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Abstract: In this paper, dynamical behavior and synchronization of a non-equilibrium
four-dimensional chaotic system are studied. The system only includes one constant term and
has hidden attractors. Some dynamical features of the governing system, such as invariance and
symmetry, the existence of attractors and dissipativity, chaotic flow with a plane of equilibria, and
offset boosting of the chaotic attractor, are stated and discussed and a new disturbance-observer-based
adaptive terminal sliding mode control (ATSMC) method with input saturation is proposed for the
control and synchronization of the chaotic system. To deal with unexpected noises, an extended
Kalman filter (EKF) is implemented along with the designed controller. Through the concept of
Lyapunov stability, the proposed control technique guarantees the finite time convergence of the
uncertain system in the presence of disturbances and control input limits. Furthermore, to decrease
the chattering phenomena, a genetic algorithm is used to optimize the controller parameters. Finally,
numerical simulations are presented to demonstrate the performance of the designed control scheme
in the presence of noise, disturbances, and control input saturation.

Keywords: four-dimensional chaotic systems; dynamical analysis; disturbance-observer; adaptive
terminal sliding mode control; control input saturation; extended Kalman filter

1. Introduction

Chaotic systems are currently attracting a considerable amount of attention thanks to their potential
applications in a variety of fields [1–6]. Thus far, different chaotic systems have been introduced,
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including extreme multistable systems [7,8], multistable systems [9–11], and systems with multi-scroll
attractors [12,13]. In addition, the first non-equilibrium chaotic flow was proposed by Sprott [14],
and several non-equilibrium chaotic systems have been introduced and studied [15–20], because they
present unanticipated responses to disturbances.

Some research studies have also proposed four-dimensional chaotic systems with special features.
Among others, since Rössler studied the first four-dimensional chaotic system [21], a four-dimensional
continuous-time autonomous no equilibria system with a cubic nonlinear term was proposed by Pham
et al. [22]. A memristive system without any equilibrium was also presented by Bao et al. [23], who
demonstrated that this system was able to exhibit chaotic, hyperchaotic, transient hyperchaotic, as well
as periodic dynamics. Moreover, a four-dimensional chaotic system including nine terms and only one
constant term, which either has a line of equilibria or does not possess equilibria, was very recently
proposed by Zhang et al. [24].

In the last few years, a broad variety of techniques have also been proposed for controlling
nonlinear and complex systems, including adaptive control, a backstepping approach, fuzzy control,
optimal control, and sliding mode control [25–34]. In this regard, the control and synchronization of
chaotic systems are also attracting a lot of attention [35–38]. For instance, Pérez-Cruz et al. proposed
a novel linear feedback controller for synchronization of chaotic master and slave systems [39]. In
another study, Pérez-Cruz also proposed an adaptive control scheme for synchronization of uncertain
systems [40].

More studies on nonlinear controllers are still required, however, to improve their performance
when dealing with some issues. To this end, most systems possess uncertain nonlinear dynamics in
the presence of unknown external disturbances. In addition, the amount of control input must be
considered due to the power consumption of actuators.

The present work addresses these aspects, and the contributions are presented as follows:

• The combination of disturbance-observer-based adaptive terminal sliding mode control (ATSMC)
with a disturbance observer was developed for control and synchronization of an uncertain chaotic
system in the presence of disturbances.

• The control input saturation was considered.
• An extended Kalman filter (EKF) approach was implemented with the controller for condition

monitoring purposes. Indeed, this algorithm was used to estimate the actual amounts of the states
of the system.

• A genetic algorithm (GA) optimization was used to reduce the chattering phenomena.
• Finally, numerical simulations illustrated the main characteristics and dynamical behaviors

of the analyzed four-dimensional chaotic system, as well as the proposed controller for
its synchronization.

The second section of the paper describes some characteristics of the proposed system, such as
invariance and symmetry, the existence of attractors and dissipativity, chaotic flow with a plane of
equilibria, and offset boosting of the chaotic attractor. This section also precisely details the proposed
adaptive terminal sliding mode control (ATSMC) scheme, along with the designed extended Kalman
filter (EKF) algorithm. The results of a simulation of the closed-loop system with incomplete state
measurement and synchronization of the uncertain system are presented and discussed in the third
section of the paper. Concluding remarks are summarized in the fourth section.
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2. Methods

2.1. System Description and Dynamical Analysis

The governing equation of the analyzed four-dimensional chaotic system can be expressed as [41]:

.
x = y,
.
y = z,
.
z = w,

.
w = −aw + bx2

− cy2 + exy + f xz + g.

(1)

Note that the system is presented without control input, because only an analysis of its dynamical
behavior is pursued in this section. The governing system is said to be invariant under the transformation
(x, y, z, w)→ (−x,−y,−z, w) , an approximately 180

◦

rotation about the w-axis. That is to say, on
reflection in the w-axis and, for all of the values of the parameters in the system, this symmetry remains.

Given the dynamical system under consideration reported in Equation (1), its volume contraction
rate can be expressed in terms of the following Lie derivative:

∆V =
∂

.
x
∂x

+
∂

.
y
∂y

+
∂

.
z
∂z

+
∂

.
w
∂w

= −a. (2)

The system presented by Equation (1) is a dissipative one, and its exponential contraction can be
expressed by:

dV
dt

= e−a. (3)

This shows that a volume element V0 is apparently contracted by the flow into a volume element
V0 × e−at in time t. Hence, each volume containing the trajectory of this dynamical system shrinks to
zero whenever t→∞ at an exponential rate −a. This way, all these orbits are eventually confined to a
specific subset that has zero volume, and the asymptotic motion settles onto an attractor of (1).

Taking Equation (1) into consideration with a, b, c, d, e, f , and g representing parameters, the chaotic
flow with a plane of equilibria has all of the xw-plane as the points of the equilibrium (F∗) in the
sense that z = y = 0. From Equation (2), it can be concluded that the divergence is negative for a > 1.
Therefore, the dissipativity condition with regard to the existence of attractive sets in the system is
held for a > 1. The Jacobian matrix and its value at F∗ are stated as:

J(x, y, z, w) =


0 1 0 0
0
0

0 1
0 0

0
1

ey + f z ex f x −a

, (4)

J(F∗) =


0 1 0 0
0
0

0 1
0 0

0
1

0 x x −a

. (5)

The eigenvalues for the system in F∗ are computed and the following are obtained:

0, 1
6

(
−8a3

− 36xa + 108x + 12
√
−12a3x− 3a2x2 − 54ax2 − 12x3 + 81x2

) 1
3

−
6(− 1

3 x− 1
9 a2)

(−8a3−36xa+108x+12
√

−12a3x−3a2x2−54ax2−12x3+81x2)
1
3
−

1
3 a.

(6)

For the choice of parameters b = 1, a = −1, c = 2, e = f = −1, and g = 2, and the initial conditions
[x(0), y(0), z(0), w(0)] = [1.5, 0,−1,−0.3] and [x(0), y(0), z(0), w(0)] = [3.5,−1, 0, 0.5], the plots for the
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state space are depicted through two-dimensional and three-dimensional representations, such as can
be seen in Figure 1.Entropy 2020, 22, 271 4 of 14 
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Figure 1. Projections in the stated planes with a suitable choice of parameter values. (a) 𝑥𝑦, 𝑦𝑧, 𝑤𝑧, 

and 𝑥𝑦𝑧 planes with initial conditions [𝑥(0), 𝑦(0), 𝑧(0), 𝑤(0)] = [1.5,0, −1, −0.3]. (b) 𝑥𝑦, 𝑦𝑧, 𝑤𝑧, and 

𝑥𝑦𝑧 planes with initial conditions [𝑥(0), 𝑦(0), 𝑧(0), 𝑤(0)] = [3.5, −1,0,0.5]. 

The distinguishing device property (1) is a one-constant offset boost. From a physical point of 

view, the ability of amplitude control is a relevant feature of a potential chaos generator [42–45]. The 

added feedback status can be seen as a valuable replacement for controlling the variables’ amplitude. 
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Figure 1. Projections in the stated planes with a suitable choice of parameter values. (a) xy, yz, wz,
and xyz planes with initial conditions [x(0), y(0), z(0), w(0)] = [1.5, 0,−1,−0.3]. (b) xy, yz, wz, and xyz
planes with initial conditions [x(0), y(0), z(0), w(0)] = [3.5,−1, 0, 0.5].

The distinguishing device property (1) is a one-constant offset boost. From a physical point of
view, the ability of amplitude control is a relevant feature of a potential chaos generator [42–45]. The
added feedback status can be seen as a valuable replacement for controlling the variables’ amplitude.
In Equation (1), the state variable x only exists in the fourth line, so x is boostable offset. In other words,
the transformation x→ x + k will balance the state variable x, being k a constant. Thus, Equation (1)
can be expressed as:

dx
dt = y
dy
dt = z
dz
dt = w

dw
dt = −aw + b(x + k)2

− cy2 + e(x + k)y + f (x + k)z + g.

(7)

A novel sliding-mode-based control algorithm is implemented in the following section to
synchronize the chaotic behavior of the proposed system.

2.2. Controller Design

By defining x1 = x , x2 = y, x3 = z, and x4 = w, the state space of a nonlinear system with a
control input in the presence of the perturbance can be expressed as follows:{ .

xi = fi(x) i = 1, 2, 3
.
x4 = f4(x) + ∆ f (x) + u + d(t),

(8)

where fi(x) = xi+1 for i = 1, 2, 3 and f4(x) = −ax4 + bx2
1 − cx2

2 + ex1x2 + f x1x3 + g . ∆ f is the
uncertainty of the system. The external disturbance and the control input are represented by d(t) and
u, respectively.
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2.2.1. Fast Disturbance Observer

Because of physical limitations, input saturation is a prevalent phenomenon in many real systems.
Thus, in the present study, the existence of input saturation is considered in the control design procedure.
By considering these constraints, the control input u is given by:

u =


umax i f ud > umax,
ud i f umin < ud < umax,

umin i f ud < umin,
(9)

where umin and umax represent the limits for the control input saturation and the designed control
ud will be obtained later. Substituting ũ = u− ud in Equation (8) yields:

.
xi = fi(x) i = 1, 2, 3,
.
x4 = f4(x) + (ud + ũ) + d(t) = f4(x) + ud + D,

(10)

where D = ũ + d is a compound disturbance that the system is exposed to in the presence of input
saturation, external perturbation, and dynamic uncertainties.

Assumption 1. The compound disturbance (D) is bounded, i.e., β > |D|, and β is a positive parameter.

Now, the disturbance for the unknown compound disturbance is given by [46]:

D̂ = −ksd − βsign(sd) − εs
p0
q0 −

∣∣∣ f (x)∣∣∣sign(sd) − f (x). (11)

The auxiliary variable sd is given by:

sd = zdo − x4, (12)

.
zdo = −ksd − βsign(sd) − εs

p0
q0 −

∣∣∣ f (x)∣∣∣sign(sd) + ud (13)

where k and ε are positive parameters. In addition, p0 and q0 are odd positive integers with p0 < q0. By
considering Equations (10), (12) and (13), the following can be obtained:

.
sd =

.
zdo −

.
x4 = −ksd − βsign(sd) − εs

p0
q0 −

∣∣∣ f (x)∣∣∣sign(sd) − f (x) −D. (14)

Then, by considering Equations (10), (11) and (12), it can be seen that:

D̃ = D̂−D = −ksd − βsign(sd) − εs
p0
q0 −

∣∣∣ f (x)∣∣∣sign(s) − f (x) −D

= −ksd − βsign(sd) − εsd

p0
q0 −

∣∣∣ f (x)∣∣∣sign(sd) − f (x) −
.
x4 + f (x) + ud

= −ksd − βsign(sd) − εsd

p0
q0 −

∣∣∣ f (x)∣∣∣sign(sd) + ud −
.
x4 =

.
zod −

.
x4 =

.
sd.

(15)

To show the stability, as well as assess the tracking of the disturbance observer in infinite time,
Theorem 1 and Lemma 1 were used.

Lemma 1. Consider the continuous positive definite function V(t) that meets the following inequalities [47]:

.
V(t) + ϑV(t) + ξVχ

≤ 0, ∀t > t0. (16)

As a result, V(t) converges to the equilibrium point in the finite time ts as:

ts ≤ t0 +
1

ϑ(1− χ)
ln
ϑV1−χ(t0) + ξ

ξ
, (17)
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where parameters 0 < χ < 1 and ϑ > ξ >0.

Theorem 1. For the uncertain system introduced by Equation (10), the disturbance approximation error
computed as Equation (15) converges to zero in a finite time by applying the disturbance observer described in
Equations (11)–(13).

Proof. Let a Lyapunov function candidate be:

V0 =
1
2

sd
2. (18)

The first-time derivative of V0 is:

.
V0 = sd

.
sd = sd

(
−ksd − βsign(sd) − εsd

p0
q0 −

∣∣∣ f (x)∣∣∣sign(sd) − f (x) −D
)

≤ −ksd
2
− βsdsign(sd) − εsd

p0+q0
q0 −

∣∣∣ f (x)∣∣∣sd sign(sd) − sd f (x) − sdD

≤ −ksd
2
− β|sd| − εsd

p0+q0
q0 −

∣∣∣ f (x)∣∣∣|sd| − sd f (x) + |sd||D|

≤ −ksd
2
− εsd

p0+q0
q0 ≤ −2kV0 − 2(p0+q0)/2q0εV(p0+q0)/2q0

0 .

(19)

Remark 1. Based on Theorem 1 and Lemma 1, in a finite time the disturbance approximation error converges to
zero. The convergence time of the disturbance estimator is also given by:

ts < t0 +
q0

k(p0 + 3q0)
ln

ks(q0−p0)/q0
0 t0

ε
+ 1

, (20)

in which t0 indicates the initial time. �

2.2.2. Adaptive Sliding Mode Control

Tracking control with the adaptive terminal sliding mode technique is developed here for the case
where all states of the system are available. The tracking error of the system can be expressed as:

ei = xi − xdi (21)

xdi being the desired value of state xi. To develop ATSMC, the sliding mode function can be
defined as:

S(t) = e4 + c3e3 + c2e2 + c1e1, (22)

where c1, c2, c3 are the design parameters and should be chosen as positive constants for which the
polynomial sn−1 + cn−1sn−2 + ···+ c1 is Hurwitz. As a novel approach, an adaptive terminal sliding
mode tracking control method with a fast disturbance observer is proposed. The adaptive surface is
assumed to be:

sn(t) = s(t) + α̂s(t) + sd(t), (23)

and then the proposed disturbance-observer-based adaptive terminal sliding control technique is
designed as:

ud = −

(
c3e4 + c2e3 + c1e2 + f4(x) −

.
xd4 + α̂

.
s + δsn + ζs

p
q
n + D̂

)
, (24)

where ζ and δ are positive design parameters. In addition, p and q are odd positive integers, where
p ≤ q and α̂ is an adjustable parameter that will be updated using the following update law:

.
α̂ = −η1ssn, (25)
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where η1 is a positive parameter.

Theorem 2. By considering Equation (24) and supposing that state information is fully available, the tracking
error of the uncertain nonlinear system described in Equation (8) converges to zero in a finite time based on the
proposed fast disturbance-observer-based ATSMC technique.

Proof. Choosing the Lyapunov function candidate as:

V(sn) =
1
2

s2
n, (26)

its time derivative is given by:
.

V(sn) = sn
.
sn. (27)

Considering Equations (22) and (23), it can then be obtained that:

.
V = sn

( .
s +

.
α̂s + α̂

.
s +

.
sd

)
= sn

(
c1

.
e1 + c2

.
e2 + c3

.
e3 +

.
e4 +

.
α̂s + α̂

.
s +

.
sd

)
= sn

(
c1

.
e1 + c2

.
e2 + c3

.
e3 +

.
x4 −

.
xd4 +

.
α̂s + α̂

.
s +

.
sd

)
.

(28)

According to Equation (8), this expression can be rewritten as:

.
V = sn

(
c1

.
e1 + c2

.
e2 + c3

.
e3 + f4 (x) + ud + D(t) −

.
xd4 +

.
α̂s + α̂

.
s +

.
sd

)
. (29)

Substituting the control law described by Equation (24) into Equation (29) results in:

.
V = sn

(
c1

.
e1 + c2

.
e2 + c3

.
e3 − (c3e4 + c2e3 + c1e2) + D(t) − D̂− δsn − ζs

p
q
n +

.
α̂s +

.
sd

)
. (30)

According to Equation (8), it is known that for = 1, 2, 3,
.
ei = ei+1; therefore:

.
V = sn

(
D(t) − D̂− δsn − ζs

p
q
n +

.
α̂s +

.
sd

)
, (31)

and considering Equation (15), D− D̂ = −
.
sd, it is then obtained that:

.
V = sn

(
.
α̂s− δsn − ζs

p
q
n

)
= sn

(
−η1s2sn − δsn − ζs

p
q
n

)
≤ −δs2

n − ζs
p+q

q
n ≤ −2δV − 2

p+q
2q ζV

p+q
2q .

(32)

Remark 2. Considering Equation (32) and Lemma 1, it can be confirmed that the resulting adaptive terminal
sliding mode tracking control technique satisfies the Lyapunov condition; in a finite time, the trajectories of the
system converge to the desired path. �

2.2.3. Extended Kalman Filter

It is known that the ATSMC technique requires the states of the system, and thus the acutal
amounts being used for the controller. To estimate the state vector of the system, the extended Kalman
filter (EKF) was used in this study. This algorithm provides a solution for a nonlinear system that
directly deals with the effects of the disturbance noises, including measurement and system noises.
Additionally, by using the EKF, the errors in the parameters will be handled as noise. Uncertainties,
such as parameter mismatches and noises, may ruin the chaos control.
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The EKF is added to the control scheme system; hence, the controller’s accuracy can be significantly
improved in the presence of the noises. The discrete dynamic state model for the system is as follows:

x(k) = f (xk−1) + rk−1,
y(k) = h(xk−1) + vk−1,

(33)

where r and v are the process and measurement noise vectors, respectively, x = [x1, x2, x3, x4] is the
state vector, and y is the output of the system. The EKF algorithm can be given by the following
recursive equation. The first step (prediction) provides a prediction of the states and the covariance
matrix based on previous estimates, i.e.,

x̂(k|k−1) = f
(
x̂(k−1|k−1)

)
, (34)

P(k|k−1) = F(k−1)P(k−1|k−1)F
T
(k−1) + Q(k−1), (35)

where x̂(k|k−1) is the estimated state at time k using data from time 0 to time k, f is the state transition
function, and P(k|k−1) denotes the prediction error covariance matrix. The second step corrects the
covariance matrix and predicted states, which is realized by the following recursive relations:

B(K) = qk − h
(
x̂(k|k−1)

)
, (36)

S(K) = H(k−1)P(k|k−1)H
T
(k−1) + Rk, (37)

K(K) = P(k|k−1)H
T
(k)S

−1
(K), (38)

x̂(k|k) = x̂(k|k−1) + K(K)B(K), (39)

P(k|k) = P(k|k−1) −K(K)S(K)K
T
(K), (40)

K, B, S being the estimation gains, R and Q the covariances of measurements and process noises, and F
and H the Jacobian matrix of the system, given by:

[Fk]i, j =
∂ fi(X)

∂x j

∣∣∣∣∣∣
x=x̂(k|k)

, (41)

[Hk]i, j =
∂hi(X)

∂x j

∣∣∣∣∣∣
x=x̂(k|k)

. (42)

As an summary, Figure 2 illustrates the procedure of the obtained control scheme. The
disturbance-observer-based ATSMC technique with EKF has been designed for the control and
synchronization of uncertain nonlinear systems. Clearly, the states of the system, which are estimated
through the EKF algorithm, are necessary for ATSMC. The control input saturation also affects the
system, and therefore this issue was considered for its control. Actually, a limitation operator was
introduced in Equation (9) and, in this condition, the stability and convergence of the closed-loop
system were proven. Consequently, even when there exists input saturation, the system will reach its
desired value because disturbances are bounded.
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3. Results and Discussion

In this section, a numerical simulation of the proposed control method is introduced and discussed.
The equation of the system with the control input and external disturbance can be expressed as:

.
x = y,
.
y = z,
.
z = w,

.
w = −aw + bx2

− cy2 + exy + f xz + g + u + d(t),

(43)

where u is the control input and the external disturbance d(t) is given by 0.1 sin(0.1πt).
GA optimization has been combined with the proposed control technique to reduce the chattering

phenomena. In fact, using this approach, the parameters of the control scheme can be determined. The
cost function of the GA was considered to be:

J = min
∑

η1eTe + η2
.
eT .

e, (44)

where e(t) =
[
ex, ey, ez, ew

]
= [x− xd, y− yd, z− zd, w−wd]

T and the weights of the cost function were

established as η1 = 1 and η2 = 5. The term η2
.
eT .

e was specifically included to decrease the chattering
in the response of the system and the parameters c1, c2, c3, η1, ζ, δ, ε, and k were obtained to minimize
the cost function. The population size was considered to be 250, the number of generations 200, the
mutation probability 0.05, and the crossover probability 0.9. The rest of design parameters were:

p0 = 1, q0 = 11, p0 = 3, q0 = 7, and β = 500. (45)

3.1. Chaos Control with Incomplete State Measurement

In this part, it is assumed that the value of state x is unavailable. According to this uncertain state,
the EKF observer was used to estimate x. The estimated value xe was used for the control scheme.
The initial conditions were considered to be [0,−1, 0,−1.5]. The measurement and process noises
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were established as white noise with a zero mean value and the following covariance matrices R and
Q, respectively:

R


0.1 0 0
0 0.1 0
0 0 0.1

, Q =


0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1

. (46)

The feasible control input saturation was also considered by setting umax = 15 and umin = −15.
The performance and effectiveness of the proposed control method were investigated by obtaining the
time-response of the system. For this purpose, the controller was turned on at Tstart = 10. Figure 3
depicts the stabilized states of the system, where in a short time period they converged to the desired
values. From Figure 3, it can be concluded that the EKF predicts state x correctly and improves
the controller’s behavior significantly. Figure 4 shows the control input signal based on the applied
control scheme.
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Table 1 presents the designed control input and settling time (Ts) values for the system, where
|| ||2 and || ||∞ indicate the Euclidian norm and the infinity norm, respectively. All these simulation
outcomes (Figures 3 and 4 and Table 1) show that the presented uncertain nonlinear system was
stabilized in the existence of noises and time-varying external disturbances. Hence, the aforementioned
controller satisfied the expected performance.

Table 1. Norms of control input and values of settling time (T_s) based on the proposed control scheme.

||u||2 ||u||∞ Ts(x) Ts(y) Ts(z) Ts(w)

212.5013 15 17.7775 17.0458 16.2175 16.7562

3.2. Adaptive Synchronization of the Uncertain Chaotic System

The disturbance-observer-based ATSMC with EKF was used to synchronize the chaotic system.
The case with little knowledge of the slave system’s parameters will be investigated, and in this way
the robustness of the proposed method will be proven. The slave system is taken from Equation (43),
and the master system is as follows:

.
xm = ym,
.

y m = zm,
.
zm = wm,

.
wm = −amwm + bmx2

m − cmy2
m + emxmym + fmxmzm + gm.

(47)

The master system’s parameters were am = 1.05, bm = 0.7, cm = 0.19, em = 1.37, fm = 1.79, and
gm = −4, and the initial conditions were [−1, −1, −1, −1]. The case with little knowledge of the slave
system’s parameters was considered by setting them to 70% of their actual value, i.e.,

â = 0.7× a, b̂ = 0.7× b, ĉ = 0.7× c, ê = 0.7× e, ĝ = 0.7× g. (48)

The incorrect parameters â, b̂, ĉ, ê, f̂ , and ĝ were then used for the controller, instead of the
correct values a, b, c, e, f , and g. It was also assumed that the value of state x from the slave system
is unavailable.

Under these conditions, synchronization time trajectories and synchronization errors are presented
in Figures 5 and 6, respectively. The control input’s evolution over time is illustrated in Figure 7. Note
that one of the most significant advantages of the developed control scheme is tracking control when
the control input is saturated. That situatation is especially relevant in practical applications. The
Lyapunov stability theorem of the designed controller ensures that the closed-loop system is stable
while there are control input limits.

Hence, the described simulation outcomes indicate that the designed control scheme is capable of
synchronizing chaotic systems in the presence of dynamic uncertainties, process and measurement
noise, external perturbations, and control input saturation.
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Figure 7. Control input for synchronization of the chaotic system using disturbance-observer-based
ATSMC with the EKF (Tstart = 10).

4. Conclusions

A non-equilibrium four-dimensional chaotic system with specific features was studied. Some
of the dynamical characteristics of the system, including invariance and symmetry, the existence
of attractors and dissipativity, chaotic flow with a plane of equilibria, and offset boosting of the
chaotic attractor, were discussed. A disturbance-observer-based ATSMC scheme was designed for the
control and synchronization of the chaotic system in the presence of dynamic uncertainties, external
disturbances, and control input saturation. To guarantee the performance of the proposed control
scheme in the presence of noises and uncertainties, the EKF algorithm was used. Additionally, a genetic
algorithm was used to optimize the controller parameters, thus reducing the chattering phenomena.
Finally, some simulation results were presented to exhibit the performance of the suggested control
method for uncertain chaotic systems in the presence of noise and disturbances. In future work, the
practical application of such a system will be analyzed. For instance, given its chaotic dynamics, the
system could be useful for the development of chaos-based applications. Moreover, the extension of
the proposed control method could also be used for fractional-order systems.
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