organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N'-Phenyl-*N'*-[3-(2,4,5-triphenyl-2,5-dihydro-1*H*-pyrazol-3-yl)quinoxalin-2-yl]benzohydrazide

Youssef Ramli,^a Khalid Karrouchi,^b El Mokhtar Essassi^{c,d} and Lahcen El Ammari^e*

^aLaboratoire National de Contrôle des Médicaments, D M P, Ministère de la Santé, Madinat Al Irnane, BP 6206, Rabat, Morocco, ^bLaboratoire de Chimie Thérapeutique, Faculté de Médecine et de Pharmacie de Rabat-Souissi, Université Mohamed V, BP 6203, Rabat, Morocco, ^cLaboratoire de Chimie Organique Hétérocyclique URAC21, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, ^dInstitute of Nanomaterials and Nanotechnology, MASCIR, Rabat, Morocco, and ^eLaboratoire de Chimie du Solide Appliquée, Université Mohammed V-Agdal, Faculté des Sciences, Avenue Ibn Battouta, BP 1014, Rabat, Morocco Correspondence e-mail: k_karrouchi@yahoo.fr

Received 16 July 2013; accepted 19 July 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.117; data-to-parameter ratio = 18.7.

The molecule of the title compound, $C_{42}H_{32}N_6O$, is built up from one pyrazole ring linked to three phenyl rings and to an approximately planar [maximum deviation = 0.0455(15) Å] quinoxaline system connected to a phenylbenzohydrazide group. The pyrazole ring assumes an envelope conformation, the C atom attached to the quinoxalin-3-yl ring system being the flap atom. The dihedral angle between the two phenyl rings of the phenylbenzohydrazide group is of $58.27 (9)^{\circ}$. The mean plane through the pyrazole ring is nearly perpendicular to the quinoxaline ring system and to the phenyl ring attached to the opposite side, forming dihedral angles of 82.58 (7) and 87.29 (9)°, respectively. An intramolecular $C-H \cdots O$ hydrogen bond is present. In the crystal, molecules are linked by pairs of $N-H \cdots N$ hydrogen bonds, forming inversion dimers, which are further connected by $C-H \cdots N$ hydrogen bonds into chains parallel to the b axis.

Related literature

For the biological activity of quinoxaline derivatives, see: El-Sabbagh *et al.* (2009); Bemis & Duffy (2005); Corona *et al.* (2008); Ghadage & Shirote (2011); Yang *et al.* (2012).

 $V = 3418.09 (15) \text{ Å}^3$

 $0.41 \times 0.32 \times 0.21 \text{ mm}$

8306 independent reflections

4919 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$

Z = 4

T = 296 K

 $R_{\rm int} = 0.050$

Experimental

Crystal data

 $\begin{array}{l} C_{42}H_{32}N_6O\\ M_r = 636.74\\ \text{Monoclinic, } P2_1/n\\ a = 12.0127 \ (3) \ \text{\AA}\\ b = 19.4679 \ (5) \ \text{\AA}\\ c = 15.2083 \ (4) \ \text{\AA}\\ B = 106.045 \ (1)^\circ \end{array}$

Data collection

Bruker X8 APEXII area-detector diffractometer 39727 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 & 443 \text{ parameters} \\ wR(F^2) &= 0.117 & \text{H-atom parameters constrained} \\ S &= 1.00 & \Delta\rho_{\text{max}} = 0.20 \text{ e } \text{\AA}^{-3} \\ 8306 \text{ reflections} & \Delta\rho_{\text{min}} = -0.19 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2 - H2 \cdots O3$	0.98	2.28	3.2425 (19)	169
$N6 - H6N \cdot \cdot \cdot N4^{-1}$	0.89	2.30	3.1754 (18)	172
C16-H16····N2*	0.93	2.56	3.4799 (19)	172

Symmetry codes: (i) -x, -y, -z + 1; (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ5080).

References

- Bemis, G. W. & Duffy, J. P. (2005). Patent WO 2005/056547 A2.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Corona, P., Carta, A., Loriga, M., Vitale, G. & Paglietti, G. (2008). Eur. J. Med. Chem. 44, 1579–1591.
- El-Sabbagh, O. I., El-Sadek, M. E., Lashine, S. M., Yassin, S. H. & El-Nabtity, S. M. (2009). *Med. Chem. Res.* 18 9, 782–797.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Ghadage, R. V. & Shirote, P. J. (2011). J. Chem. Pharm. Res. 3, 260-266.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, Y., Zhang, S., Wu, B., Ma, M., Chen, X., Qin, X., He, M., Hussain, S., Jing, C., Ma, B. & Zhu, C. (2012). *ChemMedChem*, 7, 823–835.

supplementary materials

Acta Cryst. (2013). E69, o1320-o1321 [doi:10.1107/S1600536813020035]

N'-Phenyl-*N'*-[3-(2,4,5-triphenyl-2,5-dihydro-1*H*-pyrazol-3-yl)quinoxalin-2-yl]benzohydrazide

Youssef Ramli, Khalid Karrouchi, El Mokhtar Essassi and Lahcen El Ammari

Comment

Quinoxalinone and its derivatives are used in organic synthesis for building natural and designed synthetic compounds and have been frequently utilized as suitable skeletons for the design of biologically active compounds. For instance, they are known for their potent activity as anti-inflammatory agents (El-Sabbagh *et al.*, 2009), inhibitors of the kinase protein (Bemis *et al.*, 2005), anti-cancer agents (Corona *et al.*, 2008), anti-microbial agents (Ghadage & Shirote, 2011) and are particularly effective in the treatment of diabetes and its complications (Yang *et al.*, 2012). Our research group targeted at the development of novel quinoxalinone derivatives such as the title compound that may prove to be better agents in terms of efficacy and safety.

The molecule of the title compound displays a five membered pyrazol-5-yl ring (N1/N2/C1–C3) connected to three phenyl rings and to a quinoxalin-3-yl ring system attached to a phenylbenzohydrazide group (Fig. 1). The pyrazole ring shows an envelope conformation as indicated by the total puckering amplitude QT = 0.2552 (16) Å and spherical polar angle $\varphi 2 = 135.1$ (4)°. The C3 flap atom is displaced by 0.4035 (14) Å from the mean plane through the other four atoms. The fused quinoxalin-3-yl ring system (N3/N4/C4–C11) is approximately planar with a maximum deviation from the mean plane of 0.0455 (15) Å at C11. The dihedral angle between the two phenyl rings (C12–C17 and C14–C24) of the phenylbenzohydrazide moiety is 58.27 (9)°. The mean plane through the five-membered pyrazole ring is nearly perpendicular to the quinoxaline ring system and to the C25–C30 phenyl ring as indicated by the dihedral angles of 82.58 (7)° and 87.29 (9)°, respectively. It makes also dihedral angles of 14.38 (9)° and 17.82 (9)° with the attached C31–C36 and C37–C42 phenyl rings, respectively. An intramolecular C—H…O hydrogen bond is observed (Table 1). In the crystal, centrosymmetrically related molecules are linked by pairs of N—H…N hydrogen bonds.

Experimental

A mixture of α -chlorobenzylidene phenylhydrazine (8.1 mmol) and triethylamine (8.1 mmol) in THF (40 mL) was added at room temperature to a solution of 3-styryl-quinoxalin-2-one (6.5 mmol) in THF (20 mL). The reaction mixture was heated under reflux for 48 h. The inorganic salts formed were filtered off. The filtrate was evaporated under reduced pressure and the crude product obtained was recrystallized from ethanol to afford crystals of the title compound.

Refinement

All H atoms could be located in a difference Fourier map and were treated as riding with C—H = 0.93 Å, N—H = 0.89 Å and with $U_{iso}(H) = 1.2 U_{eq}(C, N)$. Six reflections affected by the beam stop were omitted because the difference between their calculated and observed intensities was very large.

Computing details

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small circles of arbitrary radii.

N'-Phenyl-N'-[3-(2,4,5-triphenyl-2,5-dihydro-1H-pyrazol-3-yl)quinoxalin-2-yl]benzohydrazide

Crystal data	
$C_{42}H_{32}N_6O$	F(000) = 1336
$M_r = 636.74$	$D_{\rm x} = 1.237 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 8306 reflections
a = 12.0127 (3) Å	$\theta = 2.7 - 28.2^{\circ}$
b = 19.4679 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 15.2083 (4) Å	T = 296 K
$\beta = 106.045 (1)^{\circ}$	Block, colourless
$V = 3418.09 (15) Å^3$	$0.41 \times 0.32 \times 0.21 \text{ mm}$
Z=4	

Data collection

Bruker X8 APEXII area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans 39727 measured reflections 8306 independent reflections	4919 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.050$ $\theta_{\text{max}} = 28.2^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ $h = -15 \rightarrow 15$ $k = -25 \rightarrow 25$ $l = -20 \rightarrow 17$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.117$ S = 1.00 8306 reflections 443 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 0.4886P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20$ e Å ⁻³ $\Delta\rho_{min} = -0.19$ e Å ⁻³ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² \lambda ³ /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.0019 (4)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.13275 (13)	0.33151 (8)	0.47673 (10)	0.0316 (3)
C2	0.06730 (13)	0.27133 (8)	0.42495 (9)	0.0297 (3)
H2	0.1159	0.2304	0.4300	0.036*
C3	-0.02281 (13)	0.26028 (7)	0.47999 (9)	0.0274 (3)
H3	-0.0999	0.2478	0.4403	0.033*
C4	0.02100 (12)	0.20572 (8)	0.55295 (9)	0.0267 (3)
C5	0.10980 (12)	0.17641 (8)	0.70169 (9)	0.0299 (3)
C6	0.15065 (14)	0.19551 (9)	0.79455 (10)	0.0412 (4)
H6	0.1456	0.2410	0.8118	0.049*
C7	0.19740 (15)	0.14740 (10)	0.85869 (11)	0.0467 (5)
H7	0.2221	0.1599	0.9201	0.056*
C8	0.20864 (15)	0.07971 (10)	0.83350 (11)	0.0482 (5)
H8	0.2426	0.0476	0.8782	0.058*
С9	0.17070 (14)	0.05958 (9)	0.74423 (11)	0.0430 (4)
Н9	0.1795	0.0142	0.7281	0.052*
C10	0.11820 (13)	0.10795 (8)	0.67679 (10)	0.0310 (4)

C11	0.02421 (12)	0.13436 (8)	0.52876 (9)	0.0278 (3)
C12	-0.14430 (13)	0.11813 (7)	0.39499 (10)	0.0295 (3)
C13	-0.22002 (14)	0.11864 (9)	0.44837 (11)	0.0399 (4)
H13	-0.1918	0.1180	0.5118	0.048*
C14	-0.33859 (15)	0.12013 (10)	0.40724 (13)	0.0529 (5)
H14	-0.3896	0.1213	0.4434	0.064*
C15	-0.38114 (16)	0.11984 (10)	0.31384 (13)	0.0527 (5)
H15	-0.4607	0.1196	0.2867	0.063*
C16	-0.30551 (16)	0.11984 (9)	0.26043 (11)	0.0463 (5)
H16	-0.3343	0.1200	0.1970	0.056*
C17	-0.18744 (15)	0.11955 (8)	0.30003 (10)	0.0369 (4)
H17	-0.1368	0.1203	0.2635	0.044*
C18	0.14618 (14)	0.07099 (8)	0.40332 (10)	0.0336 (4)
C19	0.20182 (14)	0.01078 (8)	0.37266 (10)	0.0325 (4)
C20	0.32110 (15)	0.00497 (9)	0.40344 (12)	0.0454 (4)
H20	0.3639	0.0382	0.4424	0.055*
C21	0.37670 (17)	-0.04982 (11)	0.37664 (13)	0.0565 (5)
H21	0.4569	-0.0536	0.3978	0.068*
C22	0.31412 (18)	-0.09881 (11)	0.31888 (14)	0.0588 (5)
H22	0.3518	-0.1360	0.3015	0.071*
C23	0.19607 (18)	-0.09299 (10)	0.28676 (13)	0.0553 (5)
H23	0.1539	-0.1260	0.2472	0.066*
C24	0.13965 (15)	-0.03813 (9)	0.31305 (11)	0.0409 (4)
H24	0.0597	-0.0341	0.2906	0.049*
C25	0.01238 (13)	0.28786 (8)	0.32437 (10)	0.0320 (4)
C26	-0.03921 (14)	0.35066 (9)	0.29610(11)	0.0416 (4)
H26	-0.0372	0.3850	0.3390	0.050*
C27	-0.09401 (15)	0.36282 (11)	0.20433 (12)	0.0502 (5)
H27	-0.1286	0.4052	0.1862	0.060*
C28	-0.09737 (16)	0.31247 (12)	0.14017 (12)	0.0543 (5)
H28	-0.1353	0.3204	0.0789	0.065*
C29	-0.04462 (17)	0.25073 (11)	0.16706 (12)	0.0561 (5)
H29	-0.0458	0.2168	0.1237	0.067*
C30	0.01064 (15)	0.23837 (9)	0.25863 (11)	0.0437 (4)
H30	0.0469	0.1964	0.2760	0.052*
C31	0.24876 (14)	0.35178 (9)	0.47640 (11)	0.0392 (4)
C32	0.30152 (18)	0.40906 (10)	0.52508 (15)	0.0610 (6)
H32	0.2604	0.4363	0.5555	0.073*
C33	0.4142 (2)	0.42592 (13)	0.52862 (17)	0.0765 (7)
H33	0.4485	0.4643	0.5616	0.092*
C34	0.47581 (19)	0.38669 (14)	0.48410 (16)	0.0713 (7)
H34	0.5516	0.3986	0.4865	0.086*
C35	0.42580 (17)	0.32967 (13)	0.43584 (13)	0.0617 (6)
H35	0.4681	0.3028	0.4060	0.074*
C36	0.31229 (15)	0.31201 (10)	0.43149 (11)	0.0485 (5)
H36	0.2787	0.2735	0.3985	0.058*
C37	-0.09873 (14)	0.35058 (9)	0.57148 (10)	0.0412 (4)
C38	-0.17521 (16)	0.30522 (11)	0.59395 (11)	0.0528 (5)
H38	-0.1776	0.2596	0.5754	0.063*

C39	-0.24821 (19)	0.32803 (16)	0.64427 (14)	0.0816 (8)	
H39	-0.2991	0.2972	0.6596	0.098*	
C40	-0.2468 (2)	0.3944 (2)	0.67158 (17)	0.1044 (12)	
H40	-0.2959	0.4090	0.7056	0.125*	
C41	-0.1725 (2)	0.43964 (16)	0.64864 (17)	0.0931 (10)	
H41	-0.1718	0.4852	0.6671	0.112*	
C42	-0.09776 (17)	0.41894 (11)	0.59825 (13)	0.0621 (6)	
H42	-0.0480	0.4503	0.5827	0.075*	
N1	-0.02553 (12)	0.32888 (7)	0.51901 (8)	0.0360 (3)	
N2	0.07573 (12)	0.36378 (7)	0.52524 (8)	0.0365 (3)	
N3	0.06255 (10)	0.22567 (6)	0.63778 (8)	0.0305 (3)	
N4	0.07247 (10)	0.08697 (6)	0.58766 (8)	0.0322 (3)	
N5	-0.02142 (10)	0.11631 (6)	0.43538 (8)	0.0301 (3)	
N6	0.03408 (11)	0.06146 (6)	0.40476 (8)	0.0315 (3)	
H6N	0.0090	0.0199	0.4130	0.038*	
03	0.19716 (10)	0.12528 (6)	0.42520 (9)	0.0483 (3)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0384 (9)	0.0283 (8)	0.0266 (7)	-0.0008 (7)	0.0065 (6)	0.0005 (6)
C2	0.0350 (8)	0.0305 (9)	0.0258 (7)	0.0031 (7)	0.0120 (6)	0.0010 (6)
C3	0.0316 (8)	0.0283 (8)	0.0227 (7)	0.0024 (6)	0.0080 (6)	-0.0022 (6)
C4	0.0265 (8)	0.0307 (8)	0.0243 (7)	0.0003 (6)	0.0092 (6)	0.0001 (6)
C5	0.0289 (8)	0.0351 (9)	0.0246 (7)	-0.0037 (7)	0.0056 (6)	0.0023 (6)
C6	0.0477 (10)	0.0451 (10)	0.0278 (8)	-0.0042 (8)	0.0055 (7)	-0.0024 (7)
C7	0.0504 (11)	0.0584 (13)	0.0251 (8)	-0.0131 (9)	0.0003 (7)	0.0044 (8)
C8	0.0462 (11)	0.0504 (12)	0.0384 (9)	-0.0104 (9)	-0.0042 (8)	0.0183 (8)
C9	0.0456 (10)	0.0337 (10)	0.0415 (9)	-0.0068 (8)	-0.0019 (8)	0.0072 (7)
C10	0.0283 (8)	0.0335 (9)	0.0280 (8)	-0.0065 (7)	0.0025 (6)	0.0024 (6)
C11	0.0257 (8)	0.0323 (9)	0.0247 (7)	-0.0026 (6)	0.0056 (6)	-0.0019 (6)
C12	0.0321 (8)	0.0243 (8)	0.0289 (7)	-0.0007 (6)	0.0031 (6)	0.0003 (6)
C13	0.0368 (10)	0.0503 (11)	0.0298 (8)	-0.0034 (8)	0.0046 (7)	0.0070 (7)
C14	0.0336 (10)	0.0737 (14)	0.0501 (11)	-0.0021 (9)	0.0093 (8)	0.0127 (10)
C15	0.0355 (10)	0.0604 (13)	0.0514 (11)	0.0016 (9)	-0.0057 (8)	0.0078 (9)
C16	0.0513 (11)	0.0452 (11)	0.0317 (9)	0.0052 (9)	-0.0066 (8)	0.0000 (8)
C17	0.0449 (10)	0.0352 (9)	0.0271 (8)	0.0021 (7)	0.0044 (7)	-0.0008 (7)
C18	0.0358 (9)	0.0328 (9)	0.0300 (8)	-0.0011 (7)	0.0055 (6)	-0.0008 (7)
C19	0.0385 (9)	0.0339 (9)	0.0263 (7)	0.0015 (7)	0.0109 (6)	0.0008 (6)
C20	0.0406 (10)	0.0531 (12)	0.0404 (9)	0.0029 (9)	0.0077 (8)	-0.0092 (8)
C21	0.0453 (11)	0.0694 (14)	0.0545 (11)	0.0153 (10)	0.0134 (9)	-0.0075 (10)
C22	0.0640 (14)	0.0554 (13)	0.0649 (13)	0.0130 (11)	0.0310 (11)	-0.0118 (10)
C23	0.0609 (13)	0.0563 (13)	0.0550 (11)	-0.0055 (10)	0.0268 (10)	-0.0256 (10)
C24	0.0436 (10)	0.0463 (11)	0.0359 (9)	-0.0039 (8)	0.0162 (7)	-0.0084 (8)
C25	0.0326 (8)	0.0401 (10)	0.0255 (7)	-0.0034 (7)	0.0118 (6)	0.0011 (7)
C26	0.0435 (10)	0.0490 (11)	0.0355 (9)	0.0079 (8)	0.0165 (7)	0.0055 (8)
C27	0.0403 (10)	0.0705 (13)	0.0422 (10)	0.0101 (9)	0.0155 (8)	0.0204 (9)
C28	0.0460 (11)	0.0864 (16)	0.0278 (9)	-0.0107 (11)	0.0058 (8)	0.0084 (10)
C29	0.0724 (14)	0.0671 (14)	0.0277 (9)	-0.0174 (11)	0.0118 (9)	-0.0082 (9)
C30	0.0582 (11)	0.0427 (10)	0.0316 (9)	-0.0071 (9)	0.0149 (8)	-0.0038 (7)

C31	0.0411 (10)	0.0404 (10)	0.0326 (8)	-0.0055 (8)	0.0045 (7)	0.0098 (7)
C32	0.0616 (13)	0.0434 (12)	0.0770 (14)	-0.0163 (10)	0.0174 (11)	-0.0011 (10)
C33	0.0644 (16)	0.0673 (16)	0.0924 (18)	-0.0295 (13)	0.0124 (13)	0.0041 (13)
C34	0.0465 (13)	0.0953 (19)	0.0690 (14)	-0.0217 (13)	0.0107 (11)	0.0265 (13)
C35	0.0463 (12)	0.0937 (17)	0.0469 (11)	-0.0061 (12)	0.0158 (9)	0.0149 (11)
C36	0.0431 (10)	0.0685 (13)	0.0335 (9)	-0.0076 (9)	0.0099 (8)	0.0054 (9)
C37	0.0419 (10)	0.0559 (11)	0.0213 (7)	0.0202 (9)	0.0015 (7)	-0.0044 (7)
C38	0.0468 (11)	0.0794 (15)	0.0353 (9)	0.0193 (10)	0.0163 (8)	0.0075 (9)
C39	0.0543 (13)	0.152 (3)	0.0448 (12)	0.0297 (15)	0.0233 (10)	-0.0010 (14)
C40	0.0635 (17)	0.186 (4)	0.0622 (16)	0.045 (2)	0.0141 (13)	-0.0477 (19)
C41	0.0745 (18)	0.121 (2)	0.0693 (16)	0.0436 (17)	-0.0047 (13)	-0.0553 (16)
C42	0.0590 (13)	0.0691 (14)	0.0478 (11)	0.0231 (11)	-0.0027 (9)	-0.0262 (10)
N1	0.0459 (8)	0.0333 (8)	0.0305 (7)	0.0053 (6)	0.0134 (6)	-0.0026 (6)
N2	0.0450 (8)	0.0322 (8)	0.0295 (7)	-0.0006 (6)	0.0057 (6)	-0.0005 (6)
N3	0.0335 (7)	0.0341 (8)	0.0233 (6)	0.0004 (6)	0.0065 (5)	-0.0008 (5)
N4	0.0326 (7)	0.0299 (7)	0.0308 (7)	-0.0031 (6)	0.0035 (5)	0.0007 (6)
N5	0.0322 (7)	0.0304 (7)	0.0256 (6)	0.0025 (6)	0.0044 (5)	-0.0066 (5)
N6	0.0371 (7)	0.0268 (7)	0.0308 (7)	-0.0005 (6)	0.0097 (5)	-0.0047 (5)
03	0.0401 (7)	0.0346 (7)	0.0697 (8)	-0.0045 (6)	0.0146 (6)	-0.0104 (6)

Geometric parameters (Å, °)

C1—N2	1.2990 (19)	C21—C22	1.372 (3)
C1—C31	1.450 (2)	C21—H21	0.9300
C1—C2	1.506 (2)	C22—C23	1.371 (3)
C2—C25	1.5235 (19)	C22—H22	0.9300
С2—С3	1.555 (2)	C23—C24	1.382 (2)
С2—Н2	0.9784	С23—Н23	0.9300
C3—N1	1.4655 (19)	C24—H24	0.9300
C3—C4	1.5211 (19)	C25—C30	1.384 (2)
С3—Н3	0.9858	C25—C26	1.384 (2)
C4—N3	1.3071 (17)	C26—C27	1.389 (2)
C4—C11	1.440 (2)	C26—H26	0.9300
C5—N3	1.3717 (18)	C27—C28	1.376 (3)
C5—C10	1.397 (2)	С27—Н27	0.9300
C5—C6	1.411 (2)	C28—C29	1.368 (3)
С6—С7	1.357 (2)	C28—H28	0.9300
С6—Н6	0.9300	C29—C30	1.388 (2)
С7—С8	1.389 (3)	С29—Н29	0.9300
С7—Н7	0.9300	С30—Н30	0.9300
С8—С9	1.365 (2)	C31—C32	1.391 (2)
С8—Н8	0.9300	C31—C36	1.392 (2)
C9—C10	1.407 (2)	C32—C33	1.379 (3)
С9—Н9	0.9300	С32—Н32	0.9300
C10—N4	1.3764 (18)	C33—C34	1.366 (3)
C11—N4	1.3049 (18)	С33—Н33	0.9300
C11—N5	1.4178 (17)	C34—C35	1.374 (3)
C12—C13	1.377 (2)	С34—Н34	0.9300
C12—C17	1.393 (2)	C35—C36	1.390 (3)
C12—N5	1.4340 (19)	С35—Н35	0.9300

C13—C14	1.389 (2)	С36—Н36	0.9300
C13—H13	0.9300	C37—C38	1.384 (3)
C14—C15	1.370 (2)	C37—C42	1.391 (3)
C14—H14	0.9300	C37—N1	1.406 (2)
C15—C16	1.376 (3)	C38—C39	1.387 (3)
C15—H15	0.9300	С38—Н38	0.9300
C16—C17	1.379 (2)	C39—C40	1.357 (4)
C16—H16	0.9300	С39—Н39	0.9300
С17—Н17	0.9300	C40—C41	1.366 (4)
C18—O3	1.2207 (18)	C40—H40	0.9300
C18—N6	1.365 (2)	C41—C42	1.391 (3)
C18—C19	1.487 (2)	C41—H41	0.9300
C19—C24	1.383 (2)	C42—H42	0.9300
C19—C20	1.384 (2)	N1—N2	1.3735 (18)
C20—C21	1.379 (2)	N5—N6	1.4047 (16)
С20—Н20	0.9300	N6—H6N	0.8852
N2—C1—C31	121.91 (14)	C22—C23—C24	120.17 (17)
N2—C1—C2	113.08 (13)	С22—С23—Н23	119.9
C31—C1—C2	124.98 (14)	С24—С23—Н23	119.9
C1—C2—C25	112.28 (12)	C23—C24—C19	120.18 (16)
C1—C2—C3	99.59 (11)	C23—C24—H24	119.9
C25—C2—C3	113.38 (12)	C19—C24—H24	119.9
C1—C2—H2	112.3	C30—C25—C26	118.31 (15)
С25—С2—Н2	109.5	C30—C25—C2	119.60 (15)
С3—С2—Н2	109.5	C26—C25—C2	122.06 (14)
N1—C3—C4	112.51 (11)	C25—C26—C27	120.64 (16)
N1—C3—C2	100.88 (11)	C25—C26—H26	119.7
C4—C3—C2	109.70 (11)	С27—С26—Н26	119.7
N1—C3—H3	110.5	C28—C27—C26	120.27 (18)
С4—С3—Н3	110.6	С28—С27—Н27	119.9
С2—С3—Н3	112.3	С26—С27—Н27	119.9
N3—C4—C11	120.59 (13)	C29—C28—C27	119.59 (16)
N3—C4—C3	118.25 (13)	C29—C28—H28	120.2
C11—C4—C3	121.03 (12)	C27—C28—H28	120.2
N3—C5—C10	121.45 (13)	C28—C29—C30	120.39 (18)
N3—C5—C6	119.09 (14)	С28—С29—Н29	119.8
C10—C5—C6	119.45 (14)	С30—С29—Н29	119.8
C7—C6—C5	119.86 (16)	C25—C30—C29	120.76 (18)
С7—С6—Н6	120.1	С25—С30—Н30	119.6
С5—С6—Н6	120.1	С29—С30—Н30	119.6
C6—C7—C8	120.60 (15)	C32—C31—C36	118.45 (17)
С6—С7—Н7	119.7	C32—C31—C1	120.90 (17)
С8—С7—Н7	119.7	C36—C31—C1	120.55 (15)
C9—C8—C7	121.02 (16)	C33—C32—C31	120.6 (2)
С9—С8—Н8	119.5	С33—С32—Н32	119.7
С7—С8—Н8	119.5	С31—С32—Н32	119.7
C8—C9—C10	119.49 (16)	C34—C33—C32	120.5 (2)
С8—С9—Н9	120.3	С34—С33—Н33	119.7

С10—С9—Н9	120.3	С32—С33—Н33	119.7
N4—C10—C5	120.74 (13)	C33—C34—C35	120.0 (2)
N4—C10—C9	119.73 (14)	С33—С34—Н34	120.0
C5—C10—C9	119.50 (14)	С35—С34—Н34	120.0
N4—C11—N5	119.19 (13)	C34—C35—C36	120.2 (2)
N4—C11—C4	123.01 (13)	С34—С35—Н35	119.9
N5-C11-C4	117.69 (12)	С36—С35—Н35	119.9
C13—C12—C17	119.61 (14)	C35—C36—C31	120.19 (19)
C13—C12—N5	121.14 (12)	С35—С36—Н36	119.9
C17—C12—N5	119.24 (14)	С31—С36—Н36	119.9
C12—C13—C14	119.81 (15)	C38—C37—C42	119.39 (17)
С12—С13—Н13	120.1	C38—C37—N1	120.72 (16)
C14—C13—H13	120.1	C42—C37—N1	119.85 (18)
C15—C14—C13	120.61 (18)	C37—C38—C39	119.8 (2)
C15—C14—H14	119.7	С37—С38—Н38	120.1
C13—C14—H14	119.7	С39—С38—Н38	120.1
C14—C15—C16	119.61 (17)	C40—C39—C38	121.2 (3)
C14—C15—H15	120.2	С40—С39—Н39	119.4
C16—C15—H15	120.2	С38—С39—Н39	119.4
C15—C16—C17	120.62 (15)	C39—C40—C41	119.3 (2)
C15—C16—H16	119.7	C39—C40—H40	120.4
C17—C16—H16	119.7	C41—C40—H40	120.4
C16—C17—C12	119.71 (16)	C40—C41—C42	121.4 (3)
С16—С17—Н17	120.1	C40—C41—H41	119.3
С12—С17—Н17	120.1	C42—C41—H41	119.3
O3—C18—N6	122.41 (14)	C37—C42—C41	118.9 (2)
O3—C18—C19	122.20 (15)	C37—C42—H42	120.5
N6-C18-C19	115.39 (14)	C41—C42—H42	120.5
C24—C19—C20	119.13 (15)	N2—N1—C37	119.55 (13)
C24—C19—C18	122.71 (14)	N2—N1—C3	111.11 (12)
C20-C19-C18	118.14 (14)	C37—N1—C3	126.24 (14)
C21—C20—C19	120.29 (16)	C1—N2—N1	108.52 (12)
C21—C20—H20	119.9	C4—N3—C5	117.51 (13)
С19—С20—Н20	119.9	C11—N4—C10	116.54 (13)
C22—C21—C20	120.18 (18)	N6—N5—C11	115.65 (11)
C22—C21—H21	119.9	N6—N5—C12	113.80 (11)
C20—C21—H21	119.9	C11—N5—C12	119.36 (12)
C21—C22—C23	120.03 (18)	C18—N6—N5	117.56 (12)
C21—C22—H22	120.0	C18—N6—H6N	120.2
C23—C22—H22	120.0	N5—N6—H6N	115.9

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D··· A	D—H···A
С2—Н2…О3	0.98	2.28	3.2425 (19)	169
N6—H6N···N4 ⁱ	0.89	2.30	3.1754 (18)	172
C16—H16…N2 ⁱⁱ	0.93	2.56	3.4799 (19)	172

Symmetry codes: (i) -x, -y, -z+1; (ii) x-1/2, -y+1/2, z-1/2.