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Activation of nuclear factor erythroid 2-related factor 2 (NRF2) has been found to ameliorate diabetic testicular damage (DTD) in
rodents. However, it was unclear whether NRF2 is required for these approaches in DTD. Epigallocatechin gallate (EGCG) is a
potent activator of NRF2 and has shown beneficial effects on multiple diabetic complications. However, the effect of EGCG has
not been studied in DTD. The present study aims to explore the role of NRF2 in both self and EGCG protection against DTD.
Therefore, streptozotocin-induced diabetic C57BL/6 wild type (WT) and Nrf2 knockout (KO) mice were treated in the presence
or absence of EGCG, for 24 weeks. The Nrf2 KO mice exhibited more significant diabetes-induced loss in testicular weight
and spermatozoa count, and increase in testicular apoptotic cell death, as compared with the WT mice. EGCG activated
NRF2 expression and function, preserved testicular weight and spermatozoa count, and attenuated testicular apoptotic cell
death, endoplasmic reticulum stress, inflammation, and oxidative damage in the WT diabetic mice, but not the Nrf2 KO diabetic
mice. The present study demonstrated for the first time that NRF2 plays a critical role in both self and EGCG protection
against DTD.

1. Introduction

Diabetes causes damage to multiple organs, including testis
[1]. Decreased sperm cell count and velocity were found in
patients with diabetes [2]. Moreover, diabetics had increased
sperm nuclear and mitochondrial DNA damage [3], along
with increased level of advanced glycation end products
(AGEs) in the testis, epididymis, and sperm [4]. Diabetes-
induced excessive AGEs can cause oxidative stress, leading
to activation of mitochondria or endoplasmic reticulum

(ER) stress-related cell death pathways, the effect of which
may result in sperm loss [5–8]. Therefore, targeting
diabetes-induced oxidative stress is a promising strategy to
prevent male infertility in diabetic patients.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a
master factor in the cellular antioxidant system [9, 10].
NRF2 activates the transcription of a cohort of antioxidant
genes, such as heme oxygenase-1 (Ho1) and NAD(P)H dehy-
drogenase quinone 1 (Nqo1) [11], the proteins of which work
as scavengers of diabetes-induced free radicals. Notably, the
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Nrf2 gene knockout (KO) male mice developed infertility in
an age-dependent manner [12]. NRF2 and its downstream
antioxidants were found to be expressed in the male
reproductive tract and played a critical role in defence
against oxidative stress [12, 13]. Furthermore, low Nrf2
mRNA was found to be associated with impaired sperm
function parameters in human individuals, including con-
centration, motility, vitality, and morphology [14]. All these
findings suggested that NRF2 plays a pivotal protective role
in male infertility. Approaches in activating NRF2, such as
administration of the NRF2 activator sulforaphane (SFN)
[5, 6], supplementation of zinc [15], and exposure to low-
dose X-irradiation [8], effectively ameliorated diabetes-
induced testicular inflammation, ER stress, and apoptotic cell
death, in rodent models of both type 1 and type 2 diabetes.
However, it was unclear whether NRF2 was required for
the protective effect of these approaches.

Epigallocatechin gallate (EGCG) is the most abundant
and effective green tea catechin and is known to be a potent
NRF2 activator [16–20]. Despite showing beneficial effects
in a variety of diseases [21–24], EGCG has not been studied
for its effect in diabetic testicular damage (DTD). It was also
not previously known whether NRF2 is required for this pos-
sible action of EGCG. Therefore, the present study aims to
answer the following questions: (1) whether or not EGCG
has a protective role in ameliorating DTD and (2) whether
or not NRF2 is required for self and EGCG protection against
DTD. To these ends, diabetes was induced in 8-week-old
male C57BL/6 wild-type (WT) and Nrf2 KOmice by strepto-
zotocin (STZ). Both the diabetic and nondiabetic mice were
treated in the presence or absence of EGCG, for a total period
of 24 weeks.

2. Methods

2.1. Animal Treatment. C57BL/6WT (Nrf2+/+) andNrf2 KO
(Nrf2−/−) mice were obtained through breeding of heterozy-
gotes (Nrf2+/−) [10, 25]. All mice were housed in the Animal
Center of Changchun University of Chinese Medicine at
22°C, on a 12 : 12-hour light-dark cycle with free access to
rodent feed and tap water. The Institutional Animal Care
and Use Committee at Changchun University of Chinese
Medicine approved all the experimental procedures, which
were consequently in accordance with the International
Guiding Principles for Biomedical Research Involving Ani-
mals, as issued by the Council for the International Organiza-
tions of Medical Sciences. Eight-week-old male mice received
either sodium citrate or STZ (Sigma-Aldrich, St. Louis, MO;
50mg/kg daily, dissolved in 0.1M sodium citrate, pH 4.5)
through intraperitoneal injection for 5 consecutive days.
Fasting glucose levels (4-hour fast) were measured a week
after the last injection of STZ. Mice with a fasting glucose
level higher than 250mg/dl were considered diabetic. In
order to observe the chronic effect of diabetes, the mice were
kept for 24 weeks post diabetes onset. Thus, the diabetic mice
and age-matched controls were treated daily by subcutane-
ously injected EGCG (100mg/kg [26], ≥98%, dissolved in
normal saline, PureOne Biotechnology, Shanghai, PRC)
or normal saline daily, for a total period of 24 weeks.

Blood glucose was recorded on days 0, 28, 56, 84, 112,
140, and 168, after diabetes onset. The mice were then
euthanized under anaesthesia by intraperitoneal injection
of chloral hydrate at 0.3mg/kg [27]. The testes and cauda
epididymides were harvested for analysis. Six mice in each
group were studied.

2.2. Sperm Density Assessment. The cauda epididymis from
each mouse was placed in 2ml Earle’s balanced salt solution
(Sigma-Aldrich) supplemented with 0.1% bovine serum
albumin (Sigma-Aldrich). The epididymis was gently teased
with a bent needle to release spermatozoa under observation
through a stereomicroscope (Olympus). Sperm density was
assessed with a haemocytometer and was presented by sper-
matozoa count per epididymis [28–30].

2.3. Hematoxylin and Eosin (H&E) Staining, Terminal
Deoxynucleotidyl Transferase-Mediated dUTP Nick End
Labeling (TUNEL) Assay, and Immunohistochemical (IHC)
Staining. Testes were fixed immediately in 10% buffered for-
malin solution after harvesting and were embedded in paraf-
fin and sectioned into 5μm thick sections onto glass slides.
The sections were processed for H&E staining and TUNEL
staining, as previously described [6]. For TUNEL staining,
apoptotic cells exhibited a brown nuclear stain as TUNEL
positive cells and were counted manually under a micro-
scope. Four sections from each testis were counted. On each
section, 30 seminiferous tubule’s cross sections from each
testis were selected in the same pattern, moving each slide
without repetitive counting in a blinded fashion [31].
Results were presented as TUNEL positive cells per 103

cells. For IHC staining, the sections were incubated with
anti-3-nitrotyrosine (3-NT, Millipore, Temecula, CA, USA,
1 : 100) overnight at 4°C. After washing with PBS, the sections
were incubated with horseradish peroxidase-conjugated
secondary antibody (Santa Cruz Biotechnology, Dallas, TX,
USA, 1 : 300 dilutions in PBS) for 2 hours at room tempera-
ture. The sections were then treated with peroxidase sub-
strate 3,3′-diaminobenzidine in the developing system
provided by Vector Laboratories (Burlingame, CA, USA)
and counterstained with hematoxylin.

2.4. Reactive Oxygen Species (ROS) Assay. Testicular ROS
generation was measured using a ROS assay kit provided
by Nanjing Jiancheng Bioengineering Institute (Nanjing,
Jiangsu, PRC), following the manufacturer’s instructions.

2.5. Isolation of Nuclei. Nuclei were isolated from testicular
tissue of each mouse using a nuclei isolation kit provided
by Sigma-Aldrich, following the manufacturer’s instructions,
as previously described [25, 30, 32].

2.6. Western Blot Analysis.Western blot was performed using
testicular tissue as described in our previous study [33]. The
primary antibodies included anti-activating transcription
factor 4 (ATF4, Cell Signaling Technology, Danvers, MA,
USA, 1 : 1000), anti-Bcl-2-associated X protein (Bax, Cell Sig-
naling Technology, 1 : 1000), anti-B-cell lymphoma 2 (Bcl-2,
Santa Cruz Biotechnology, 1 : 2000), anti-binding immuno-
globulin protein (BIP, Cell Signaling Technology, 1 : 1000),
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anti-caspase12 (Cell Signaling Technology, 1 : 1000), anti-
cleaved caspase3 (c-caspase3, Cell Signaling Technology,
1 : 1000), anti-C/EBP homologous protein (CHOP, Cell Sig-
naling Technology, 1 : 1000), anti-GAPDH (Santa Cruz Bio-
technology, 1 : 2000), anti-histone H3 (Santa Cruz
Biotechnology; 1 : 1000), anti-intercellular adhesion molecule
1 (ICAM-1, Santa Cruz Biotechnology, 1 : 500), anti-
inducible nitric oxide synthase (iNOS, Cell signaling Tech-
nology, 1 : 1000), anti-NRF2 (Santa Cruz Biotechnology,
1 : 1000), anti-pro-caspase3 (Cell Signaling Technology,
1 : 1000), and anti-vascular cell adhesion molecule 1
(VCAM-1, Santa Cruz Biotechnology, 1 : 500).

2.7. Quantitative Reverse Transcription PCR (qPCR). qPCR
was performed as previously described [34, 35]. Primers for

Ho1 (product number: Mm00516005_m1) and Nqo1 (prod-
uct number: Mm01253561_m1) were purchased from Life
Technologies (Grand Island, NY, USA). Thermal cycling
was carried out as the following: 95°C for 3 minutes (m) as
initial denaturing, 45 cycles at 94°C for 30 seconds (s), 60°C
for 30 s, and 72°C for 60 s, followed by a final extension at
72°C for 2m.

2.8. Quantitative Analysis of Lipid Peroxides. Testicular
malondialdehyde (MDA) concentration was measured using
a lipid peroxidation assay kit (Sigma-Aldrich), following the
manufacturer’s instructions, as previously described [6].

2.9. Statistical Analysis. Six mice in each group were
researched. Indices in each group were measured and
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Figure 1: Deletion of the Nrf2 gene completely abrogated both self and EGCG protection against diabetes-induced testicular weight loss and
reduction in spermatozoa count. Diabetes was induced in 8-week-old male C57BL/6 WT and Nrf2 KOmice by streptozotocin. Blood glucose
was monitored in both the (a) WT and (b) Nrf2 KO mice at the multiple time points 0, 4, 8, 12, 16, 20, and 24 weeks post diabetes onset. (c)
Testis weight to tibia length ratio and (d) spermatozoa count were calculated at the time, 24 weeks post diabetes onset, at which the mice were
killed. Data were presented as means± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM; ‡p < 0 05 versus WT DM. WT: wild type; KO:
knockout; Ctrl: control; DM: diabetes mellitus.
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summarized as means± SD. Image Quant 5.2 (GEHealthcare
Bio-Sciences, Pittsburgh, PA, USA) was used to analyse the
density of Western blot images. IHC positive area was

quantified by the Image-Pro Plus Version 6.0 software
(Media Cybernetics, Rockville, MD, USA). One-way
ANOVA was performed for comparisons among different
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Figure 2: NRF2 was required for both self and EGCG protection against diabetes-induced testicular apoptotic cell death. (a) H&E staining
was conducted for observation of morphological change. (b) Testicular apoptotic cell death was detected by TUNEL assay, from which (c)
TUNEL+ cells were calculated. Data were presented as means± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM; ‡p < 0 05 versus
WT DM. H&E: hematoxylin and eosin; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling; +: positive;
other abbreviations are the same as those in Figure 1.
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groups, followed by post hoc pairwise comparisons using
Tukey’s test with Origin 8.6 data analysis and graphing soft-
ware Lab (OriginLab, Northampton, MA, USA). A test was
significant if p < 0 05.

3. Results

3.1. Deletion of the Nrf2 Gene Completely Abrogated Both Self
and EGCG Protection against Diabetes-Induced Testicular
Weight Loss and Reduction in Spermatozoa Count. Both the
WT and the Nrf2 KO diabetic mice developed significantly
higher blood glucose levels at 0, 4, 8, 12, 16, 20, and 24 weeks
post diabetes onset, as compared with respective controls

(Figures 1(a) and 1(b)). EGCG had no impact on blood glu-
cose levels in either type of the mice, under either diabetic or
nondiabetic conditions (Figures 1(a) and 1(b)). Diabetes
caused a significant decrease in the ratio of testis weight to
tibia length and spermatozoa count in either type of the mice
(Figures 1(c) and 1(d)). Notably, the Nrf2 KO diabetic mice
suffered from more marked decrease in the two indices,
as compared with the WT diabetic mice (Figures 1(c)
and 1(d)). The WT diabetic mice, but not the Nrf2 KO
diabetic mice, were protected by EGCG from diabetes-
induced reduction in testicular weight and spermatozoa
count (Figures 1(c) and 1(d)). These findings suggested that
NRF2 plays a critical role in both self-protection and EGCG
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Figure 3: EGCG prevented diabetes-induced activation of testicular apoptotic cell death signaling via NRF2. Testicular apoptotic signaling
was further evaluated by determining (a) the ratio of Bax protein level to Bcl2 protein level, along with the protein levels of (b) pro-
caspase3 and (c) c-caspase3. To further assess the activity of caspase3, (d) the ratio of c-caspase3 to pro-caspase3 was calculated. For (b)
and (c), the protein levels were normalized with GAPDH. Data were normalized as fold variation to Ctrl and were presented as means
± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM. Bax: Bcl-2-associated X protein; Bcl-2: B-cell lymphoma 2; c-caspase3: cleaved
caspase3; other abbreviations are the same as those in Figure 1.
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protection against diabetes-induced loss in testis weight and
spermatozoa count.

3.2. NRF2 Was Required for Both Self and EGCG Protection
against Diabetes-Induced Testicular Apoptotic Cell Death.
Diabetes did not lead to obvious testicular pathological
changes, as presented by H&E staining (Figure 2(a)). How-
ever, apoptotic cell death was prominent in the diabetic testes
of either type of the mice, as shown by TUNEL staining
(Figure 2(b)). Notably, diabetes-induced testicular apoptotic
cell death was more significant in the Nrf2 KO mice, as
compared to the WT mice (Figure 2(c)). EGCG significantly
decreased the number of testicular TUNEL positive cells
in the WT diabetic mice, but not the Nrf2 KO diabetic
mice (Figure 2(c)).

3.3. EGCG Prevented Diabetes-Induced Activation of
Testicular Apoptotic Cell Death Signaling via NRF2. The sta-
tus of testicular apoptotic cell death was further confirmed by
determining the ratio of Bax to Bcl2 (Bax/Bcl2, Figure 3(a))
and the protein levels of pro-caspase3 and c-caspase3
(Figures 3(b) and 3(c)). Bax/Bcl2 and the protein levels of
pro-caspase3 and c-caspase3 were all significantly elevated
in the testes of the diabetic mice (Figures 3(a), 3(b), and
3(c)), the effects of which were almost completely prevented
by EGCG in the WT mice (Figures 3(a), 3(b), and 3(c), left
panels). However, deletion of the Nrf2 gene completely abro-
gated these efficacies of EGCG (Figures 3(a), 3(b), and 3(c),
right panels). To further evaluate caspase3 activity, the ratio
of c-caspase3 to pro-caspase3 was calculated in all groups
and comparisons were constructed between the groups
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Figure 4: NRF2 mediated EGCG prevention of diabetes-induced testicular ER stress. The status of ER stress was determined by measuring
protein levels of (a) CHOP, (b) caspase12, (c) BIP, and (d) ATF4, using Western blot. The protein levels were normalized with GAPDH. Data
were normalized as fold variation to Ctrl and were presented as means± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM. ER:
endoplasmic reticulum; CHOP: C/EBP homologous protein; BIP: binding immunoglobulin protein; ATF4: activating transcription factor
4; other abbreviations are the same as those in Figure 1.
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Figure 5: Continued.
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(Figure 3(d)). As shown in Figure 3(d), EGCG prevented the
diabetes-elevated ratio of c-caspase3 to pro-caspase3
(Figure 3(d), left panel) in the WT mice, but not in the
Nrf2 KO mice (Figure 3(d), right panel).

3.4. NRF2 Mediated EGCG Prevention of Diabetes-Induced
Testicular ER Stress. ER stress was evaluated by determining
the protein levels of CHOP (Figure 4(a)), caspase12
(Figure 4(b)), BIP (Figure 4(c)), and ATF4 (Figure 4(d)), all
of which were elevated in the diabetic testes. EGCG decreased
these indices in the WT, but not the Nrf2 KO, diabetic mice
(Figures 4(a), 4(b), 4(c), and 4(d)). The results indicated
NRF2 to be the key factor through which EGCG prevented
diabetes-induced testicular ER stress.

3.5. EGCG Completely Lost the Efficacy in Ameliorating
Diabetes-Induced Testicular Inflammation and Oxidative
Damage in the Absence of NRF2. Testicular inflammation
was evaluated by determining protein levels of ICAM-1
(Figure 5(a)) and VCAM-1 (Figure 5(b)). Testicular oxida-
tive damage was determined by measuring iNOS protein
level (Figure 5(c)), MDA level (Figure 5(d)), and ROS gener-
ation (Figure 5(e)). In the WT mice, EGCG markedly
decreased these diabetes-elevated indices (Figures 5(a), 5(b),
5(c), 5(d), and 5(e), left panels). These effects of EGCG were
completely lost in the absence of NRF2 (Figures 5(a), 5(b),
5(c), 5(d), and 5(e), right panels). The status of testicular oxi-
dative stress was further evaluated by immunohistochemical
staining of 3-NT (Figure 5(f)), an indicator of oxidative/
nitrosative damage. As shown in Figure 5(g), EGCG
completely lost the protective role in attenuating the diabetes
induction of 3-NT in the absence of NRF2.

3.6. EGCG Enhanced Testicular NRF2 Expression and
Function. Testicular whole cell NRF2 (total NRF2, t-NRF2)
and nuclear NRF2 (n-NRF2) were both increased by EGCG
in the WT mice, under either diabetic or nondiabetic condi-
tions (Figures 6(a) and 6(b), left panels). NRF2 protein was
not detectable in the testes of the Nrf2 KO mice
(Figures 6(a) and 6(b), right panels), the result of which con-
firmed the deletion of the Nrf2 gene. The ratio of n-NRF2/
Histone H3 to t-NRF2/GAPDH (Figure 6(c)) was calculated
to reflect the proportion of NRF2 that translocated to the
nucleus. This ratio was found to be increased by EGCG in
either diabetic or nondiabetic WT mice (Figure 6(c), left
panel). In order to evaluate NRF2 function, the expression
of Nqo1 (Figures 6(d) and 6(e)) and Ho1 (Figures 6(f) and
6(g)) was determined. As shown in Figures 6(d), 6(e), 6(f),
and 6(g), the mRNA and protein levels ofNqo1 andHo1were
all elevated by EGCG in theWTmice (Figures 6(d), 6(e), 6(f),
and 6(g), left panels), but not in the Nrf2 KO mice
(Figures 6(d), 6(e), 6(f), and 6(g), right panels). Moreover,
the Nrf2 KO mice had lower basal expression of Nqo1 and
Ho1, as compared with the WT mice (Figures 6(d), 6(e),
6(f), and 6(g)).

4. Discussion

The present study determined the effect of EGCG on the pre-
vention of DTD. The results showed that diabetes caused sig-
nificant testicular weight loss, decreased spermatozoa count,
and increased testicular apoptotic cell death, ER stress, and
oxidative damage, as compared with control. Notably, these
detrimental outcomes were more prominent in the Nrf2
KO mice, as compared with the WT mice. EGCG activated
NRF2 signaling and produced a significant attenuation of
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Figure 5: EGCG completely lost the efficacy in ameliorating diabetes-induced testicular inflammation and oxidative damage in the absence of
NRF2. Testicular inflammation was assessed by determining protein levels of (a) ICAM-1 and (b) VCAM-1, using Western blot. To
determine testicular oxidative stress, (c) iNOS protein was determined by Western blot. The protein levels were normalized with GAPDH.
Data were normalized as fold variation to Ctrl and were presented as means± SD (n = 6). To further evaluate testicular oxidative stress,
ELISAs were performed to detect (d) MDA and (e) ROS levels, and (f) IHC staining for 3-NT was also performed. Data were normalized
as fold variation to WT Ctrl and were presented as means± SD (n = 6). ∗p < 0 05 versus Ctrl; †p < 0 05 versus DM. ICAM-1: intercellular
adhesion molecule 1; VCAM-1: vascular cell adhesion molecule 1; iNOS: inducible nitric oxide synthase; MDA: malondialdehyde; ROS:
reactive oxygen species; IHC: immunohistochemical; 3-NT: 3-nitrotyrosine; other abbreviations are the same as those in Figure 1.
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Figure 6: Continued.
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the testicular damage caused by diabetes in the WT mice.
However, deletion of the Nrf2 gene completely abolished
the protective effect of EGCG.

Oxidative stress is considered to be one of the main
mechanisms through which diabetes causes long-term com-
plications [36–38]. Significant oxidative damage was
observed in the testes of diabetic mice [5–8, 15]. Given that
NRF2 plays a critical role in cellular defence against
diabetes-induced oxidative stress, approaches to activate tes-
ticular NRF2 have been tested in diabetic mice, including
administration of the NRF2 activator SFN [5, 6], supplemen-
tation of zinc [15], and exposure to low-dose X-irradiation
[8]. Although the effects of the approaches were promising,
it was still unclear whether NRF2 activation is required for
the protective effect of the approaches. In the present study,
by using Nrf2 KO mice, NRF2 was found to be the key factor
through which EGCG ameliorated DTD. In addition,
enhanced oxidative stress status was observed in a rat model
of prediabetes [39, 40], and white tea consumption restored
sperm quality in the prediabetic rats by ameliorating testicu-
lar oxidative damage [40]. The present study supports the
previous report by Oliveira et al. [40], with an emphasis on
the long-term DTD.

One novel finding of the present study was the protective
role of NRF2 in self-prevention of the pathogenesis of DTD
(Figures 1(c), 1(d), 2(b), and 2(c)), in addition to the finding
that NRF2 was required for the protective effect of EGCG on
DTD. The self-protective role of NRF2 observed in the pres-
ent study is in accordance with the previous findings which
showed that NRF2 played a key preventive role in diabetic
cardiomyopathy [41] and nephropathy [32, 42, 43]. The ben-
eficial role of NRF2 in multiple organs or systems under

diabetic condition [38] may support the use of NRF2 activa-
tors, even though the activators may not be specific to an
organ, tissue, or cell type.

NRF2 activators have been developed based on different
regulatory mechanisms. Zinc was reported to upregulate
NRF2 protein in the testes of diabetic rats [15], although
the mechanism by which zinc increased NRF2 was not inves-
tigated. The finding that zinc enhanced NRF2 expression and
function via activating protein kinase B- (PKB- or AKT-)
mediated inhibition of Fyn function [44] might provide a
clue for the possible mechanism by which zinc activated
NRF2 in the testes of diabetic rats. Low-dose radiation was
also recently reported to attenuate testicular apoptosis in dia-
betic rats [8]. The study indicated that low-dose radiation
inhibited protein tyrosine phosphatase-1B and tribbles
homologue 3, the effect of which resulted in AKT-mediated
activation of testicular NRF2 signaling [8]. Therefore, zinc
and low-dose radiation shared the same AKT signaling path-
way to activate testicular NRF2. SFN is a potent NRF2 activa-
tor. Kelch-like ECH-associated protein 1 (KEAP1) is the key
negative cytoplasmic regulator of NRF2 [11, 45]. SFN acti-
vates NRF2 signaling by modulating the structure of KEAP1
protein, resulting in the release of NRF2 from the KEAP1-
NRF2 complex [11, 45]. Although previous studies showed
that SFN activated NRF2 and ameliorated diabetes-induced
testicular apoptotic cell death without knowing the expres-
sion of Keap1 [5, 6], we speculate that inhibition of KEAP1
function by SFN could be the mechanism through which
SFN activated NRF2 in these studies. Similar to SFN, EGCG
is also known to activate NRF2 by inactivating KEAP1
[46, 47]. EGCG is speculated to directly interact with the cys-
teine residues present in KEAP1, thereby stimulating NRF2
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Figure 6: EGCG enhanced testicular NRF2 expression and function. Testicular (a) t-NRF2 and (b) n-NRF2 protein were determined by
Western blot in all the mice. (c) The ratio of n-NRF2 to t-NRF2 was calculated to indicate NRF2 nuclear translocation. To evaluate NRF2
function, the expression of Nqo1 and Ho1 were further determined, by measuring Nqo1 (d) mRNA and (e) protein levels, as well as Ho1
(f) mRNA and (g) protein levels. t-NRF2 protein and the expression of Nqo1 and Ho1 were normalized to GAPDH. n-NRF2 was
normalized to Histone H3. Data were normalized as fold variation to WT Ctrl and were presented as means± SD (n = 6). ∗p < 0 05 versus
WT Ctrl; †p < 0 05 versus WT DM. t-NRF2: total NRF2; n-NRF2: nuclear NRF2; Nqo1: NAD(P)H dehydrogenase quinone 1; Ho1: heme
oxygenase-1; other abbreviations are the same as those in Figure 1.
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dissociation from KEAP1 [48]. However, another study indi-
cated that EGCG might induce NRF2 via activation of AKT
and ERK in human mammary epithelial cells [18]. Future
studies are needed to elucidate the exact mechanisms of
EGCG and other NRF2-activating approaches in the regula-
tion of NRF2 in DTD.

The NRF2 activator SFN has already been tested in
several clinical trials [49]. Furthermore, the approval of
dimethyl fumarate (BG-12), another NRF2 activator, for
use in the treatment of multiple sclerosis [50] is the con-
firmation of NRF2 being a viable drug target in disease.
However, to date, no NRF2 activator has been applied in
clinical trials for DTD or diabetes-induced male infertility.
Hence, attention should be paid to the critical role of
NRF2 in this diabetic complication.

Taken together, the present study demonstrates, for the
first time, that NRF2 plays a key role in self and EGCG pro-
tection against diabetic testicular damage. Therefore, this
study may provide a basis for potential application of EGCG
or other NRF2 activators in future clinical trials.
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