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Many studies have shown that Toll-like receptors (TLRs) and Nod-like receptors (NLRs) were expressed in B cells and their
signaling affects B cell functions. Nonetheless, the roles played by these receptors in B cell antibody (Ab) production have not
been completely elucidated. In the present study, we examined the effect of the Nod2 agonist muramyl dipeptide (MDP) in
combination with the TLR4 agonist lipopolysaccharide (LPS), a well-known B cell mitogen, on B cell viability, proliferation, and
activation, and Ab production by in vitro culture of purified mouse spleen resting B cells. MDP combined with LPS to reinforce
B cell viability, proliferation, and activation. Moreover, MDP enhanced LPS-induced IgG2b production, germline γ2b transcript
(GLTγ2b) expression, and surface IgG2b expression. In an experiment with Nod2- and TLR4-deficient mouse B cells, we
observed that the combined effect of MDP and LPS is dependent on Nod2 and TLR4 receptors. Furthermore, the combined
effect on B cell viability and IgG2b switching was not observed in Rip2-deficient mouse cells. Collectively, this study suggests
that Nod2 signaling enhances TLR4-activated B cell proliferation, IgG2b switching, and IgG2b production.

1. Introduction

Pattern recognition receptors such as Toll-like receptors
(TLRs), Nod-like receptors (NLRs), and C-type lectin recep-
tors (CLRs) recognize specific conserved bacterial structures
(pathogen-associated molecular patterns). TLR signaling
can directly affect B cell functions, even without the support
of T cells [1–4]. We recently reported that TLR1/2 agonist
Pam3CSK4 and TLR7 agonist imiquimod directly inhibit
IgG1 and IgE class switching, respectively, in activated mouse
B cells [5, 6]. In addition, we found that Dectin-1 (a type of
CLR) agonist selectively induced IgG1 class switching by
TLR4 agonist lipopolysaccharide (LPS)-activated mouse B
cells [7, 8]. Many studies have shown that TLR signaling
interplays with other receptor signaling such as other TLRs,
B cell receptor (BCR), and CD40 signaling in B cells [9–14].

For instance, TLR2 stimulation arrests TLR4 agonist LPS-
promoted B cell maturation [15]; BCR signaling synergizes
with TLR signaling for activation-induced cytidine deami-
nase (AID) expression and Ig class switch recombination
(CSR) by B cells [16]. Thus, TLRs play various roles in B cell
activation, differentiation, and function.

However, the roles played by NLRs (Nod1, Nod2,
NLRC4, NLRP3, etc.) in B cells remain to be elucidated.
The effects of Nod1 and Nod2 stimulation on B cell
activation have been investigated in only a few studies: Cohen
and Parant reported that Nod2 agonist muramyl dipeptide
(MDP) increases surface Ig (membrane κ-light chain)
expression and enhances the response to LPS in the
mouse pre-B cell line 70Z/3 [17]; Petterson et al. reported
that Nod1 or Nod2 stimulation augments BCR- or TLR-
induced human B cell activation (proliferation, viability,
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and expression of cell surface markers) independently of
physical T cell assistance [18, 19].

In the present study, to further elucidate the role of Nod2
in B cell response, we directly stimulated mouse resting B
cells with MDP in the absence and presence of LPS in vitro
and analyzed B cell viability, proliferation, activation,
antibody (Ab) production, and Ig class switching.

2. Materials and Methods

2.1. Animals.Wild-type (WT) C57BL/6 mice were purchased
from Damool Science (Daejeon, Korea). TLR4-deficient
(Tlr4-/-), Nod2-deficient (Nod2-/-), and Rip2-deficient (Rip2-
/-) mice with a C57BL/6 background were purchased from
Jackson Laboratory (Bar Harbor, ME, USA). Mice were
maintained on an 8 : 16 h light:dark cycle in an animal
environmental control chamber. Eight- to twelve-week-old
mice were used, and animal care was provided in accordance
with the guidelines of the Institutional Animal Care and Use
Committee of Konyang University.

2.2. Cell Culture and Reagents. The mouse B cell lines
L10A6.2 (surface μ+, mature B cell line) and A20.3 (sur-
face γ2a+) were provided by Dr. J. Stavnezer (University

of Massachusetts Medical School, Worcester, MA, USA).
The mouse B lymphoma cell line CH12F3-2A (surface
μ+) was provided by Dr. T. Honjo (Kyoto University,
Kyoto, Japan). Mouse spleen resting B cells were obtained
by depletion of CD43+ cells using anti-CD43 microbeads
and high-gradient magnetic cell separation according to
the manufacturer’s instruction (MACS; Miltenyi Biotec,
Bergisch Gladbach, Germany) as previously described [5].
The purity of resting B cells (CD43-B220+) was assessed
using FACSCalibur (BD Biosciences, San Jose, CA, USA)
following staining of the cells with anti-CD43 FITC
(eBioscience, San Diego, CA, USA) and anti-B220 PE
(BD Biosciences) (Supplementary Figure 1(a)). The cells
were cultured at 37°C in a humidified CO2 incubator
(Forma Scientific, Marietta, OH, USA) in RPMI-1640
medium (Welgene, Daegu, Korea) supplemented with 10%
fetal bovine serum (PAA Laboratories, Etobicoke, ON,
Canada). The cells were stimulated with LPS (ultrapure LPS,
E. coli 0111:B4; InvivoGen, San Diego, CA, USA), MDP
(InvivoGen), and iE-DAP (InvivoGen). The mouse
macrophage cell line RAW264.7 was cultured in DMEM
(Welgene) containing 2mM L-glutamine, 100U/mL
penicillin, 100μg/mL streptomycin, and 10% fetal bovine
serum in a humidified CO2 incubator. Anti-mouse IgG2b-
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Figure 1: MDP sustains B cell viability in vitro, but MDP itself hardly induces B cell proliferation. Resting B cells were stimulated with the
indicated MDP concentrations. After 2 and 3 days of culture, cell viability was measured by (a) EZ-Cytox assay and (b) cell proliferation was
measured by CFSE assay. Data shown are representative of two independent experiments.
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PE and anti-mouse IgG3-PE were purchased from Southern
Biotech (Birmingham, AL, USA). Anti-mouse IgM-PE was
obtained from eBioscience.

2.3. Cell Viability, Proliferation, and Activation Assays. Cell
viability was determined using the EZ-Cytox cell viability
assay (DaeilLab Service Co., Ltd., Seoul, Korea) according
to the manufacturer’s instructions [8]. For the cell prolifera-
tion assay, purified mouse resting B cells were labeled with
CFSE (eBioscience) and then supplemented with MDP, iE-
DAP, and LPS. CFSE dilution was measured by counting
10,000 cells with the FACSCalibur. For the cell activation
assay, cultured cells were stained with anti-CD69-FITC (BD
Biosciences), and the expression levels were analyzed by flow
cytometry (FACSCalibur).

2.4. Isotype-Specific ELISAs. Antibodies produced in B cell
cultures were detected using isotype-specific ELISAs as previ-
ously described [8].

2.5. RNA Isolation and RT-PCR. RNA isolation and RT-PCR
were performed as previously described [6]. The PCR
primers (Supplementary Table 1) were synthesized by
Bioneer (Daejeon, Korea). PCR for β-actin was performed
in parallel to normalize for cDNA concentrations within
each set of samples. PCR products were resolved by
electrophoresis on 2% agarose gels. Semiquantitative RT-
PCR analysis was performed using cDNA dilutions.

2.6. Flow Cytometric Analysis. Surface staining was per-
formed with anti-mouse IgG2b-PE, anti-mouse IgG3-PE,
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Figure2:Combined effects of LPS andMDPonBcell viability, proliferation, activation, andAbproduction.RestingB cellswere stimulatedwith
MDP (10 μg/mL) or iE-DAP (10 μg/mL) in the presence or absence of LPS (1 μg/mL). (a) Cell viability was measured by EZ-Cytox assay at the
indicated time points (days). Data presented are means of duplicate samples with ranges (bars). (b) After 2 and 3 days of culture, cell
proliferation was measured using CFSE assay. (c) After 2 days of culture, B cell activation was determined by surface CD69 expression. (d)
After 7 days of culture, supernatants were harvested, and the levels of Ab production were measured using isotype-specific ELISA. Data
presented are themeans ± SEM from three independent experiments. ∗p < 0:05, ∗∗p < 0:01, SEM: standard error of themean; ns: not significant.
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or anti-mouse IgM-PE in the dark for 30min at 4°C, and
surface Ig-expressing B cells were analyzed by flow
cytometry (FACSCalibur). Dead cells were excluded from
analysis using Zombie Red™ Fixable Viability Kit accord-
ing to the manufacturer’s instruction (BioLegend, San
Diego, CA).

2.7. Statistical Analysis. Statistical differences between exper-
imental groups were determined by analysis of variances. All
p values were calculated using unpaired 2-tailed Student’s t
-tests to assess statistical significance.

3. Results and Discussion

3.1. Dosage Effect of Nod2 Agonist MDP on B Cell Viability
and Proliferation. First, to determine the direct effect of the
Nod2 agonist MDP on B cell viability and proliferation, we
purified resting B cells from mouse spleen (Supplementary
Figure 1(a)) and treated them with MDP. The resting B
cells expressed Nod1 and Nod2 as well as TLR4
(Supplementary Figure 1(b)). The RAW264.7 mouse
macrophage cell line was used as a positive control for TLR

and NLR expression. Resting B cells could not survive in
the absence of stimuli in vitro and died (Figure 1(a), white
bars). MDP treatment sustained B cell viability but did not
increase it in a dose-dependent manner. MDP very slightly
induced B cell proliferation (Figure 1(b)). However, MDP
alone did not induce any Ab production (data not shown).
These results suggest that MDP sustains B cell viability, but
MDP itself hardly induces B cell proliferation and plasma
cell differentiation.

3.2. Nod2 Agonist MDP but Not Nod1 Agonist iE-DAP
Combines with TLR4 Agonist LPS to Induce B Cell Viability
and Proliferation and IgG2b Production. New functions in
innate immune cells have been reported for the crosstalk
between TLRs and NLRs [20–22]. There is a synergistic
stimulation of human monocytes and dendritic cells by
TLR4 and Nod1- and Nod2-activating agonists [23].
Furthermore, Nod2 is involved in TLR4-mediated signaling
of inflammation regulation [24, 25]. LPS stimulates TLR4
and is a well-known mitogen for mouse B cells [26, 27].
TLR4 on B cells recognizes LPS and stimulates B cell prolifer-
ation, differentiation, and Ig CSR. LPS in vitro stimulation
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Figure 3: Combined effects of LPS and MDP on the expression of germline transcripts and AID mRNA. Resting B cells were stimulated with
MDP (10 μg/mL) and iE-DAP (10 μg/mL) in the presence or absence of LPS (1μg/mL). After 2.5 days of culture, RNAs were isolated, and the
levels of germline transcripts and AID mRNA were measured by RT-PCR. The levels of germline transcripts and AID mRNA were measured
by semiquantitative RT-PCR with 1/5 and 1/25 diluted cDNA (lower panel). The graphs show relative transcript levels normalized to the
expression of β-actin cDNA by ImageJ (NIH, Bethesda, MD, USA) analysis. Densitometric data are averages of two independent
experiments with ranges (bars).
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increases IgG2b and IgG3 production through IgG2b and
IgG3 class switching, respectively, by mouse B cells [4,
28–33]. Therefore, we investigated the combined effect of
TLR4 agonist LPS and Nod2 agonist MDP or Nod1 agonist
iE-DAP on B cell viability, proliferation, activation, and Ab
production. Resting B cells were stimulated with MDP or
iE-DAP in the presence or absence of LPS. After 2 and 3
days of culture, LPS-induced cell viability was significantly
enhanced by MDP but not by iE-DAP (Figure 2(a)). In

addition, MDP reinforced LPS-induced cell proliferation
(Figure 2(b)). These results indicate that MDP combined
with LPS to induce B cell viability and proliferation, while
iE-DAP does not. Further, MDP enhanced LPS-induced
expression of CD69, which is an activation marker
(Figure 2(c)). Next, we examined the effect of MDP on
LPS-induced Ab production, particularly IgG2b and IgG3
production. MDP increased LPS-induced IgG2b production
but decreased LPS-induced IgG3 and IgG1 production
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(Figure 2(d)). iE-DAP had no significant effect on LPS-
induced Ab production. Instead, iE-DAP decreased LPS-
induced IgG2b production. These results indicate that MDP
combines with LPS to selectively induce IgG2b production.

3.3. MDP Combines with LPS to Induce Germline γ2b
Transcripts and Surface IgG2b Expression. The transcription
of germline transcripts (GLT) is a prerequisite for
subsequent Ig CSR [34–36]. Therefore, GLT expression
can serve as a marker of Ig class switching. LPS induces
the expression of GLTγ2b as well as that of GLTγ3 [34,
37, 38]. To evaluate the effect of MDP on LPS-induced
IgG2b class switching, we examined whether LPS and
MDP together induce the expression of germline γ2b

transcripts (GLTγ2b) and surface IgG2b. Resting B cells
were stimulated with MDP and iE-DAP in the presence
or absence of LPS, and GLT expression were measured by
RT-PCR (Figure 3). LPS-induced GLTγ2b expression was
enhanced by MDP, whereas MDP did not affect LPS-
induced GLTγ3 and GLTγ1 expression (Figure 3). In
contrast, iE-DAP neither had any effect on LPS-induced
GLTγ2b expression nor on GLTγ3 and GLTγ1 expression.
Because AID is an essential enzyme for class switching
[39], we assessed its expression. MDP did not affect LPS-
induced AID mRNA expression (Figure 3). In addition,
MDP selectively enhanced LPS-induced surface IgG2b
expression (Figure 4). MDP alone did not induce surface
IgG2b expression (data not shown). Collectively, these
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Figure 5: Effects of LPS andMDP on cell viability, proliferation, and Ab production and germline transcripts expression in TLR4- and Nod2-
deficient B cells. Resting B cells were purified from wild-type (WT), TLR4-deficient (Tlr4-/-), and Nod2-deficient (Nod2-/-) B cells and
stimulated with MDP (10 μg/mL) and iE-DAP (10 μg/mL) in the presence or absence of LPS (1 μg/mL). (a) After 2 and 3 days of culture,
cell viability (OD) was measured by EZ-Cytox assay kit, and cell proliferation was measured by CFSE assay. Low CFSE intensity cell (%)
means the proportion of proliferating cells. (b) After 7 days of culture, supernatants were harvested, and the levels of Ab production were
measured by isotype-specific ELISA. Data shown are averages of triplicate cultures with SEM error bars. SEM: standard error of the mean.
∗∗p < 0:01. (c) After 2.5 days of culture, RNAs were isolated and the levels of germline transcripts and AID mRNA were measured by RT-
PCR. The levels of germline transcripts and AID mRNA were measured by semiquantitative RT-PCR with 1/5 and 1/25 diluted cDNA (c,
lower panel). The graphs show relative GLTγ2b level normalized to β-actin cDNA expression using ImageJ, and data are averages of two
independent experiments with ranges (bars).
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results indicate that LPS and MDP together induce IgG2b
production through increasing IgG2b class switching.

3.4. Combination Effect of LPS and MDP Is Abrogated in
TLR4- and Nod2-Deficient B Cells. LPS and MDP are specific
agonists for TLR4 and Nod2, respectively. Therefore, we
examined whether the effects of LPS and MDP on B cell
responses are dependent on their specific receptors by
comparing B cells from WT and TLR4-deficient (Tlr4-/-) or

Nod2-deficient (Nod2-/-) mice. WT, TLR4-, and Nod2-
deficient B cells were stimulated with MDP or iE-DAP in
the presence or absence of LPS, and cell viability, cell prolif-
eration, and Ab production were measured (Figure 5). In
TLR4-deficient B cells, LPS did not induce cell viability and
proliferation (Figure 5(a), gray bars). This finding confirms
that B cell proliferation by LPS is dependent on TLR4. In
Nod2-deficient B cells, MDP did not enhance LPS-induced
cell viability and proliferation (Figure 5(a), black bars). This
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harvested and the levels of Ab production were measured using isotype-specific ELISA. Data shown are averages of triplicate cultures with
SEM error bars. SEM: standard error of the mean. (c) After 2.5 days of culture, RNAs were isolated and the levels of germline γ2b
transcripts were measured by RT-PCR. The levels of germline γ2b transcripts were measured by semiquantitative RT-PCR with 1/5 and
1/25 diluted cDNA (c, lower panel).
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indicates that MDP can enhance LPS-induced B cell prolifer-
ation through Nod2. Next, we examined the effects of LPS
and MDP on Ab production in TLR4- and Nod2-deficient
B cells. TLR4-deficient B cells did not produce all Abs
production upon stimulation of LPS (Figure 5(b)). In
Nod2-deficient B cells, MDP did not increase LPS-induced
IgG2b production. Furthermore, MDP did not increase
LPS-induced GLTγ2b expression in Nod2-deficient B cells
(Figure 5(c)). These results suggest that the combined effect
of LPS and MDP on B cell proliferation and IgG2b produc-
tion is dependent on their receptors, TLR4 and Nod2. In
addition, we investigated the effects of LPS and MDP on B
cell responses in receptor-interacting protein 2 (Rip2)-defi-
cient (Rip2-/-) B cells (Figure 6), because Rip2 is a critical
mediator of Nod2 signaling in innate and adaptive immune
responses [40–43]. MDP neither reinforced LPS-induced
cell viability nor increased cell proliferation (Figure 6(a)),
IgG2b production (Figure 6(b)), or GLTγ2b expression
(Figure 6(c)) in Rip2-deficient B cells. Thus, Nod2-Rip2-
mediated signaling could cooperatively play a critical role
in LPS-induced B cell responses. However, the underlying
molecular mechanisms remain to be determined.

4. Conclusions

Our present observations demonstrate that direct stimulation
of Nod2 selectively enhances TLR4 agonist LPS-induced
IgG2b production by enhancing IgG2b class switching in
mouse B cells. IgG2b is particularly important early in the
immune response, when T cell support may be limited (i.e.,
T-independent response), and provides early FcγR-mediated
effector functions and efficient complement activation
through binding on C1q [31, 44–46]. Consequently, Nod2
agonist MDP can be used as B cell adjuvant to protect from
fast-replicating bacterial infection through enhancing direct
B cell activation and IgG2b production independent of T cells
and BCR stimulation.
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