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Summary of the Special Issue:
Nanotechnology has deep roots in solving advanced and complex problems ranging

from life sciences to water purification, from energy to structural applications, and from sen-
sors to sustainable development. This Special Issue focuses on some of the applications of
electrospun nanofibers in these areas. Our research group is working on applications of elec-
trospun nanofibers in air filtration and facemasks [1,2], wound dressings [3–20], sensors [14],
water purification [21], blood vessels [22], axons [23], adsorption [24,25], photosensitive
materials [26], electronics [27,28], and various other fields of science and technology.

An interesting study was conducted on the fabrication of poly(ethylene-glycol 1,4-
cyclohexane dimethylene-isosorbide-terephthalate) electrospun nanofiber mats (PEICT
ENMs) for the potential infiltration of fibroblast cells. In this study, morphological, struc-
tural, and cytotoxicity assessments were performed. It was found that the PEICT nanofibers
possessed excellent biocompatibility. Hence, the results confirmed that PEICT ENMs can
potentially be utilized as a biomaterial [29]. Silver nanoclusters are also considered ex-
cellent antibacterial agents; another study in this Special Issue synthesized novel sericin-
encapsulated silver nanoclusters (sericin-AgNCs) through a green synthesis route. Subse-
quently, these sericin-AgNCs were incorporated into ultrafine electrospun cellulose acetate
(CA) fibers to assessing their antibacterial performance. It was confirmed via antibacte-
rial activity testing that the AgNCs were sufficiently antibacterial in combination with
cellulose acetate nanofibers to allow this nanofibrous web to be used as an antibacte-
rial wound dressing or in similar applications. It was also observed that the addition of
0.17 mg/mL sericin-AgNCs to electrospun cellulose acetate fibers showed antibacterial
activity of around 90%, while this value was increased to 99.9% by increasing the Ag nan-
ocluster amount to 1.17 g/mL (i.e., increasing by 10 times) [30]. A comparison was drawn
between polybutylene succinate (PBS) membranes and electrospun polyvinylidene fluoride
(PVDF). Polymer fibers fabricated by rolling electrospinning (RE) and non-rolling electro-
spinning (NRE) showed different mechanical and morphological properties. Graphene
oxide (GO) composite is neutral with regard to effects on mechanical properties. The
PBS membrane offers a higher pore area than electrospun PVDF and can be used as a
filter. The protein capture efficiency and protein staining were analyzed via the SPMA
technique using albumin solution filtration. The fabricated membranes were compared
with commercially available filters. RE with GO and PBS showed two times greater capture
capacity than commercial membranes and more than sixfold protein binding as compared
to the non-composite polymer. Protein staining results further verified the effectiveness of
the fabricated membranes by showing a darker stain color [31]. In another research area,
an in vitro cyst model was prepared in which hollow nanofiber spheres were developed,
named “nanofiber-mâché balls.” Electrospun nanofibers of a hollow shape were fabricated
on alginate hydrogel beads. A fibrous geometry was provided by the balls having an inner
volume of 230 mm3. A route for nutrients and waste was developed by including two ducts.
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This oriented migration was produced with a concentration gradient in which seeded cells
attached to the inner surface, resulting in a well-oriented structure. Fibers attached to
the internal surface between the duct and hollow ball restrict cell movement and do not
allow them to exit the structure. An adepithelial layer on the inner surface was developed
with this structure, and the nanofiber-mâché technique is most suitable for investigating
cyst physiology [32]. The affinity of electrospun polyvinyl alcohol (PVA) nanofiber fabric
was improved by modification with Cibacron Blue F3GA (CB). The bovine hemoglobin
(BHb) adsorption capacity of the nanofiber fabrics at different concentrations of protein
before and after treatment was studied in batch experiments. The original fibers possessed
a BHb adsorption capacity of 58 mg/g, while the modified nanofiber fabric showed a
capacity of 686 mg/g. The feed concentration and permeation rate were investigated. Static
adsorption was performed to investigate the impact of the pH on BHb and bovine serum
albumin (BSA) adsorption. Selective separation experiments were carried out at the opti-
mal pH value. A reusability test was carried out by performing three adsorption–elution
cycles [33]. Task-specific functionalized polymeric nanofiber mats were fabricated from
homocysteine thiolactone and polyvinylpyrrolidone through electrospinning. This allows
for post functionalization by a thiol–alkene “click” reaction. Modifications to electrospun
nanofibers were made by introducing different functionalities under controlled conditions
without damaging the nanostructure of the nanofibers. The results showed that modified
nanofibers can be used for sensing and catalytic applications [34]. Recent trends in research
showed that a large surface area, pore size, and geometry of nanofibers make them suitable
for filtration applications. The filtration efficiency can be modified through nanonets of
a smaller diameter than nanofibers. Polyacrylonitrile (PAN) was used to form nanonets,
and their filtration efficiency was analyzed. Electrospun polyacrylonitrile acetyl methyl
ammonium bromide (PAN–CTAB) possessed improved mechanical and thermal properties.
PAN–CTAB nanofiber/nanonets showed 99% filtration efficiency as air filters and a low
pressure drop of 7.7 mm H2O at an air flow rate of 80 L/min. This study provides a new
approach to the fabrication of air filters with higher filtration efficiency [35]. Another
milestone in the field of skin care was achieved with the development of effective hy-
drophilic nanofibers (NFs) loaded with folic acid (FA). Electrospinning and electrospraying
techniques were used. The morphological, thermal, mechanical, chemical, in vitro, and
cytocompatibility properties were analyzed, and the results showed that the fabricated
nanofiber mat has the potential for use as wound dressings and in tissue engineering
applications [19]. A study on solid-state batteries (SSBs) gained attention for its efficiency
in energy density and high-safety energy storage devices. Researchers have made various
efforts to fill the gaps for thin solid-state-electrolytes (SSEs) with regard to their ionic
conductivity, thermal stability, and mechanical strength. Composite polymer electrolyte
(CPE)-reinforced PI nanofiber with succinonitrile-based solid composite electrolytes were
developed to fill this gap. CPE showed a high ionic conductivity of 2.64 × 10−4 S cm−1

at room temperature. The developed material is fire resistant, is mechanically strong,
and offers promising safety [36]. Research goals of controllable release and antibacterial
properties were achieved via orange essential oil (OEO) and silver nanoparticles (AgNPs)
deposited on a cellulose (CL) nanofiber mat. The fabrication of the finished nanofiber mats
involved different steps like deacetylation and coating of silver nanoparticles prepared
in OEO solution by an in situ method with two different concentrations. The successful
deposition of AgNPs incorporated in the OEO was analyzed via SEM-EDS, TEM, XRD, and
FT-IR. The tensile strength was recorded after each step of the treatment and compared
with that of CA nanofibers. Well-treated nanofiber mats showed good antibacterial activ-
ity against Gram-positive and Gram-negative bacteria [37]. Researchers are keen to find
high-quality nanomaterials for medical applications to change the future of medicine. The
similarity between human tissues and electrospun nanofibers has opened new doors for
researchers in the field of the medical applications of nanofibers. Until now, electrospun
nanofibers have been restricted to tissue scaffolding applications, but a combination of
nanoparticles with nanofibers could provide better function in photothermal, magnetic
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response, biosensing, antibacterial, and drug delivery applications. There are two methods
to prepare hybrid nanofibers and nanoparticles (NNHs): electrospinning is the easy and
simple way, and the other way is self-assembly. Both methods have been adopted to achieve
drug release, antibacterial, and tissue engineering applications [38].
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