ex TaqII (TaKaRa, 

Japan) in the Thermal Cycler C-1000 Touch system 

(CFX Manager, 10021377; Bio-Rad, USA). The 

expression levels of various genes were determined 

using the 2-ΔΔCt method and normalized to GAPDH. The 

primers used for qPCR analysis were as follows:  

AKT-forward, 5′- ATGAGCGACGTGGCTATTGT- 3′, 

AKT-reverse, 5′- GAGGCCGTCAGCCACAGTCT- 3′; 
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FOXO1-forward, 5′- AGGGTTAGTGAGCAGGTTACA 

C- 3′,  

FOXO1-reverse, 5′- TGCTGCCAAGTCTGACGAAA- 

3′;  

ALP-forward, 5′- TGACTACCACTCGGGTGAACC- 3′,  

ALP-reverse, 5′- TGATATGCGATGTCCTTGCAG- 3′;  

OCN-forward, 5′- TTCTGCTCACTCTGCTGACCC- 3′, 

OCN-reverse, 5′- CTGATAGCTCGTCACAAGCAGG- 

3′;  

Runx2-forward, 5′- CGCCACCACTCACTACCACAC- 

3′,  

Runx2-reverse,5′- TGGATTTAATAGCGTGCTGCC- 3′;  

Col-1-forward, 5′- AACTTTGCTTCCCAGATGTCC- 3′,  

Col-1-reverse, 5′- AGCCTCGGTGTCCCTTCA- 3′;  

GAPDH-forward, 5′- GAAGGTCGGTGTGAACGGAT 

TTG- 3′,  

GAPDH-reverse, 5′- CATGTAGACCATGTAGTTGAG 

GTCA- 3′.  

 

ELISA 

 

MC3T3-E1 cells were grown for 48 h in serum-free 

medium. The concentration of phospho-AKT in each 

group of cells was measured using the ELISA  

kit according to manufacturer’s instructions. The 

colorimetric values were normalized to total cell 

numbers in each well. Then, the phospho-AKT levels in 

each sample were calculated using the standard curve.  

 

ALP staining  

 

MC3T3-E1 cells were washed twice with PBS and then 

fixed with 10% formalin for 15 minutes. Then, the cells 

were processed using the ALP color-development kit 

according to manufacturer’s instructions and the color 

development was performed by incubating cells with 

BCIP/NBT liquid substrate for 24 hours. Absorbance 

was measured at 405 nm in a plate reader. The 

experiments were performed in triplicate.  

 

Identification of BN-target genes and construction of 

PPI network  

 

We identified baicalein-targeted genes and constructed the 

protein-protein interaction (PPI) network between them 

using the Search Tool for Interacting Chemicals 

(STITCH) database [27]. We analyzed the PPI network of 

baicalein-targeted genes using the Cytoscape 3.7.2 version 

software [28] and measured the degree, betweenness, and 

closeness of each gene in the network. The hub genes 

were identified based on the degree analysis using the 

cytoHubba plugin. Cytoscape plug-in ClueGO was used 

to identify enriched KEGG pathways representing the 
baicalein-targeted genes and the relationship between 

them. The KEGG pathway enrichment results were 

visualized using the ggplot2.7 package.  

Identification of shared KEGG pathways between 

BN-targeted genes and osteoporosis  

 

MiRWalk2.0 software [29] was used to retrieve human 

osteoporosis-related KEGG pathways using p<0.05 as 

the threshold parameter. VennDiagram (http://www. 

ehbio.com/ImageGP/index.php/Home/Index/index.html) 

was then used to identify shared KEGG pathways 

between human osteoporosis and baicalein-targeted 

genes.  

 

Identification of hub genes  

 

GOplot R package [30] was used to visualize functional 

enrichment analysis of KEGG pathways enriched with 

baicalein-targeted genes and identified hub genes from 

among the top five shared KEGG pathways between 

baicalein-targeted genes and osteoporosis.  

 

Identification of KEGG pathways related to BN-

targeted genes  

 

We selected the top 5 shared KEGG pathways with  

the smallest p values and used ScienceSlides to 

schematically represent KEGG pathways related to 

baicalein-targeted genes, the hub genes and their related 

mechanisms of action.  
 

Statistical analysis  
 

The data are represented as means ± SD. Prism 8.0 

software was used for all statistical analyses. One-way 

analysis of variance with Tukey’s post hoc test was 

used to compare three or more groups of data. Two-

tailed Student’s test was used to compare data 

between two groups. P < 0.05 was considered 

statistically significant. 
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