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Abstract 

Background: Plasmodium vivax is the predominant Plasmodium species in Afghanistan. National guidelines recom-
mend the combination of chloroquine and primaquine (CQ-PQ) for radical treatment of P. vivax malaria. Artesunate 
in combination with the antifolates sulfadoxine-pyrimethamine (SP) has been first-line treatment for uncomplicated 
falciparum malaria until 2016. Although SP has been the recommended treatment for falciparum and not vivax 
malaria, exposure of the P. vivax parasite population to SP might still have been quite extensive because of community 
based management of malaria. The change in the P. vivax antifolate resistance markers between 2007 and 2017 were 
investigated.

Methods: Dried blood spots were collected (n = 185) from confirmed P. vivax patients in five malaria-endemic areas 
of Afghanistan bordering Tajikistan, Turkmenistan and Pakistan, including Takhar, Faryab, Laghman, Nangarhar, and 
Kunar, in 2007, 2010 and 2017. Semi-nested PCR, RFLP and nucleotide sequencing were used to assess the pyrimeth-
amine resistant related mutations in P. vivax dihydrofolate reductase (pvdhfr I13L, P33L, N50I, F57L, S58R, T61I, S93H, 
S117N, I173L) and the sulfonamide resistance related mutations in P. vivax dihydropteroate synthase (pvdhps A383G, 
A553G).

Results: In the 185 samples genotyped for pvdhfr and pvdhps mutations, 11 distinct haplotypes were observed, 
which evolved over time. In 2007, wild type pvdhfr and pvdhps were the most frequent haplotype in all study sites 
(81%, 80/99). However, in 2017, the frequency of the wild-type was reduced to 36%, (21/58; p value ≤ 0.001), with an 
increase in frequency of the double mutant pvdhfr and pvdhps haplotype S58RS117N (21%, 12/58), and the single 
pvdhfr mutant haplotype S117N (14%, 8/58). Triple and quadruple mutations were not found. In addition, pvdhfr 
mutations at position N50I (7%, 13/185) and the novel mutation S93H (6%, 11/185) were observed. Based on in silico 
protein modelling and molecular docking, the pvdhfr N50I mutation is expected to affect only moderately pyrimeth-
amine binding, whereas the S93H mutation does not.

Conclusions: In the course of ten years, there has been a strong increase in the frequency pyrimethamine resist-
ance related mutations in pvdhfr in the P. vivax population in Afghanistan, although triple and quadruple mutations 
conferring high grade resistance were not observed. This suggests relatively low drug pressure from SP on the P. vivax 
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Background
With a sharp decline in falciparum malaria, Plasmo-
dium vivax has become the prominent Plasmodium spe-
cies in Afghanistan causing more than 95% of all malaria 
cases [1]. The recommended first-line treatment for 
vivax malaria in Afghanistan is chloroquine combined 
with primaquine for radical cure (CQ-PQ), whereas for 
uncomplicated falciparum malaria the combination of 
artesunate and sulfadoxine-pyrimethamine (AS-SP) has 
been first-line treatment from 2003 to 2016, replaced by 
artemether-lumefantrine since 2016. Although SP has 
been the recommended treatment for falciparum and not 
vivax malaria, exposure of the P. vivax parasite popula-
tion to SP might still have been quite extensive because 
of community based management of malaria particularly 
symptom-based clinical or probable diagnosed malaria in 
past two decades [2, 3] and SP treatment of vivax malaria 
in parts of the private sector or through self-medication 
[3]. This might have increased antifolate resistance in P. 
vivax in Afghanistan.

Dihydrofolate reductase (DHFR) and dihydropteroate 
synthase (DHPS) are 2 essential enzymes in de novo 
folate synthesis pathway in Plasmodium and the drug 
targets of pyrimethamine, and sulfadoxine, respectively 
[4]. SP is considered a sub-optimal treatment for P. vivax 
infections, because this parasite is intrinsically less sen-
sitive to sulfonamides and resistance to SP is rapidly 
acquired with extensive drug exposure [5]. Through clini-
cal, epidemiological, molecular and biochemical studies 
it has been identified that SP resistance in P. vivax is con-
ferred by specific point mutations in the P. vivax dihydro-
folate reductase (pvdhfr) and dihydropteroate synthase 
(pvdhps) genes. In areas with extensive SP use, treat-
ment failure of vivax malaria with SP rapidly evolved, and 
was associated with mutations in codons 57, 58, 61, 117, 
173 of pvdhfr and in codons 382, 383, and 553 of pvdhps 
[6–10].

The frequencies of SP resistance related pvdhfr and 
pvdhps mutations have been extensively reported from 
various malaria-endemic areas, including Thailand [8, 
11–14], Cambodia [15], Myanmar [16], Vietnam [17], 
Indonesia [18], Papua New Guinea [19], Madagascar [20] 
and India [21–24]. However, reports from Afghanistan 
and Middle East countries are scarce. Previous studies 
from Afghanistan [25], Iran [26, 27], Pakistan [28–31] 
showed a majority of P. vivax strains carried wild-type 

pvdhfr and pvdhps, and a low frequency in pvdhfr of the 
double mutation in codon S58R/ S117N and single muta-
tion in codon S117N.

In this study,  the frequency of SP resistance related 
point mutations in the P. vivax pvdhfr and pvdhps genes 
in Afghanistan over time between 2007 and 2017 were 
reported. In addition, in silico three-dimensional mod-
elling and molecular docking of 2 newly identified pvd-
hfr mutationswere performed to predict their impact on 
pyrimethamine sensitivity.

Methods
Study sites and sample collection
Dried blood spots (n = 185) from patients with light micros-
copy confirmed P. vivax infection were collected from five 
malaria endemic provinces in Afghanistan. In 2007 samples 
were collected from Takhar (bordering Tajikistan), Faryab 
(bordering Turkmenistan), and Nangarhar (bordering Paki-
stan). In 2010, samples were collected from Kunar and in 
2017 from Nangarhar and Laghman, all bordering Pakistan. 
Blood samples of 20–30 µl were collected onto filter paper 
at the moment of patient presentation before antimalarial 
treatment. Genomic DNA was extracted by using QIAmp® 
DNA Mini Kit (Qiagen, Hilden, Germany), according to 
the manufacturer’s instructions and purified DNA was 
stored at − 20 °C until further processing. Approval for this 
study was obtained from the Ethics Review Committee for 
Research in Human Subjects, Faculty of Tropical Medicine, 
Mahidol University, Thailand (EC approval number MUTM 
2019-065-01).

In this study, the frequency of mixed infection of falci-
parum and vivax malaria was investigated by nested PCR 
detected 18S rRNA of Plasmodium spp. [32], only one 
sample was P. vivax and P. falciparum mixed infection 
(0.54%, 1/185). The low frequency of mixed infection of 
P. vivax and P. falciparum was explained by P. falciparum 
infected samples were excluded in the beginning.

Pvdhfr and pvdhps amplification and genotyping
Amplification of pvdhfr by semi-nested Polymerase Chain 
Reaction was performed following established and pub-
lished methods protocols [8, 23]. For amplification, the 
primary and secondary reaction volumes were 25 and 
100  µl, respectively, including 1  µl of template genomic 
DNA added in the primary amplified reaction, and 3 µl of 
primary amplified product added to the second round of 

parasite population in the study areas. The impact of two newly identified mutations in the pvdhfr gene on pyrimeth-
amine resistance needs further investigation.

Keywords: Plasmodium vivax, Antifolate resistance, Dihydrofolate reductase (DHFR) and dihydropteroate synthase 
(DHPS), Afghanistan
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amplification. The reaction mixture contained a final con-
centration of 125  nM primers forward-reverse mixture, 
10 mM Tris–HCL (pH 8.3), 2 mM MgCl2, 125 µM dNTP 
mixture, and 0.4 U Taq polymerase (Invitrogen, Carlsbad, 
CA) (Additional file 1: Table S1–S7). The DNA fragments 
from PCR amplification or Restriction Fragment Length 
Polymorphism (New England BioLabs Inc., Ipswich, 
MA) were identified by 3% metaphor agarose gel elec-
trophoresis (Radnor Corporate Center Radnor, PA). The 
amplified PCR product of pvdhfr was purified for DNA 
sequencing using PCR purification kit, FavorPrep™ (Favor-
gen, Taiwan). The purified PCR products of pvdhfr were 
sequenced by Macrogen, Korea. Nucleotide and amino 
acid sequences of this gene were aligned and compared 
with the P. vivax reference sequence from the original Sal1 
strain (accession no. XM001615032), using BioEdit v7.2.5. 
For identification of established gene mutations associated 
with sulfonamide resistance, genotyping of pvdhps used 
PCR–RFLP methods, following established and published 
protocols [33]. The positive control of P. vivax is genomic 
DNA from SalI reference strain and characterized P. vivax 
isolates from the patient. To ensure the accuracy of the 
results, two positive controls and negative controls were 
added for quality control at every step of the procedure.

In silico modelling of mutant PvDHFR
A computer simulated three-dimensional model of the 
PvDHFR protein structure and its putative interactions 
with pyrimethamine was used to predict the impact of 
pvdhfr mutations on pyrimethamine binding. The wild-
type PvDHFR structure (PDB ID: 2BL9) was used as a 
template for mutant PvDHFR modelling. The model 
was constructed using SWISS-MODEL (https ://swiss 
model .expas y.org). The constructed model was verified 
by PROCHECK [34]. Then, the derived structures of the 
active sites of mutant PvDHFR were complexed with 
pyrimethamine and evaluated by AutoDock Vina [35]. 
The structural models were visualized by Discovery Stu-
dio Visualizer–Accelrys.

Statistical analysis
The data of SNPs frequency related drug resistant genes 
were analysed by using MS Excel and SPSS v26.0. IBM 
Corp., Armonk, NY, USA. Pearson’s Chi-square test 
was used to compare proportions of haplotypes. A P 
value < 0.05 was considered statistically significant.

Results
Pvdhfr and pvdhps haplotypes
A total of 185 dry blood spots from patients presenting 
with vivax malaria were collected from the study sites. In 
the 185 genotyped samples, a total of 11 distinct pvdhfr 
and pvdhps haplotypes could be distinguished. Overall, 

the wild-type haplotype was the most frequent (64%, 
119/185) (Table 1). Two other common haplotypes were 
a single mutant haplotype S117N (10%, 19/185) and a 
double mutant haplotype S58RS117N (9%, 16/185). Rare 
haplotypes included a mutation at codon position 383 
of pvdhps in combination with pvdhfr single mutation 
at position 117; S117N/A383G (1%, 2/185) and a pvdhfr 
double mutations at 58 and 117; S58RS117N/A383G (1%, 
1/185). The mutation A383G of pvdhps was detected in 
8%, (3/37) of samples from Nangarhar in 2017.

A novel mutation at codon S93H (AGC to CAC) was 
identified comprising a single mutant haplotype S93H 
(4%, 8/185) and a double mutant haplotype S93HS117N 
(2%, 3/185) (Table 1). The N50I mutation (AAC to ATC) 
observed in this study had not been described from 
Afghanistan before. The mutation was part of the single 
N50I mutation haplotype present in 2% (3/185) of sam-
ples. While double mutant haplotype N50IS117N was 
found in 5% (10/185) of samples. Haplotypes with triple 
or quadruple mutations, which are associated with high 
grade antifolate resistance, were not observed in this 
study.

Temporal changes in pvdhfr and pvdhps haplotypes 
between 2007 and 2017
In 2007, the wild type pvdhfr and pvdhps haplotype was 
most frequent (81%, 80/99). Other haplotypes were rare, 
including the single mutant haplotype S117N in 6%, (6/99), 
and the double mutant haplotype N50IS117N in 3% (3/99) 
of samples. Also in the year 2010 the wild type pvdhfr 
and pvdhps haplotype was most frequent (64%, 18/28). 
The single mutant haplotype S117N (18%, 5/28) and dou-
ble mutant haplotype S58RS117N (11%, 3/28) were also 
observed. In contrast in 2017, the frequency of wild-type 
pvdhfr and pvdhps haplotype was compared to 2007 signif-
icantly reduced to 36% (21/58) of samples (p value ≤ 0.001). 
In 2017, the frequencies of the single mutant haplotype 
S117N (14%, 8/58, p value ≤ 0.001) and double mutant 
haplotype S58RS117N had increased significantly (21%, 
12/58, p value ≤ 0.001) (Table 1) (Figs. 1, 2).

In silico modelling of novel pvdhfr mutations
Since the two nonsynonymous pvdhfr mutation at posi-
tion N50I, AAC (Asn) to ATC (Ile), and S93H, AGC (Ser) 
to CAC (His) had not been observed earlier in Afghani-
stan, the corresponding three-dimensional structures of 
the mutated proteins and the impact on pyrimethamine 
binding were modelled and predicted. The mutation 
N50I is located within the binding pocket, approximately 
5  Å from the pyrimethamine molecule but does not 
directly interact with the drug. The mutation S93H is 
placed on the other side of the protein molecule, far away 
from the binding pocket (Figs.  3, 4, 5). Replacement of 

https://swissmodel.expasy.org
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Asn with Ile at position 50 disrupts the hydrogen bonds 
between Asn and water molecules. The N50I mutation 
also causes a conformation rearrangement of the helix 
(residues 50–63), disturbing the favorable interactions 
between the enzyme and inhibitor. The model predicted 
that the pvdhfr N50I mutation would affect only moder-
ately pyrimethamine binding, whereas the S93H muta-
tion would not affect binding.

Discussion
The combination of AS-SP has been used as first-line 
treatment for uncomplicated.

P. falciparum in Afghanistan since 2003 to 2016, and 
SP has been widely available in private sectors for a 
long time. Since an episode of falciparum malaria trig-
gers relapse infection with P. vivax a few weeks later, 
this provides a window of selection for resistant para-
sites to outgrow sensitive parasite still killed by the 
remaining SP drug levels.  Drug pressure from SP on 
the P. vivax parasite population over the past decade is 

thus likely, which might cause gene mutations in pvdhfr 
and pvdhps causing reduced SP sensitivity. Indeed, in 
this study, the frequency of the double mutant pvdhfr 
haplotype at S58RS117N and single mutant haplotype 
at S117N had increased significantly over the course of 
ten years since 2007 were observed. However, the tri-
ple and quadruple haplotype mutations associated with 
higher level of antifolate resistance were not found, 
suggesting only low or moderate drug pressure from SP 
on the P. vivax parasite populations in the study areas.

These findings agree with previously published 
reports showing low prevalence (less than 5%) of triple 
and quadruple mutant pvdhfr and pvdhps haplotypes 
in P. vivax parasite populations from Iran, Pakistan 
and India (Table 2) [21, 22, 26–31, 36–39]. In the wider 
study region, it was observed that the pyrimethamine 
resistance marker at position 117 in pvdhfr arose first 
and was followed by the subsequent mutation in posi-
tions 117 and 58, conferring increasing levels of resist-
ance as report earlier [23, 26–31].

8
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Antifolate drugs inhibit two essential enzymes in the 
folate biosynthesis pathway, necessary for DNA precur-
sor synthesis. Sulfadoxine inhibits DHPS while pyrimeth-
amine inhibits DHFR, which results in parasite death 

[4]. In P. falciparum, the intensive use of SP as first line 
treatment in south-east Asia since 1970s resulted in 
rapid acquisition of mutations in pfdhfr and pfdhps, caus-
ing amino acid changes in the enzymes at positions in 
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Fig. 4 Structural model of PvDHFR S93H mutation complexed with 
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far away from the binding pocket of pyrimrthamine (in purple circle). 
This mutation does not have any effect on pyrimethamine binding



Page 7 of 13Rakmark et al. Malar J          (2020) 19:251  

the binding pockets for pyrimethamine and sulfadox-
ine, respectively, causing SP resistance [7, 8]. The anti-
folate resistant mechanism in P. vivax, with incremental 
resistance acquired by the accumulation of single point 
mutations in pvdhfr and pvdhps, is thought to be similar 
to the antifolate resistance mechanism in P. falciparum. 
In P. vivax, the sequence of non-synonymous mutations 
in pvdhfr is in codons 13, 58, 117, 173, equivalent to the 
orthologous pfdhfr positions 16, 59, 108 and 164 in P. fal-
ciparum. In P. vivax, biochemical and protein functional 
studies showed that pyrimethamine effectively inhibits 
wild-type PvDHFR, but were approximately 60 to  > 4000 
times less active against mutant enzymes. Double mutant 
S58R and S117N PvDHFR was 10–25 fold less inhibited 
by pyrimethamine than the S117N mutant [10]. This 
relates to the steric hindering of the pyrimethamine bind-
ing pocket caused by the S117N mutation in the PvDHFR 
enzyme [9, 10].The studies also showed that a change in 
the effect of pyrimethamine on the enzyme kinetic prop-
erties of mutant PvDHFR is closely related with a change 
in sensitivity to pyrimethamine [9, 10].

The current study identified a novel nonsynonymous 
mutation S93H in pvdhfr and for Afghanistan newly 
observed N50I mutation in pvdhfr. The N50I mutation 

corresponds to the orthologous mutation N51I in P. 
falciparum. The pvdhfr N50I mutation was previously 
observed in low frequency in Pakistan [29]. Previous 
study shown that mutant N50I PvDHFR expressed in 
yeast confers an increase in pyrimethamine  IC50 com-
pared to wild type PvDHFR, whereas, the combination of 
mutation N50I and S117N conferred a-57 fold increase in 
 IC50 compared to wild type [40]. To assess the interaction 
of these mutations on pyrimethamine binding, homol-
ogy modelling and molecular docking in-silico were 
performed. This showed that the pvdhfr N50I mutation 
interrupted moderately the binding of pyrimethamine. 
In contrast, the pvdhfr S93H mutation, changing amino 
acids from AGC (Ser) to CAC (His) located away from 
the binding pocket of pyrimethamine, was predicted not 
to interrupt pyrimethamine binding. However, these in 
silico results will need confirmation in further in vitro or 
in vivo drug sensitivity studies.

An additional marker for SP resistance in P. falcipa-
rum is increased copies number of GTP cyclohydrolase 
I gene (pfgch1). GTP cyclohydrolase is another impor-
tant enzyme in folate biosynthesis, and an increased copy 
number might compensate for the fitness loss associated 
with triple and quadruple mutations in pfdhfr and pfdhps 
[41, 42]. So far, there is limited number of reports on 
gene amplification of pvgch1, therefore still no finding of 
the association of mutations in pvdhfr/pvdhps and pvgch1 
copy number variation. Whether copy number variation 
(CNV) in the P. vivax orthologous gene pvgch1 is impor-
tant in antifolate resistance needs further study. Pvgch1 
CNV was not assessed in the current study, but less likely 
to be present because of the absence of triple- or quadru-
ple mutations in pvdhfr in our samples.

Conclusions
This study shows that although wild-type pvdhfr and 
pvdhps haplotypes have become less frequent in the 
Afghanistan P. vivax parasite population between 2007 
and 2017, but only double and single nonsynonymous 
mutations in pvdhfr were observed, which would confer 
only moderate SP resistance. This suggests relatively low 
drug pressure from SP on the P. vivax parasite population 
in the study areas. Of the two novel pvdhfr mutations 
identified in Afghanistan, only the N50I was predicted to 
moderately affect pyrimethamine binding.

Fig. 5 Molecular interactions of pyrimethamine and PvDHFR. The 
binding analysis showed that mutation at position 50 (in red circle) 
is located approximately 5°A from pyrimethamine (purple) but not 
directly involved in the binding
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