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*e paper intends to optimize the landscape of the agricultural and animal husbandry (AG and AH) production park using the
deep reinforcement learning (DRL) model under circular symbiosis. *erefore, after reviewing the relevant literature, decision
tree evolutionary algorithm, and ensemble learning criteria, this paper studies and constructs the circular symbiotic industrial
chain. *en, an experiment of landscaping the park and optimizing the production is made with full consideration of practical
institutions. Finally, the numerical results show that the yield of several crops has been significantly improved after the landscape
optimization by the proposed DRL model. Remarkably, the increase in rice yield is the most prominent. *e yield of rice and
wheat was about 12 kg before optimization and 18 kg after DRLmodel optimization, which has increased by 6 kg.*is research has
important reference value for improving the output efficiency of AG and AH products.

1. Introduction

*e booming domestic economy has elevated material well-
being mostly at the cost of environmental damage and
pollution, especially in urban constructions. For example,
trillions of tons of garbage are disposed of by urban activities
to the ecological environment every day, with some ex-
tremely refractory or toxic end-of-life products. *ese urban
activities account largely for the biodiversity reduction and
the shortage of agricultural and animal husbandry (AG and
AH) resources and products [1–3]. Adopting appropriate
methods to ensure the safe production of AG and AH
products has become one research hub of academia. It also
aims to improve product quality while accelerating the
distribution efficiency of AG and AH products [4]. Many
defects undermine the traditional AG and AH production
parks, such as low efficiency and productivity and below-
than-average management level [5]. Additionally, many AG
and AH parks adopt decentralized data management,
making it hard to ensure product safety and quality. For-
tunately, technological updates have provided new solutions

for traditional AG and AH parks through smart production.
Accordingly, the present work is motivated to propose an
AG and AH-oriented intelligent production system using a
lightweight deep reinforcement learning (DRL) model based
on the concept of circular symbiosis [6]. Smart devices can
improve the management efficiency of production parks
while reducing costs [7].

Many scholars have researched the deep learning (DL)
model and the construction of AG and AH production
parks. Kamilaris and Prenafeta-Boldú [8] investigated the
DL model in agriculture. *ey analyzed the current situa-
tion, advantages, disadvantages, and potential of advanced
agricultural DL in various agricultural problems. Zhang et al.
[9] applied DL in agriculture-intensive scenario analysis,
providing important reference value for developing agri-
culture. Wang et al. [10] reviewed the application of DL in
agricultural hyperspectral image analysis. *ey summarized
maturity, component prediction, different classification
topics, and plant disease detection. *e results showed that
compared with traditional machine learning (ML), DL
technology improved the performance of hyperspectral
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image analysis. According to the above literature, the DL
model has important application value in crop classification,
detection, counting, and yield estimation in AG and AH.

According to the concept of circular symbiosis, the
present work uses a lightweight DL model to study the
landscaping and optimization of AG and AH production
parks. *e motivation and expected value of the research are
to use DRL for landscaping AG and AH production parks.
*e main contribution and innovation are to build an
ecological AG and AH production park under the concept of
circular symbiosis. By constructing a circular symbiotic
industrial chain, combined with a decision tree algorithm
and ensemble learning criteria, the optimal design of the AG
and AH production park is studied. A simulation experi-
ment verifies the crop yield performance of the park. *e
present work is organized as follows. In Section 1, the
circular symbiosis and AG and AH landscaping background
is introduced. In Section 2, the research focuses on designing
AG and AH parks and the lightweight DRL model. *en,
following a literature review, the DRL model is deeply ex-
plored. In Section 3, the circular symbiosis industry chain is
constructed and combined with the ensemble learning
criteria and the landscaping and optimization scheme of the
AG and AH production park. Further, Section 4 compar-
atively examines the experimental and control groups’ re-
sults. Finally, Section 5 draws empirical conclusions. *e
research has practical reference value for the digital and
intelligent development of AG and AH production parks.

2. Recent Related Work

2.1.Circular SymbiosisConcept andDesignofAgricultural and
Animal Husbandry (AG and AH) Production Park. Many
scholars have researched the concept of circular symbiosis.
For instance, Shi and Li [11] studied an industrial ecosys-
tem’s sustainable resource utilization strategy based on the
symbiosis philosophy. Firstly, they clarified the life cycle
(LC) system and symbiosis mode of resource flow. As a
result, a symbiosis-based resource flow LC management
framework was proposed for the industrial ecosystem. *e
results showed that the proposed comprehensive evaluation
method played an essential part in reducing the environ-
mental impact and promoting sustainable utilization. Wang
et al. [12] investigated the dimorphism and circular sym-
biosis of lichen fungi and corporobacterium multifidus. *e
findings suggested that the growth regulation of pseudo-
hypha caused by dominant activity mutation might destroy
the symbiotic relationship between photo organisms and
fungi. Grygorenko et al. [13] dived into the symbiotic re-
lationship between drug discovery and organic chemistry.
*ey evaluated the symbiotic relationship between organic
chemistry and drug discovery. *e results implied that
organic chemistry was the basis of existing and upcoming
drugs. *e relationship between drug discovery and organic
chemistry also affected organic synthesis. Sharma and
Sharma [14] analyzed the aboveground and underground
circular energy conversion systems. Based on the current
ecological evidence, they conducted a future comparative
study on sustainable agriculture and the environment.

Consequently, the potential operation mechanism was
revealed. Wanke et al. [15] inquired about the factors of
polysaccharides affecting park microbial interaction. *ey
detected microorganisms by sensing the molecular char-
acteristics of the whole microbial category. *e research had
practical reference value for supplementing and improving
the concept of circular symbiosis.

Numerous research also considers the AG and AH
production park landscaping. Shi et al. [16] constructed the
heterogeneous AG and AH ecotone in the upper reaches of
the Yellow River.*ey determined the ecological source area
and resistance surface using morphological spatial pattern
analysis and structural equation model (SEM). Meanwhile,
Graphab was used to construct the ecological network. *e
numerical results implied that grazing and agricultural ac-
tivities were the main reasons underlying the landscape
complexity and heterogeneity. *e study also revealed the
interaction between geographical conditions and landscape
heterogeneity. Liu [17] landscaped and researched agricul-
tural theme parks based on ecological-friendly, sustainable
development, and agricultural economy philosophy. *e
research analyzed the background requirements and public
needs of agricultural theme park landscaping. Consequently,
the proposed landscaping method had a particular effect. It
provided a reference value for the subsequent agricultural
theme park landscaping. Lavorel et al. [18] studied the multi-
functional landscaping template. *ey systematically ana-
lyzed the impact of space fragmentation on landscape
versatility and its interaction with land-use intensity. *e
outcome was that extensive grassland and space supported
multiple ecosystem services in the heterogeneous landscape
with medium land-use intensity. Increasing land-use in-
tensity would reduce the versatility of the ecosystem while
reducing ecosystem services.

2.2. Recent Related Work on Lightweight Deep Reinforcement
Learning (DRL) Model. In terms of the literature on the
lightweight DRL model, many scholars have utilized such
technologies as unmanned aerial vehicle (UAV) and mobile
edge computing (MEC). To name a few, Lu et al. [19] ex-
plored the MEC technology based on DRL to optimize the
lightweight task unloading strategy. Specifically, they studied
the unloading problem in multiple service nodes and the
multi-dependences of mobile tasks in a large-scale hetero-
geneous MEC environment. *e research was based on the
improved DRL and candidate networks on long short-term
memory (LSTM). *e simulation results proved that the
proposed improved deep reinforcement Q-learning
(IDRQN) algorithm outmatched other algorithms in terms
of energy consumption and average execution time. Chen
et al. [20] summarized the existing network security based
on DL technology. *ey classified the DL model-based
network security applications.*e results found that the DL-
based correct design method was critical to protecting the
smart city network. Lv et al. [21] designed and studied the
new system in the smart city vertical market from an eco-
nomic perspective. *e experimental outcomes proved the
security performance of the constructed system in six
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different channels. Further, simulation analysis presented
that the constructed system had good stability. From the
vertical market perspective, self-operated retailers had more
advantages [21]. *us, the findings can provide an experi-
mental reference for constructing a smart city and devel-
oping economy. Li et al. [22] researched medical image
fusion methods by DL technology. *e research emphasized
the information clarity of multi-modal images. *en, the
experiment realized the multi-modal medical image fusion
based on supervised DL. *e proposed method achieved the
most advanced performance in visual quality and quanti-
tative evaluation indicators.

Additionally, the research on the DRL model and
adaptive DRL (ADRL) model is also the focus of scholars.
Huang et al. [23] studied the loop filter based on ADRL and
proposed a loop filter construction method for general video
coding. *en, they used the latest progress of DRL to select
the appropriate network. Extensive experimental results
showed that the proposed method could achieve an average
efficiency of 2.58% and 2.51% under low latency and ran-
dom-access configuration, respectively. Meanwhile, the
proposed method outperformed other DL methods under
low computational complexity. Lu et al. [24] investigated the
online tracker selection based on DRL. *rough the real-
time segmented target tracking strategy in the traffic scene,
they studied how to capture and track the environment’s
dynamics effectively. Also, they regarded the tracker selec-
tion problem as a partially observable Markov decision-
making process. *e results discovered that the proposed
tracker had superior performance and achieved an excellent
balance between accuracy and efficiency than other state-of-
the-art methods.

To sum up, scholars’ research on lightweight DRL
models has involved many fields: energy management, in-
telligent monitoring, and Internet of *ings (IoT) security
intrusion detection. Accordingly, an efficient two-tier op-
timizer can simultaneously select the input features, training
examples, and the number of hidden neurons to implement
the DRLmodel on IoTdevices such that the lightweight deep
autoencoder model is updated. *en, the optimized DRL
model is implemented using the highly accurate K-nearest
neighbors (KNN) classifier and the complex autoencoder
model. As a result, the model accuracy and efficiency can be
both improved. However, the research on the DRLmodel for
landscaping the AG and AH production park is relatively
scarce. *erefore, using the concept of circular symbiosis to
guide the implementation of the lightweight DRLmodel and
design and improve the production plants can further im-
prove the output efficiency of AG and AH products.

3. Landscaping Method of AG and AH
Production Park Based on Lightweight Deep
Reinforcement Learning (DRL) Model

3.1. Construction of Circular Symbiosis Industry Chain.
With the rapid socioeconomic development, the AG and AH
industry has to upgrade towards a higher industrial level
based on the regional economy. Meanwhile, it has to

improve its resource utilization, reduce energy consumption
and environmental pollution, and coordinate regional
economy and environmental protection [25]. In con-
structing the circular symbiotic chain of the ecological in-
dustry, the main steps are as follows. Firstly, the related
concepts are reviewed on ecological agriculture, agricultural
industry, biological symbiosis, and food chain network.
*en, it realizes the regional joint landscaping based on
environmental protection, ecological diversity, functional
positioning, vertical extension, and horizontal coupling of
core industries. Finally, through the waste recycling of
workshops in the production park, a circular symbiotic
industrial system with unified social and ecological benefits
is realized. In the whole process, the industrial data are
collected from two ecological parks, A and B, and sent to the
user for viewing. *e circular symbiosis system of the
production park is shown in Figure 1.

3.2. Decision Tree (DT) Algorithm and Ensemble Learning
Criterion. *e DT algorithm uses a series of constraint
criteria in the DRL model to classify and judge the data.
*en, it generates understandable rules based on inductive
criteria to classify and sort data by approximating the dis-
crete function. DT algorithm construction process is gen-
erally divided into three steps. First, split the internal nodes
by selecting the most critical features from the training data
features. Second, the DT is generated through the training
sample set. *ird, through continuous data division, select
training samples closer to the correct classification data set
and constantly prune and improve the performance of the
DT. Additionally, learning tasks can be generated through
individual learners by constructing and assembling multiple
learners.*e same kind of neural networks can be assembled
and optimized through homogeneous integration. Finally,
resource allocation and model supervision can be effectively
solved through the organic combination of learners. Dif-
ferent individual learners enter the system combination
module through a wireless connection and integrate and
optimize the overall learning ability. *e ensemble learning
optimization model based on the parallel evolution method
is given in Figure 2.

3.3. Landscaping and Optimizing Agricultural and Animal
Husbandry (AG and AH) Production Park. AG and AH
production park is a necessary environment for the growth
and maturity of products in the ecological experimental
park.*e AG and AH production park can intuitively reflect
the overall industrial level based on the lightweight DRL
model. In particular, landscape elements based on crop
planting and ecological landscape concepts, such as per-
meable pavement and green planting, can further highlight
ecological protection and production coordination. For
example, permeable pavement can help rainwater penetrate
the ground and soil, reduce surface runoff, and improve
irrigation. On the other hand, green planting can create a
rich ecological landscape, beautify the environment, gen-
erate oxygen, and purify the suspended particles. In addi-
tion, the development and utilization of solar energy can
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provide sufficient light, shelter, and pavement. Solar energy
can also be stored during the day and then slowly released at
night to illuminate crops. *is ensures the temperature and
light conditions for crop growth in the park. *e estab-
lishment of the AG and AH production park is sketched in
Figure 3.

3.4. Experimental Verification. *e experimental site is
based on the crop irrigation and production park with flat
terrain of 12 square meters. Before planting experimental
crops, 80 cm wide plastic cloth is used to isolate the ex-
perimental area from the rest of the AG and AH production
park. Small intelligent sensors are placed in densely crop
populated areas to collect real-time meteorological data. It is
planned to collect the water content data at the soil depth of
40 cm, and the average error tolerance is within 0.05%.
Additionally, after the landscaping and optimization based
on DRL, the performance of crop water storage, yield,
survival rate, and other parameters have changed signifi-
cantly. Further, to compare the experimental performance
parameters of different crops before and after model opti-
mization, the crop data are extracted from the AG and AH
production park and experimental field. *en, the experi-
mental parameters before and after model optimization are
compared from crop water storage, yield, and survival rate.
Six crops (rice, wheat, corn, potato, tomato, and cucumber)
are selected for the experiment, combined with the soil
geological conditions of the experimental area and the
production park. *e data collected from the production
park refer to the experimental group, and the crop data
extracted from the experimental field refer to the control
group. Two groups of data of the experimental and control
groups are set for experimental verification. *e system data
acquisition module is used to collect data, including air
pressure, light, and PM2 5, soil temperature and humidity,
and air temperature and humidity data. *e wireless
monitoring network adopts STC12C5A60S2 single-chip
microcomputer as the core, working under 5.5V and
0–35MHz. 1,280-byte random access memory (RAM) is

integrated into the sensor chip, and the detection error rate
is 3%. *e experimental environment is designed based on
Internet, local storage, and cloud storage. Users can easily
receive data from the cloud server and rack server port
through the wireless network connection. *e experimental
design and verification environment are illustrated in
Figure 4.

4. Results and Discussion

4.1. Comparison of CropWater Storage between Experimental
Group and Control Group. *is section compares the per-
formance of the AG and AH production park before and
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Figure 2: Ensemble learning optimization model based on parallel
evolution method.
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Figure 3: Structure of AG and AH production park.
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Figure 4: Experimental design and verification environment.
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Figure 1: Circular symbiosis system in ecological production park.
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after model optimization based on crop water storage. *us,
the crop data are extracted from the production park and the
experimental field. *en, they are divided into the experi-
mental group (crop data of the AG and AH production park)
and the control group (experimental field data). Precisely,
the control group measures data of the same crop in the
experimental field. Figures 5 and 6 give the data statistics.

From Figure 5, the landscaping and optimization of the
AG and AH production park using the DRL model have
improved the crop water storage of rice, wheat, corn, and
other crops to a certain extent. Among them, the water
storage of rice and corn is significantly improved, so these
two crops are suitable for planting in the optimized pro-
duction park. By comparison, the water storage of tomato
and cucumber has shrunk after optimization, so these two
crops are more suitable for centralized planting using the
traditional planting method.*e optimized production park
will weaken the water storage of the tomato and cucumber.

From Figure 6, compared with the AG and AH pro-
duction park, the water storage of several crops in the ex-
perimental field diminishes to a certain extent after model
optimization. Noticeably, the water storage reduction of
cucumber is the most obvious. *e water storage of cu-
cumber can reach 12,000 before the model optimization and
drops to about 9,000 after optimization, with a significant
reduction. Additionally, the water storage of the other crops
also declines to different degrees. Hence, the improved crop
planting method is unsuitable for these crops in the ex-
perimental field. Here, the traditional planting method
might achieve better results.

4.2. Comparison of Crop Yield between Experimental Group
and Control Group. *is section examines the landscaping
performance of the lightweight DRL model in optimizing
the AG and AH production park based on crop yield. *en,
the experimental and control groups collect the crop yield
data of different crops in the AG and AH park and the

experimental field before and after the model optimization.
*e data are detailed in Figures 7 and 8.

From Figure 7, the yield of several crops has significantly
improved after model optimization. More precisely, the
yield improvement of rice is the most prominent. For ex-
ample, the rice yield in the AG and AH production park is
less than 15 kg before model optimization and over 20 kg
after optimization. Besides, wheat, potato, tomato, and
cucumber yield has increased to varying degrees. In contrast,
the corn yield has decreased after the model optimization, so
the optimized production park environment is not suitable
for planting this variety of corn. It is suggested to reduce the
planting area of this variety of corn in the optimized pro-
duction park.

From Figure 8, the yield of various crops has effectively
improved in the experimental field. For example, yield
improvement of cucumber, wheat, and rice is the best, only
about 12 kg before optimization and 18 kg after DRL-opti-
mized production park landscaping. *us, the proposed
DRL-based production park landscaping is proven to be
reliable and effective.

4.3. Comparison of Crop Survival Rate between Experimental
Group and Control Group. Among the many measurement
data in the AG and AH production park, the crop survival
rate can reasonably evaluate the performance of the DRL
model optimization. *erefore, Figures 9 and 10 compare
the crop survival rate before and after the production park
optimization based on the DRL model.

From Figure 9, the survival rate of all crops after DRL
model optimization is closer to the ideal situation rate
(100%). Noticeably, the survival rate of rice is improved the
most, about 85% before optimization and up to 90% after.
Moreover, the survival rate of cucumber is the best among
several crops, 94% before optimization and 95.4% after,
improved by 1.4. *erefore, the lightweight DRL model can
effectively optimize the crop planting conditions in the
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Figure 7: Crop yield of different crop species before and after model optimization in the AG and AH production park (1, rice; 2, wheat; 3,
corn; 4, potato; 5, tomato; 6, cucumber).
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Figure 8: Crop yield of different crop species in the experimental field before and after model optimization (1, rice; 2, wheat; 3, corn; 4,
potato; 5, tomato; 6, cucumber).
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overall AG and AH production park and improve their
survival rate.

From Figure 10, the survival rate of several crops has
declined somehow in the experimental field compared to
that within the overall AG and AH production park. For
example, in the experimental field, the initial survival rate of
the crop is only 80% and nearly 90% after optimization.
Furthermore, the survival rate of wheat, corn, potato, and
tomato in the experimental field was not very good initially.
Nevertheless, the DLR model can increase their survival rate
by about 3.5%. At the same time, the DLR model has not
significantly improved the survival rate of cucumber, only
from 94.7% to 95.3%. To sum up, in the lightweight DRL-
optimized AG and AH production park, the survival rate has
risen, much closer to the ideal one.

5. Conclusion

Under the concept of circular symbiosis, to improve the
output efficiency of AG and AH products, it is necessary to
optimize AG and AH production park landscaping. Starting
from reality, based on the construction criteria of circular
symbiotic industrial chain, DT algorithm, and DRL, the
present work studies the landscaping and optimization
scheme of AG and AH products. At the same time, it
compares the experimental and control groups’ numerical
values. *e experimental results suggest that after the DRL-
optimized AG and AH production park landscaping, the
water storage of rice, wheat, corn, and potato has been
improved to a certain extent. Remarkably, the water storage
of rice and corn is significantly improved. On the other
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Figure 9: Crop survival rate of different crop species before and after optimization in the AG and AH park (1, rice; 2, wheat; 3, corn; 4,
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hand, rice yield improvement is the most obvious, with less
than 15 kg in the AG and AH production park before op-
timization and over 20 kg after. Finally, there are still some
deficiencies, mainly because few crop types are selected in
the experimental field, which is insufficient to generalize the
research results. Future research expects to supplement and
enrich the crop types, optimize the model functions, and
expand the application prospect of the lightweight DRL
model. *e result has practical application value for im-
proving crop yield in agricultural production parks.
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