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Although the efficacy of herbal medicines (HMs) and traditional Chinese medicines
(TCMs) in human diseases has long been recognized, their development has been
hindered in part by a lack of a comprehensive understanding of their mechanisms
of action. Indeed, most of the compounds extracted from HMs can be metabolized
into specific molecules by host microbiota and affect pharmacokinetics and toxicity.
Moreover, HMs modulate the constitution of host intestinal microbiota to maintain
a healthy gut ecology. Dietary interventions also show great efficacy in treating
some refractory diseases, and the commensal microbiota potentially has significant
implications for the high inter-individual differences observed in such responses.
Herein, we mainly discuss the contribution of the intestinal microbiota to high inter-
individual differences in response to HMs and TCMs, and especially the already known
metabolites of the HMs produced by the intestinal microbiota. The contribution of
commensal microbiota to the inter-individual differences in response to dietary therapy
is also briefly discussed. This review highlights the significance of intestinal microbiota-
associated metabolites to the efficiency of HMs and dietary interventions. Our review
may help further identify the mechanisms leading to the inter-individual differences in the
effectiveness of HM and dietary intervention from the perspective of their interactions
with the intestinal microbiota.

Keywords: drug interventions, herbal medicines, traditional Chinese medicines, inter-individual differences, gut
microbiota, metabolites

BACKGROUND

The function of herbal medicines (HMs) and traditional Chinese medicines (TCMs) in the remedial
and prophylactic management of human diseases has been recognized for a long time (Qiu,
2007; Fan et al., 2014; Wang et al., 2017; Xu et al., 2017; Nie et al., 2018; Wu and Tan, 2019),
while the mechanisms of action of HMs remain largely unknown. Traditional studies focused on
identifying the specific bioactive compounds in HMs, and such strategies have been successful in
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developing certain compounds isolated from HMs into novel
drugs (Xu et al., 2017; Feng et al., 2019). However, most
components extracted from HMs exhibit poor bioactivity and
bioavailability (Xu et al., 2017; Feng et al., 2019). Indeed,
the pharmacological activity of HMs largely depends on
intestinal microbiota-dependent biotransformation (Xu et al.,
2016; Aguilar-Toalá et al., 2018). Compared to the primary
drugs, metabolites produced by the intestinal microbiota often
exhibit greater pharmacological activity and are more easily
absorbed (Inao et al., 2004; Hussain et al., 2016). Moreover,
several components of HMs can serve as nutrition for the growth
of specific microbiota and hence modulate the constitution
of host intestinal microbiota (Xu et al., 2017; Feng et al.,
2019). Therefore, the contribution of host intestinal microbiota-
mediated biotransformation to the efficacy of HMs cannot
be underestimated.

Indeed, the importance of the intestinal microbiota to human
health and pathophysiology is indisputable. The beneficial
effects of the intestinal microbiota are primarily contributed
by the intrinsic constituents of the intestinal microbiota and
the microbiota-associated metabolites, especially the subsets
generated from beneficial bacteria (Rooks and Garrett, 2016; Bhat
and Kapila, 2017; Hasegawa et al., 2017; Postler and Ghosh, 2017;
Aguilar-Toalá et al., 2018; Cani, 2019; Silverman, 2019). The
composition of the intestinal microbiota, and more specifically
the metabolites generated through their biotransformation, has
been shown to be closely associated with the large inter-
individual differences observed in responses to drugs and
dietary interventions (Coryell et al., 2018; Gong et al., 2018;
Gopalakrishnan et al., 2018; Nie et al., 2018; Olson et al., 2018;
Rothhammer et al., 2018; Routy et al., 2018; Maini Rekdal
et al., 2019; Zimmermann et al., 2019a). Of note, in vivo
drug activity, including pharmacokinetics and toxicity, is closely
associated with the gut microbiota (Coryell et al., 2018; Gong
et al., 2018; Gopalakrishnan et al., 2018; Nie et al., 2018;
Olson et al., 2018; Routy et al., 2018; Maini Rekdal et al.,
2019; Zimmermann et al., 2019a). Accumulating evidence reveals
that intestinal microbiota are crucial contributors to the high
inter-individual differences in dietary intervention efficacy in
treating some refractory diseases (Flint et al., 2014; Thorburn
et al., 2014; Buffington et al., 2016; Rioscovián et al., 2016;
Hasegawa et al., 2017; Nie et al., 2018; Requena et al., 2018),
such as the anti-seizure effect of the ketogenic diet (KD)
(Olson et al., 2018). However, the interaction between HMs
or diet therapy and the host intestinal microbiota remains
largely unknown.

Owing to a range of factors, including host-intrinsic,
host-extrinsic, and environmental factors, the taxonomic
composition of the intestinal microbiota varies greatly
among individuals (Tsb et al., 2018). It is critical to obtain
a clear understanding of the links between HMs or dietary
interventions and their metabolites from commensal
microbiota. Herein, we mainly discuss the metabolites
produced from TCMs and HMs by the intestinal microbiota
(Figure 1). The contribution of commensal microbiota to
the high inter-individual differences in dietary intervention
efficacy is also briefly discussed. Our review further

suggests that the effect of microbiota should be considered
while developing new dietary guidelines or drugs for
clinical application.

INTESTINAL MICROBIOTA-ASSOCIATED
METABOLITES OF THE COMPOUNDS
ISOLATED FROM HMS

Herbal medicines have significantly contributed to human health
through disease prophylaxis and therapy (Xu et al., 2017; Feng
et al., 2019). The term HM covers raw and processed plants
such as the roots, leaves, flowers, berries, and/or seeds from
one or more plants (Feng et al., 2019). Materials derived from
animals, fungi, and minerals are also regarded as HMs in
some traditions (Xu et al., 2017; Feng et al., 2019). Although
most of the supposed pharmacological effects of HMs were
determined by preclinical researches or even empirical study
alone, multiple traditional medicine systems, such as TCMs,
Ayurveda, and Islamic medicine, are dominated by HMs (Xu
et al., 2017). However, the mechanisms of action of most
HMs and the reasons for the different responses of different
individuals remain unclear (Xu et al., 2016, 2017; Singh
et al., 2017; Nie et al., 2018; Maini Rekdal et al., 2019).
Of note, most of the chemicals derived from HMs exhibit
poor bioactivity and bioavailability (Xu et al., 2017). However,
intestinal microbes are involved in the metabolism of drugs
(Maini Rekdal et al., 2019; Zimmermann et al., 2019a,b),
especially the compounds extracted from HMs (Nie et al., 2018;
Tong et al., 2018). Such biotransformation may contribute to
explaining the great inter-individual differences in response
to HMs because the constitution of gut microbiota varies
among individuals (Xu et al., 2016; Tsb et al., 2018; Maini
Rekdal et al., 2019). In this section, we mainly attempt to
gain a more comprehensive and detailed understanding of the
interactions between HMs and the intestinal microbiota. The role
of microbiota in the in vivo activity and toxicity of chemical drugs
is also discussed.

The compounds extracted from HMs that can be metabolized
by the intestinal microbiota are mainly classified into subsets
based on their chemical skeletons and include flavonoids,
glycosides, terpenoids, anthraquinones, alkaloids, and organic
acids (Table 1). Of these compounds, flavonoids are the
most thoroughly studied, and most are degraded into flavone
glycosides by the microbiota once the flavonoid enters the
large intestine (Table 1). However, the final metabolites
vary according to the specific medication and particular gut
bacterial composition (Table 1). Bifidobacteria may be the
group of microorganisms that can metabolize the widest
range of compounds, including soy isoflavones, puerarin,
ginsenoside, and sennoside (Table 1). Moreover, several specific
bacteria can metabolize different compounds into the same
metabolites. For instance, Bifidobacterium can metabolize both
soy isoflavones and puerarin into daidzein (Table 1). Of
note, the polyphenolics of berries and pomegranate fruit, a
compound in unconventional HMs, can be metabolized by
Bifidobacterium pseudocatenulatum INIA p815 into urolithin A,
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FIGURE 1 | Crucial roles of intestinal microbiota-associated metabolites in the effectiveness of drug and dietary interventions. There are two main pathways by
which the commensal microbiota affects the toxicity and efficacy of drug and dietary intervention. First, the specific components of HMs and diet provide nutrition to
specific bacteria, including both beneficial bacteria and pathogenic bacteria, thereby modulating the homeostasis of the interaction between gut microbiota and the
host. Moreover, particular components of the host diet and medicines can be metabolized by commensal microbiota to generate specific metabolites. The final
metabolites may affect the toxicity and efficiency of drugs and dietary interventions, partly mediating the large inter-individual differences observed among hosts.

which has multiple activities, including combating inflammation,
oxidation, and aging, and enhancing gut barrier function (Singh
et al., 2019). Collectively, the metabolism of HMs may not
be highly dependent on a specific bacterium. However, the
specific role of intestinal microbiota in the metabolism of HMs
needs to be confirmed in clinical studies in the future, as
the existing studies regarding their relationship refer only to
preclinical studies.

In addition to the HMs, the gut microbiota is also closely
associated with the in vivo activity of chemical drugs. Given that
prior influential studies have revealed the gut microbes involved
in drug metabolism and their potential genes (Zimmermann
et al., 2019a,b), we briefly discuss the role of microbiota-
mediated biotransformation in drug activity and toxicity through
introducing several representative drugs (Table 2). For instance,
gut microbes have been suggested to be crucial factors in
the conversion of L-dopa to dopamine (Maini Rekdal et al.,
2019). The bioconversion of L-dopa to dopamine depends on
a pyridoxal phosphate-dependent tyrosine decarboxylase from

Enterococcus faecalis followed by transformation of dopamine
to m-tyramine by a molybdenum-dependent dehydroxylase
from Eggerthella lenta (Maini Rekdal et al., 2019). In addition,
the gut microbiota is responsible for varying responses to
simvastatin treatment, resulting in vast differences in the
hypolipidemic effect of simvastatin among patients (Krauss
et al., 2013; He et al., 2017). Furthermore, although PD-1
inhibitors exhibit potent activity against cancer by blocking
a “checkpoint” molecule on T cells, only 25% of patients
respond well to PD-1 blockers. The gut microbiota is a crucial
factor in determining the response of an individual to various
treatments (Gopalakrishnan et al., 2018; Routy et al., 2018). Gut
microbes are also a crucial factor affecting the in vivo drug
toxicity. For example, diurnal variation in acute liver injury
caused by acetaminophen is partly mediated by 1-phenyl-1,2-
propanedione, a metabolite of acetaminophen generated by gut
microbiota (Gong et al., 2018). Interestingly, acetaminophen
hepatotoxicity can be reduced through postbiotic-induced
autophagy by Lactobacillus fermentum (Dinic et al., 2017),
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TABLE 1 | Metabolites produced by intestinal bacteria from HMs.

Drugs Bacteria involved
(if available)

Metabolite Function (determined by
preclinical studies alone)

References

Flavonoids and their derivates

General flavonoids Clostridium spp. Desaminotyrosine Modulation of type I interferon. Schoefer et al., 2003; Ozdal
et al., 2016; Steed et al., 2017

Soy isoflavones Bifidobacterium breve
15700

Equol Daidzein Modulation of platelet function.
Prevention of thrombotic events.

Braune and Blaut, 2011; Elghali
et al., 2012

Puerarin Bifidobacterium longum
BB536 Lachnospiraceae
strain CG19-1

Daidzein

Mangiferin Bacteroides sp. MANG
Lachnospiraceae strain
CG19-1

Norathyriol Suppresses skin cancers.
Reverses obesity-induced and
high-fat diet-induced insulin
resistance.

Sanugul et al., 2005; Braune
and Blaut, 2011; Li et al., 2012;
Ding et al., 2014

Hesperidin Uncertain Hesperetin Anti-inflammatory and
antioxidation effect.

Yang et al., 2002, 2012; Lee
et al., 2004; Alok et al., 2017

Kaempferitrin Uncertain Kaempferol 3-O-α-L-rhamnoside
Kaempferol 7-O-α-L-rhamnoside
Kaempferol p-Hydroxybenzoic acid

Anxiolytic activity. Vissiennon et al., 2012

Baicalin Uncertain Baicalein Oroxylin A Anti-pruritic Anti-inflammatory Trinh et al., 2010; Myung-Ah
et al., 2012; Serra et al., 2012

Glycosides

Ginsenoside Bacteroides sp.
Bifidobacterium sp.
Fusobacterium sp.

Rg3, Rh2, and compound K Cardio-cerebral vascular system
protection. Nervous system
protection. Anti-tumor function.

Odani et al., 1983; Eunah et al.,
2002; Bae et al., 2004; Li et al.,
2010; Jung et al., 2012

Glycyrrhizin Uncertain Glycyrrhetic acid monoglucuronide Anti-inflammatory, anti-ulcer,
antiallergic, anti-dote,
anti-oxidant, anti-tumor, and
anti-viral activity.

Akao, 2000; Baltina, 2003

Anthraquinone

Sennoside Lactic acid bacterial strains
Bifidobacterium strains

Rheinanthrone Restrictive effect on diarrhea. Matsumoto et al., 2012;
Takayama et al., 2014

Barbaloin Eubacterium strain Bar Aloe emodin Anthrone Restrictive effect on diarrhea. Akao et al., 1996

Terpenoids

Geniposide Uncertain Genipin Protective effect on chemically
induced liver injury.

Inao et al., 2004; Kang et al.,
2012; Khanal et al., 2012; Jin
et al., 2014

Paeoniflorin Uncertain Paeoniflorin, Paeoni lactone
glycosides, Paeonimetabolin I, II, III

Protective effect on the
cardiovascular system and
nervous system.

Hsiu et al., 2003; Wozniak
et al., 2007; Abdel-Hafez et al.,
2010; Merenstein et al., 2010

Alkaloids

aconitine Uncertain 8-Butyryl-14-benzoylmesa-conine
8-Propionyl-14-benzoylaconine
8-Butyryl-14-benzoylaconine
8-Valeryl-14-benzoylmesaconine

Anti-inflammatory Painkillers Borcsa et al., 2011; Xin et al.,
2012

Organic acids

Chlorogenic acid Escherichia coli
Bifidobacterium lactis
Lactobacillus gasseri

Caffeic acid Quinic acid
M-coumaric acid Ferulic acid
Isoferulic acid Hippuric acid
3-Hydroxyhippuric acid

Antioxidant Anticarcinogenic
Suppresses the adherence of
pathogenic bacteria such as
H. pylori.

Gonthier et al., 2003; Gotteland
et al., 2006; Couteau et al.,
2010; Rio et al., 2010; Ludwig
et al., 2013; Tomas-Barberan
et al., 2014

Dark tea Uncertain 4-hydroxybenzoic acid 8-C
N-ethyl-2-pyrrolidinone substituted
flavan- 3-ols

Improvement of age-related
neurodegenerative diseases
Antioxidant capacity

Cai et al., 2018

which demonstrates that different bacteria play distinct roles in
the toxicity of the same drug. These findings suggest that an
understanding of the interaction between intestinal microbiota

and drug metabolism is critical for developing new drugs that
are efficacious, which is significant for the frequent emergence of
drug-resistance.

Frontiers in Physiology | www.frontiersin.org 4 October 2019 | Volume 10 | Article 1343

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-01343 October 25, 2019 Time: 17:16 # 5

Wang et al. Importance of Microbial Metabolites

TABLE 2 | Metabolites produced by intestinal bacteria from chemical drugs.

Drugs Bacteria involved (if available) Metabolite (if available) References

Acetaminophen Citrobacter freundii; Escherichia coli 1-phenyl-1,2-propanedione Gong et al., 2018

Tacrine Bacteria with coding beta-glucuronidases – Bisanz et al., 2018; Yip et al., 2018

SN-38 glucuronide Bacteria with coding beta-glucuronidases SN-38 Wallace et al., 2010;
Spanogiannopoulos et al., 2016;
Guthrie et al., 2017; Bisanz et al.,
2018

Sulfasalazine Bacteroides sp., Enterococcus faecalis and
two Lactobacillus sp.

5-aminosalicylic acid Spanogiannopoulos et al., 2016

Prontosil - triaminobenzene and sulfanilamide Fuller, 1937

Digoxin Eggerthella lenta coding cardiac glycoside
reductase (cgr) operon

dihydrodigoxin Spanogiannopoulos et al., 2016

Non-steroidal anti-inflammatory
drugs (including diclofenac,
indomethacin, and ketoprofen)

Bacteria with coding beta-glucuronidases
(such as Proteobacteria, Firmicutes and
Actinobacteria phyla)

Aglycon etc. Spanogiannopoulos et al., 2016

Melamine Klebsiella terrigena cyanuric acid Xiaojiao et al., 2013;
Spanogiannopoulos et al., 2016

L-dopa Enterococcus faecalis pyridoxal
phosphate-dependent tyrosine decarboxylase

dopamine Maini Rekdal et al., 2019

Dopamine Eggerthella lenta molybdenum-dependent
dehydroxylase

m-tyramine Maini Rekdal et al., 2019

Simvastatin – – Krauss et al., 2013; He et al., 2017

GUT MICROBES: CRUCIAL FACTORS
FOR THE FUNCTION OF TCM

It has long been known that TCM is effective for treating
many human diseases, including influenza virus infection, cancer,
diabetes, and cardiovascular diseases (Qiu, 2007; Fan et al.,
2014; Wang et al., 2017; Xu et al., 2017; Nie et al., 2018; Wu
and Tan, 2019). The fundamental functions and applications of
TCM depend on the compatible application of herbal formulas
(FuFang in Chinese) based on ancient empirical philosophies
such as Yin-Yang (Dong et al., 2018). However, the mechanisms
of action of TCM remain largely unclear or unknown. Recent
insights into TCM have focused on its interactions with the gut
microbiota (Xu et al., 2017; Feng et al., 2019; Wu and Tan,
2019). Firstly, the carbohydrates in HMs cannot be digested by
the human body, while the human gut microbiome encodes
thousands of carbohydrate-active enzymes to digest herbal
carbohydrates (Xu et al., 2017; Lu et al., 2019). Secondly, the
non-carbohydrate bioactive compounds in TCM, particularly
triterpene glycosides, flavonoids, isoflavones, iridoid glycosides,
alkaloids, and tannins, have poor lipophilicity, high hydrogen-
bonding capacity, and high molecular flexibility, which limit
the bioavailability of TCM (Xu et al., 2017). However, these
non-carbohydrate compounds can be metabolized into several
metabolites by the gut microbiota, increasing the efficiency of
intestinal absorption and thereby improving their bioavailability
(Xu et al., 2017). Moreover, most TCM formulas can reshape
the structure of commensal flora, such as by increasing the level
of beneficial bacteria and reducing the abundance of harmful
bacteria (Table 3). Of note, the enrichment of beneficial gut
microbes and the reduction of harmful gut microbes is not
merely a result of disease symptom improvement, because the

recovery of the balance of the gut microbiota usually occurs
before an improvement in the disease symptoms (Xu et al., 2015).
Collectively, the efficacy of TCMs may be the comprehensive
outcome of both reshaping the microbiota structure and the
complex interaction between intestinal microbiota and multiple
chemical substances in TCMs.

The most typical example of this is the excellent efficacy
of TCMs in the management of type 2 diabetes (T2D) (Xu
et al., 2015; Nie et al., 2018; Tong et al., 2018; Cheng F. R.
et al., 2019; Cheng J. et al., 2019; Han et al., 2019; Li et al.,
2019; Lu et al., 2019; Shi et al., 2019; Wu et al., 2019;
Yuan et al., 2019). The major component of HMs, such as
the polysaccharides extracted from Hirsutella sinensis, provides
nutrition to specific bacteria, thereby modulating the constitution
of the intestinal microbiota to improve T2D (Xu et al., 2015,
2017; Nie et al., 2018; Tong et al., 2018; Wu et al., 2019;
Table 3). Of note, a multicenter, randomized, open-label clinical
trial revealed that metformin and the Chinese herbal formula
AMC (including Rhizoma Anemarrhenae, Momordica charantia,
Coptis chinensis, Salvia miltiorrhiza, red yeast rice, Aloe vera,
Schisandra chinensis, and dried ginger) may ameliorate T2D
with hyperlipidemia by enriching beneficial bacteria, including
Blautia and Faecalibacterium spp. (Tong et al., 2018). In
addition, treatment of Gegen Qinlian Decoction (GQD), another
TCM formula, can enrich the gut in beneficial bacteria such
as Faecalibacterium spp., which is associated with the anti-
diabetic effect of GQD (Xu et al., 2015; Table 3). Indeed,
under fermentation by the intestinal microbiota, HMs can
be metabolized into various chemical substances with wide-
ranging activities that improve host health (Yang et al., 2012;
Nie et al., 2018; Wu et al., 2019) and jointly enhance the gut
barrier, control insulin resistance, and reduce inflammation in
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TABLE 3 | Effect of Traditional Chinese medicines (TCM) formulas on the constitution of commensal microbiota and host metabolisms in indicated diseases.

TCM formulas Effect on gut microbiota Effect on host metabolisms Function References

Tiansi Liquid Increase: Ruminococcaceae,
Lactococcus, Lactobacillus,
Lachnospiraceae_NK4A136_group

Increased the level of kynurenic
acid and 5-HT

Improve hydrocortisone-induced
depression

Cheng et al., 2018

Qushi Huayu Fang Increase: Collinsella; Decrease:
Escherichia/Shigella ratio

Increased the level of SCFAs Improve non- alcoholic fatty liver
disease

Yin et al., 2013

Bawei Xileisan Increase: Bacteroides and
Lactobacillus

– Treatment of ulcerative colitis Wen et al., 2016

Red Ginseng and
Semen Coicis

Increase: Bifidobacterium and
Lactobacillus (in vitro)

– Relieve the symptoms of ulcerative
colitis

Guo et al., 2015

Gegen Qinlian
Decoction

Increase: Faecalibacterium,
Gemmiger, Bifidobacterium,
Lachnospiraceae incertae sedis, and
Escherichia; Decrease: Alistipes,
Odoribacter, Parabacteroides,
Bacteroides, and Pseudobutyrivibrio

Treatment of T2D Xu et al., 2015

ZiBuPiYin recipe Increase: Roseburia and
Coprococcus

– Improve
psychological-stress-induced
diabetes-associated cognitive decline

Chen et al., 2014;
Gu et al., 2017

Oil tea Increase: Lachnospiraceae Limited the elevation of
postprandial blood glucose and
lowered the levels of fasting
blood glucose

Antidiabetic effects Lin et al., 2018

Zengye decoction Decrease: Desulfovibrio,
Ruminococcus, Prevotella and Dorea;
Increase: Oxalobacter, Clostridium
and Roseburia

Inhibited methane metabolism,
strengthened the physiological
function of glutathione

Treatment of constipation Liu et al., 2019

Moxibustion Increase: Bifidobacterium and
Lactobacillus; Decrease: Escherichia
coli and Bacteroides fragilis;

– Treatment of ulcerative colitis Wang et al., 2012

the host (Nie et al., 2018). Furthermore, HMs regulate many
complex chemical interactions in the gut, thereby maintaining
a healthy gut ecology (Nie et al., 2018), which is important
in recovery from gut dysbiosis. However, whether these altered
microbiotas metabolized specific components in TCMs into
functional molecules remains uncertain. Metabolomics analysis
is an ideal method for determining the altered microbiota-
associated metabolites of TCMs.

EFFECT OF INTESTINAL
MICROBIOTA-ASSOCIATED
METABOLITES ON THE EFFICIENCY OF
DIETARY THERAPY

Dietary interventions have become an effective method for
treating some refractory diseases, with the effects being associated
with the commensal microbiota of the host Richards J. L. et al.,
2016; Wu et al., 2016). The KD has long been known to exhibit
high efficacy against refractory seizure, despite the response
rate being low among tested patients (Kwan and Brodie, 2000;
Olson et al., 2018). A recent influential study revealed that the
gut microbiota was responsible for the high inter-individual
differences observed in the anti-seizure effect of the KD
(Olson et al., 2018). Ketogenic diet-associated Akkermansia and

Parabacteroides confer seizure protection to mice fed a controlled
diet by reducing the level of gamma-glutamyl amino acids and
increasing the GABA and glutamate content in the brain (Olson
et al., 2018). In addition, a Mediterranean diet, which is based on
the high consumption of cereals, fruit, vegetables, and legumes,
has been associated with the prevention of cardiovascular
diseases and asthma (Castro-Rodriguez et al., 2008; Estruch
et al., 2013; Blanco Mejía et al., 2019). The Mediterranean diet
increases the abundance of Lactobacillus in the mammary gland
microbiota and subsequently elevates the levels of bile acid
and bacterial-modified metabolites in breast cyst fluid (Shively
et al., 2018). However, the beneficial effects of the Mediterranean
diet on human health also depend, in part, on non-bacterial
metabolites, especially ω-3 fatty acids, which exert larger anti-
inflammatory effects (Thorburn et al., 2014). Further, given that
the Mediterranean diet is rich in fiber, SCFAs may mediate the
beneficial effect of this diet, since the administration of SCFAs
is associated with significant improvements in cardiovascular
diseases (Richards L. B. et al., 2016); this requires further
research. Of note, in the gastrointestinal tract of human patients
with type II diabetes, the administration of Bifidobacterium
increases the abundance of Akkermansia muciniphila, with both
microbes being able to generate SCFAs, thereby improving
insulin resistance and limiting inflammation and consequently
improving the symptoms of obesity (Cani, 2019). Furthermore,
arsenic poisoning arising from the ingestion of contaminated
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food and drinking water is a challenging disease to treat (Coryell
et al., 2018). A promising finding is that gut microbes, especially
Faecalibacterium, provide full protection against acute arsenic
toxicity in a mouse model (Coryell et al., 2018).

However, some of the observed dietary effects have not yet
been associated with specific intestinal microbes or with specific
metabolites. For instance, a maternal high-fat diet negatively
impacts the social behavior of offspring, resulting in a deficiency
in synaptic plasticity in the ventral tegmental area and in
oxytocin production, but the administration of Lactobacillus
reuteri restores oxytocin levels, synaptic plasticity, and healthy
social behaviors in mice (Buffington et al., 2016). It has also
been recognized that a Malawian diet may induce kwashiorkor,
an enigmatic form of severe acute malnutrition. In a study
involving 317 Malawian twin pairs, researchers found that an
altered gut microbiota constitution in response to the Malawian
diet significantly contributed to the development of kwashiorkor,
although the mechanism involved remains unknown (Smith
et al., 2013). Notably, oligosaccharides were less abundant
in the milk from mothers of severely stunted infants, and
the administration of sialylated milk oligosaccharides reversed
infant undernutrition in a microbiota-dependent manner (Smith
et al., 2013). Such results were also confirmed in piglets that
received the same diet as the human infants (Charbonneau
et al., 2016), suggesting that microbiota associated-metabolites
of oligosaccharides may be a crucial factor in such processes.
In young children, a negative association between dietary fiber
and plasma insulin levels has been observed only in those whose
gut microbiota showed a high abundance of Bacteroides and
Prevotella and not in those whose gut microbiota exhibited
a higher proportion of Bifidobacterium (Zhong et al., 2019).
This suggests a potential function for Bacteroides and Prevotella
in elevating insulin levels. Indeed, convincing epidemiological
studies have indicated that specific dietary components may
be crucial for the pathogenesis of some diseases such as
asthma and allergies (Eder et al., 2006; Graham, 2006).
For example, a carnitine-rich diet induces the symptoms of
atherosclerosis in a gut microbiota-dependent manner in humans
and mice (Koeth et al., 2013). Specifically, the gut microbiota in
humans and mice mediates the metabolism of dietary choline
and phosphatidylcholine to produce trimethylamine, which is
further transformed into trimethylamine-N-oxide by hepatic
flavin monooxygenases, thereby promoting the development of
atherosclerosis. However, the specific microbial taxa contributing
to this process require further investigation.

CONCLUSION AND FUTURE
PERSPECTIVE

The beneficial effect of HMs and dietary therapy in several
refractory diseases is generally appreciated, but the underlying
mechanisms involved remain obscure. However, their interaction
with the host microbiota seems to be a critical factor
in such processes. Indeed, a growing number of studies
indicate that the commensal microbiota plays a crucial role
in maintaining host health and that the constitution of the

intestinal microbiota exhibits large inter-individual differences.
Moreover, most components in HMs and dietary interventions
can modulate the constitution of the microbiota, which may
disrupt or maintain homeostasis in the host. Collectively,
it is not surprising that the gut microbiota, and especially
microbiota-associated metabolites, may be a crucial mediator
linking HMs or dietary therapy and the physiological status
of the host. Therefore, it is important to consider the effects
of biotransformation by commensal microbiota when designing
herbal formula dietary therapy to achieve optimal success
in treating diseases, particularly in the case of precision
medicine. It is also essential to determine the optimal timing of
administrating HMs and specific diets, in particular given that
the composition of the gut microbiota exhibits diurnal variation.
Indeed, microbiota-associated metabolites have several attractive
properties, including known chemical structures and long shelf
lives (Aguilar-Toalá et al., 2018). In particular, these metabolites
are able to mimic the health effects mediated by probiotics
while avoiding the administration of live bacteria, which can
produce harmful reactions such as the local inflammatory
response induced by the administration of Salmonella (Tsilingiri
et al., 2012). However, the importance of postbiotics does
not diminish the beneficial effect of probiotics when there is
stable colonization of the gut, because live bacteria undoubtedly
provide more metabolites than can be provided using postbiotics.
The future of next-generation probiotics lies not only in
supplementation using beneficial bacteria strains but also in
providing and maintaining the ecological context necessary to
sustain them. The direct administration of these probiotic-
associated metabolites should provide a great advantage over
traditional probiotics for several types of patients, including those
harboring intestinal pathogens. Furthermore, since metabolites
from the intestinal microbiota can also partially mediate
the toxicity of some medicines in vivo, it will also be
valuable to further examine these associations in order to
assist in developing novel approaches to reducing the toxicity
of HMs and TCMs.
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