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Deep-sea hydrothermal vent fields are areas on the seafloor with high biological
productivity fueled by microbial chemosynthesis. Members of the Aquificales genus
Persephonella are obligately chemosynthetic bacteria, and appear to be key players
in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea
vents. Although this group of bacteria has cosmopolitan distribution in deep-sea
hydrothermal ecosystem around the world, little is known about their population structure
such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity.
We developed the multi-locus sequence analysis (MLSA) scheme for their genomic
characterization. Sequence variation was determined in five housekeeping genes and
one functional gene of 36 Persephonella hydrogeniphila strains originated from the
Okinawa Trough and the South Mariana Trough (SNT). Although the strains share
>98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence
types (ST), indicating their extensive genomic diversity. A phylogenetic tree inferred
from all concatenated gene sequences revealed the clustering of isolates according
to the geographic origin. In addition, the phenotypic clustering pattern inferred from
whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry
(MALDI-TOF/MS) analysis can be correlated to their MLSA clustering pattern. This study
represents the first MLSA combined with phenotypic analysis indicative of allopatric
speciation of deep-sea hydrothermal vent bacteria.

Keywords: population structure, biogeography, deep-sea hydrothermal vent, Persephonella, Aquificales, MLSA,

MALDI-TOF/MS, chemolithoautotroph

INTRODUCTION
Mixing of hydrothermal fluids and ambient seawater at the
seafloor creates physically and chemically dynamic habitats for
microorganisms. Vent fluids physicochemistry is variable both
spatially and temporally as a result of subsurface geological and
geochemical processes (Edmond et al., 1979; Butterfield and
Massoth, 1994; Butterfield et al., 2004). Diverse microorgan-
isms including both Archaea and Bacteria have been isolated in
pure cultures from various hydrothermal fields (Nakagawa and
Takai, 2006). In addition, culture-independent studies revealed
the dominance of yet-to-be cultured microorganisms in deep-
sea hydrothermal environments (Haddad et al., 1995; Takai and
Horikoshi, 1999; Reysenbach et al., 2000; Corre, 2001; Teske
et al., 2002), and provided insight into the great heterogene-
ity of microbial communities between hydrothermal systems.
The heterogeneity can be correlated to differences in the geo-
logical and chemical properties between different vents (Takai
et al., 2004; Nakagawa et al., 2005a,b; Takai and Nakamura,
2011). On the other hand, there are also some cosmopolitan

genera found in deep-sea hydrothermal systems occurring not
only in the Mid-Ocean Ridge systems but in the Back-Arc
Basin systems and the Volcanic Arc systems (Takai et al., 2006;
Nakagawa and Takai, 2008; Kaye et al., 2011). Members of the
genus Persephonella belonging to the order Aquificales, obligately
sulfur- and/or hydrogen-oxidizing, chemoautotrophic, ther-
mophilic bacteria, are widely distributed in deep-sea hydrother-
mal systems (Reysenbach et al., 2000, 2002; Takai et al., 2004;
Nakagawa et al., 2005a,b; Ferrera et al., 2007; Takai et al., 2008).
Although the widespread occurrence of this group suggests that
they may play important role, many questions remained about
their physiology, metabolism, and ecology within the environ-
ment because of the difficulty in isolating these strains. Some iso-
lates have been characterized (Götz et al., 2002; Nakagawa et al.,
2003), and implied their role in carbon, sulfur and nitrogen cycles
in high temperature habitats at deep-sea vents (Reysenbach et al.,
2002; Ferrera et al., 2007). However, little is known about the
spatial or biogeographical pattern of Persephonella microdiversity
and phenotypic heterogeneity.
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Weak biogeographical signals in microbial communities are
usually explained by the hypothesis of microbial cosmopolitanism
formulated by Bass Becking (Wit and Bouvier, 2006). However,
recent studies have explored the effects of dispersal limitation
on microbial biogeography. Like macroorganisms, the genetic
similarity negatively correlated with geographic distance, i.e.,
distance-decay relationship, have been reported for cyanobacte-
ria, sulfate-reducing bacteria, marine planktonic bacteria, and
hyperthermophilic archaea (Papke et al., 2003; Whitaker et al.,
2003; Vergin et al., 2007; Oakley et al., 2010). In addition, the
biogeographical diversity pattern was reported in detail for mem-
bers of the “deep-sea hydrothermal vent euryarchaeota 2” (Flores
et al., 2012). Microbial biogeographical studies have been usually
based solely on genetic data. Microbial biogeography was recently

studied at the phenotypic level (Rosselló-Mora et al., 2008), how-
ever, genetic and phenotypic correlation has not been explored.
We investigated the spatial diversity pattern of Persephonella
population by the combined use of comparative genetic and
phenotypic characterizations.

MATERIALS AND METHODS
FIELD SITE AND SAMPLING
Samples, i.e., chimney structures, fluids, and sediments, were col-
lected with R/V Natsushima and ROV Hyper-Dolphin or R/V
Yokosuka and DSV Shinkai 6500 from the Okinawa Trough (OT)
in 2007 and 2009, or the South Mariana Trough (SMT) in 2010
(Table 1). Vent fluids from the OT are characteristic in the high
contents of methane and carbon dioxide (Kawagucci et al., 2011).

Table 1 | Information of samples and cultivation temperature.

Strains Originated Origins Sodium Isolated Sequence similarity to

samples sulfide temperature (◦C) P. hydrogeniphila 29WT (%)

OT-1 CS Iheya North, OT + 55 99.7
OT-2 CS Iheya North, OT − 55 99.6
OT-3 CI Iheya North, OT + 55 98.9
OT-4 CS Iheya North, OT − 55 99.6
OT-5 CS Hatoma Knoll, OT − 55 99.7
MT-6 CI Urashima, SMT − 55 99.6
MT-7 CI Urashima, SMT + 55 99.5
MT-8 CS Urashima, SMT − 55 99.5
MT-9 CS Urashima, SMT + 55 99.5
MT-10 CI Urashima, SMT + 55 99.7
MT-11 CA Urashima, SMT + 55 99.5
MT-12 CS Urashima, SMT + 55 99.5
MT-13 CI Urashima, SMT − 47 99.6
MT-14 CS Urashima, SMT + 47 99.5
MT-15 CS Urashima, SMT + 70 99.5
MT-16 CI Urashima, SMT − 70 99.6
MT-17 CS Urashima, SMT − 55 99.6
MT-18 CS Urashima, SMT + 55 99.5
MT-19 CA Urashima, SMT + 55 98.7
MT-20 CA Urashima, SMT + 47 98.7
MT-21 CA Urashima, SMT + 70 99.5
MT-22 SE Snail, SMT − 55 99.5
MT-23 HR Snail, SMT − 55 99.5
MT-24 HR Snail, SMT + 55 99.6
MT-25 CS Archaean, SMT − 55 98.7
MT-26 CI Archaean, SMT + 55 98.7
MT-27 CA Archaean, SMT − 55 99.5
MT-28 CS Archaean, SMT − 55 99.7
MT-29 BS Archaean, SMT − 55 99.5
MT-30 FW Archaean, SMT − 55 99.5
MT-31 CS Archaean, SMT − 55 99.5
MT-32 CS Archaean, SMT + 55 99.6
MT-33 CA Archaean, SMT − 55 99.7
MT-34 CS Archaean, SMT − 47 99.5
MT-35 CS Pika,SMT − 55 99.5
MT-36 CI Pika,SMT + 55 99.5

CS, chimney surface; CI, chimney inside parts; CA, all of chimney; SE, sediment sample; HR, rock influenced by vent fluids; FS, fluid sample; BS, biological sample;

+, presence of sodium sulfide; −, absence of sodium sulfide. Sequence similarity was based on 16S rRNA gene sequences of each strain.
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Among the OT hydrothermal fields, this study focused on the
Iheya North and Hatoma Knoll (Figure 1). In the SMT, four
vent sites were studied (Figure 1). The Archaean site is located
at a ridge flank, about 2 km apart from the backarc-spreading
axis. Discharging fluids (Tmax = 318◦C) was acidic and depleted
in Cl− (Cl− = 401 mM) (Ishibashi et al., 2006). Pika site is
located on an off-axis knoll, about 5 km from the axis. Fluid
chemistry (Tmax = 330◦C) of Pika site showed brine-rich sig-
nature (Cl− = 600 mM) (Ishibashi et al., 2006). Urashima site
is newly discovered in 2010, and located at the northern foot
of the western peak of the same knoll as Pika. Snail site is
located on the active backarc-spreading axis. After retrieval on
board, each of the chimney structures were sectioned immediately
into the exterior surface and the inside parts, and slurried with
25 ml of sterilized seawater in the presence or absence of 0.05%
(w/v) neutralized sodium sulfide in 100 ml glass bottles (Schott
Glaswerke, Mainz, Germany). Bottles were then tightly sealed
with butyl rubber caps under a gas phase of 100% N2 (0.2 MPa).
Similarly, fluid, sediment, and biological samples were prepared
anaerobically in 10 ml glass bottles. Samples were stored at 4◦C
until use.

ENRICHMENT, ISOLATION, AND PHYLOGENETIC ANALYSIS
Serial dilution cultures were performed using the MMJHS
medium (Takai et al., 2003) containing a mixture of elec-
tron donors and electron acceptors for hydrogen/sulfur-oxidizing
chemoautotrophs at 47, 55 and 70◦C. MMJHS medium included
1 g each of NaHCO3, Na2S2O3.5H2O, and NaNO3, 10 g of S0 and
10 ml vitamin solution (Balch et al., 1979) per liter of MJ syn-
thetic seawater [gas phase: 80% H2 +20% CO2 (0.3 MPa)]. To
obtain pure cultures, dilution-to-extinction was repeated at least
2 times (Baross, 1995). The purity was confirmed routinely by
microscopic examination and by sequencing of the 16S rRNA
gene using several PCR primers. Genomic DNA was extracted
from isolates using the UltraClean Microbial DNA isolation Kit
(MoBio Laboratories, Inc., Solana Beach, CA, USA) following the
manufacturer’s protocol. The 16S rRNA gene of each isolate was
amplified by PCR using LA Taq polymerase (TaKaRa Bio, Otsu,
Japan) as described previously (Takai et al., 2001). The primers
used were Eubac 27F and 1492R (Weisburg et al., 1991). These
amplicons were bidirectionally determined by the dideoxynu-
cleotide chain-termination method. Almost complete sequences
of the 16S rRNA gene were assembled using Sequencher ver 4.8

FIGURE 1 | Sampling sites. (A) Location of the Iheya North field and Hatoma Knoll in the Okinawa Trough, and the South Mariana Trough. Blue line indicates
subduction zone. (B) Location of four vent sites in the South Mariana Trough.
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(Gene Codes Corporation, Ann Arbor, MI, USA). In order to
determine the phylogenetic positions of isolates, the sequences
were aligned using Greengenes NAST alignment tool (DeSantis
et al., 2006), and compiled using ARB software version 03.08.22
(Ludwig et al., 2004).

MULTI-LOCUS SEQUENCE ANALYSIS
Intraspecies diversity among isolates was evaluated using multi-
locus sequence analysis [MLSA; formerly called multilocus
sequence typing (MLST)] technique (Gevers et al., 2005).
MLSA represents a universal and unambiguous method for
strain genotyping, population genetics, and molecular evo-
lutionary studies (Whitaker et al., 2005; Mazard et al.,
2012). Genes selected for MLSA were tkt (transketolase),
atpA (ATP synthase, A subunit), dnaK (Hsp 70 chap-
eron protein), napA (nitrate reductase, large subunit), metG
(methionyl-tRNA synthetase), and gyrB (DNA gyrase, B sub-
unit). Primers (Table 2) were designed according to the pub-
lished complete genome sequences of Aquificales members, i.e.,
Persephonella marina EX-H1T (NC_012439) (Reysenbach et al.,
2009), Sulfurihydrogenibium azorense (NC_012438) (Reysenbach
et al., 2009), Sulfurihydrogenibium sp. YO3AOP1 (NC_010730)
(Reysenbach et al., 2009), Hydrogenobaculum sp. Y04AAS1
(NC_011126) (Reysenbach et al., 2009), Aquifex aeolicus VF5
(NC_000918) (Deckert et al., 1998), and Hydrogenivirga sp. 128-
5-R1-1 (NZ_ABHJ01000000) (Reysenbach et al., 2009). ClustalX
version 2.0 was used for the alignment of nucleotide sequences
(Larkin et al., 2007). PCR were performed under the follow-
ing conditions: 96◦C for 1 min, 35–38 cycles of 96◦C for 20 s,
annealing for 45 s at temperatures shown in Table 2, and 72◦C for
2 min. The PCR products were confirmed by 1% agarose gel elec-
trophoresis and purified with exonuclease I and shrimp alkaline

phosphatase. If necessary, bands were excised and purified using
Wizard® SV Gel and PCR Clean-up System (Promega, Madison,
WI, USA). Purified PCR products were used as templates for
Sanger sequencing reaction. The sequences were assembled and
edited using Sequencher ver 4.8, and aligned with ClustalX. The
sequences were translated into amino acid using Transeq program
(EMBOSS; European Molecular Biology Open Software Suite).

Z-test, non-synonymous (Ka)/synonymous (Ka) substitution,
and Tajima’s D test were performed as described elsewhere
(Vergin et al., 2007). Briefly, values of Ka and Ks were determined
using the software program SWAAP ver 1.0.3 (Pride, 2000), set
to the Li method with a window size of 90 and step size of 18.
Z-test was performed using MEGA ver 5.05 software (Tamura
et al., 2011) with the following options: purifying selection, over-
all average, 1000 bootstrap replicates, pairwise deletion and the
Pamilo–Bianchi–Li method. Tajima’s D based on the total num-
ber of mutation were calculated using DnaSP ver 5 (Librado
and Rozas, 2009). The combination of allele types for each iso-
late defined the sequence type (ST). Phylogenetic trees were
constructed by the maximum likelihood (ML) method using
MEGA ver 5.05. ML bootstrap support was computed after 100
reiterations. Split decomposition trees were constructed with
SplitsTree ver 4 using the Neighbor-Net algorithm (Huson, 1998).

The levels of genetic variation within and between pop-
ulations were calculated with the Arlequin ver 3.5 software
(Excoffier and Lischer, 2010). FST values were estimated for
groups of two or more strains and were tested for signifi-
cance against 1000 randomized bootstrap resamplings. Average
pairwise genetic distance and standard error based on 500
bootstrap resamplings of each population were estimated using
MEGA ver 5.05. Mantel test was performed with XLSTAT soft-
ware (www.xlstat.com). Sequences obtained in this study have

Table 2 | Primers and PCR conditions for MLSA.

Genes Primer name Primers (5′-3′) Primer combination and Amplicon

annealing temperature (◦C) size (bp)

atpA
atpA101F ADGTDGGWGAYGGTGTYGC

101F-1081R: 55 980
atpA1081R CGTTRATAGCWGGTCTDATACC
atpA983R ACGTCACCBGCYTKWGTTTC 101F-983R: 52 882

dnaK
dnaK464F GDCARGCWACMAARGAYGC

55 741
dnaK1118R GCMACWACYTCRTCDGG

gyrB
gyrB377F CTYCAYGGWGTWGGWGC

52 1186
gyrB1563R TCWACRTCRGCRTCHGYCAT

napA

napA181F TTCTGTGGWACDGGWTGYGG

181F-1713R: 59 1532
napA690F* ATGGCWGARATGCAYCC
napA1714R CKBGCHGCTTTRATCCARTG
napA1347R* GRTTVAWWCCATTGTCCA

metG
metG145F ACRGGWACMGATGARCATGG

55 686
metG831R GCDGGCCARTAWACDGYATG

tkt tkt478F AWSGSYGTRGGTATGGC
52 1063

tkt1541R TGKGTWGGDCCRTCYTC

*Primers used for sequencing reaction.
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been deposited in DDBJ/EMBL/GenBank under Accession No.
AB773894-AB774147.

GEOCHEMICAL ANALYSIS
Chemical compositions listed in Table 6 were analyzed as pre-
viously described (Takai et al., 2008; Toki et al., 2008). End-
member fluids compositions were estimated by the conventional
method, that is extrapolation to Mg = 0 of linear relationship of
concentration of each species to Mg among the obtained samples
(Von Damm et al., 1985).

PREPARATION OF BACTERIAL SAMPLES FOR WHOLE-CELL
MALDI-TOF/MS
Samples for whole-cell matrix-assisted laser desorption
ionization-time of flight mass spectrometry (MALDI-TOF/MS)
were prepared as described in Hazen et al. (2009). Briefly,
Persephonella strains were cultured in 3 ml of MMJHS medium
at their isolated temperatures (Table 1). Following incubation,

cells were washed once in 1 ml of 0.85% NaCl and twice in
1 ml of 50% ethanol at 4◦C. Cell pellets were weighed and
resuspended in 1% trifluoroacetic acid (TFA) to yield a final
concentration of 0.2 mg cells/μl of 1% TFA. Equal volumes of
the TFA bacterial suspension and the MALDI-TOF/MS matrix
solution (10 mg/ml sinapinic acid in 50% acetonitrile, 50% water,
and 0.1% TFA) were mixed in a microcentrifuge tube, and then
1.0 μl of this mixture was spotted in triplicate on a stainless steel
MALDI-TOF/MS sample plate (corresponding to approximately
1.4 × 108 cells/spot). Samples were allowed to air dry before
being loaded in the mass spectrometer.

MALDI-TOF/MS AND DATA PROCESSING
All mass spectra were acquired using the MALDI-TOF/MS spec-
trometer (4700 proteomics analyzer; Applied Biosystems, Foster
City, CA, USA) in the linear and positive-ion modes. The laser
(N2, 337 nm) intensity was set above the ion generation thresh-
old. Mass spectra were recorded in the m/z range of 2000–14,000.

FIGURE 2 | Phylogenetic relationship of isolates and representative

Persephonella species as determined by neighbor-joining analysis of 16S

rRNA gene sequences. Tree was constructed by using 1119 sites that could be

unambiguously aligned. Origins of isolates and DDBJ accession numbers are
shown in parentheses. Branch points conserved with bootstrap values of
>75% (filled circle) and bootstrap value of 50–74% (open circles) are indicated.
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Table 3 | Genetic features at the six MLSA loci.

Gene Sequence length Nucleocid identity Amino acid identity Ka/Ks Theta Z Tajima’s D

tkt 810 95.8 (6.5) 97.5 (4.12) 0.0131 (0.0215) 0.05286 7.4 −0.77603

atpA 669 96.3 (5.5) 99.7 (0.45) 0.0062 (0.1535) 0.04456 7.4 −0.59903

dnaK 495 94.6 (9.1) 98.0 (8.04) 0.0024 (0.0461) 0.11838 4.8 −2.05655

napA 882 94.8 (4.3) 97.9 (2.75) 0.0581 (0.0812) 0.05326 8.9 −0.06984

metG 555 95.9 (6.0) 98.4 (2.48) 0.0381 (0.0754) 0.04858 5.3 −0.61694

gyrB 843 95.6 (6.1) 99.5 (0.68) 0.0146 (0.0269) 0.05223 7.1 −0.57104

Average nucleotide identities (ANI) and synonymous (Ks) vs. non-synonymous (Ka) substitutions were determined from 36 different Persephonella isolates.

Table 4 | Allelic properties at six loci of Persephonella isolates analyzed in this study.

Strains Sequence type Allele no. at locus Origin

atpA dnaK gyrB metG napA tkt

MT-17,18 1 1 1 1 1 2 2 Urashima, SMT

MT-31 2 1 7 6 3 3 3 Archaean, SMT

MT-33 3 1 2 2 1 4 3 Archaean, SMT

MT-22 4 1 11 12 11 10 14 Snail, SMT

MT-11 5 2 4 2 4 5 5 Urashima, SMT

MT-28 6 2 5 3 10 4 12 Archaean, SMT

MT-12 7 2 10 11 5 5 13 Urashima, SMT

MT-25 8 2 2 3 6 5 3 Archaean, SMT

MT-10 9 2 2 19 1 15 2 Urashima, SMT

MT-6 10 2 13 15 5 5 16 Urashima, SMT

MT-9 11 2 4 2 4 14 21 Urashima, SMT

MT-35 12 3 4 3 4 3 4 Pika,SMT

MT-27 13 3 5 3 4 3 8 Archaean, SMT

MT-16 14 4 6 4 4 13 6 Urashima, SMT

MT-13 15 4 6 4 4 6 6 Urashima, SMT

MT-15 16 4 14 4 4 6 19 Urashima, SMT

MT-20 17 5 3 16 2 2 17 Urashima, SMT

MT-21 18 5 15 18 2 2 2 Urashima, SMT

MT-7 19 6 2 3 1 1 4 Urashima, SMT

MT-8 20 6 2 3 1 1 20 Urashima, SMT

MT-29 21 7 2 5 7 1 1 Archaean, SMT

MT-19 22 8 3 1 2 2 2 Urashima, SMT

MT-32 23 9 8 7 8 4 4 Archaean, SMT

MT-23 25 10 4 8 1 8 9 Snail, SMT

MT-24 26 11 2 9 9 9 10 Snail, SMT

MT-36 27 12 9 10 1 3 11 Pika, SMT

MT-30 28 13 12 3 1 11 5 Archaean, SMT

MT-26 30 14 2 13 6 12 1 Archaean, SMT

MT-14 31 15 4 3 3 3 3 Urashima, SMT

MT-34 32 16 4 17 1 3 18 Archaean, SMT

OT-1 33 17 16 20 12 7 22 Iheya North, OT

OT-2 34 18 17 21 13 16 23 Iheya North, OT

OT-4 35 19 18 22 14 7 24 Iheya North, OT

OT-3 36 20 19 23 15 17 7 Iheya North, OT

OT-5 37 21 20 14 16 18 15 Hatoma Knoll, OT
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FIGURE 3 | Neighbor-Net graph based on the concatenated sequences of

6 protein-coding genes of Persephonella isolates showing a bushy

network structure indicative of homologous recombination. Scale bar

represent 0.1 substitutions per nucleotide position. Origins of isolates are
indicated as follows: light blue, Iheya North; blue, Hatoma Knoll; red,
Archaean; orange, Snail; green, Pika; brown, Urashima.

FIGURE 4 | Maximum likelihood tree based on concatenated sequences of all MLSA loci. Origins of isolates are indicated as follows: light blue, Iheya
North; blue, Hatoma Knoll; red, Archaean; orange, Snail; green, Pika; brown, Urashima.

The acceptance criteria, based on 1000 laser shots per spot,
were signal intensities between 2000 and 55,000 counts and a
signal/noise ratio of 10 or greater.

Raw mass spectra from three spots were normalized using Data
Explorer software (Applied Biosystems, Foster City, CA, USA) by
baseline correction and combined to generate an averaged peak
list. The peaks around 2000 m/z were excluded as noise.

The peaks were ranked according to their signal intensities,
and the top 15 most intense peaks were chosen for further anal-
ysis. The relative intensity ratio was calculated for the 15 peaks.
Squared distance was estimated based on the presence or absence
of peaks by Ward’s minimum variance method using MVSP
software ver 3.21 (Kovach Computing Services, Wales, UK). The

presence or absence of peaks was determined within a tolerance
of 14 Da.

RESULTS
ISOLATION OF Persephonella STRAINS
We investigated a total of 36 Persephonella strains originating
from various hydrothermal samples from the OT (4 strains from
Iheya North, and 1 strain from Hatoma Knoll) and the SMT
(16 strains from Urashima site, 10 strains from Archaean site, 3
strains from Snail site, and 2 strains from Pika site) (Figure 2
and Table 1). All of the 36 strains shared >98.7% 16S rRNA
gene similarities with one another and with P. hydrogeniphila
29WT.
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GENETIC DIVERSITY OF Persephonella POPULATION
We developed a MLSA scheme for the Persephonella population
based on five housekeeping genes and a functional gene. The
gene fragments sequenced varied from 501 to 882 bp in length
(Table 1), and nucleotide sequence similarity at MLSA loci varied
from 94.6 to 96.3% (average 95.8%). We obtained concatenated
sequences of 4254 bp and identified a total of 702 variable posi-
tions. Ratios of non-synonymous to synonymous substitutions
(Ka/Ks) were much smaller than 1 for all loci (Table 3), indi-
cating the genes were subject to purifying selection, conforming
to the general requirements for MLSA loci (Maiden, 2006). This
was statistically supported by the high values from the Z-test
(Table 3).

POPULATION GENETIC STRUCTURE
Typing based on sequences of six protein-coding gene fragments
revealed 35 different STs among 36 isolates, indicating the high
genetic diversity of Persephonella population (Table 4). The num-
ber of different alleles per locus varied between 16 for metG and
24 for tkt. Strains MT-17 and −18 had identical sequences for all
MLSA loci. These strains were isolated from the same chimney
sample, but the slurries were prepared in the presence (used for
strain MT-18) or absence (used for strain MT-17) of 0.05% (w/v)
sodium sulfide. In other cases, the presence of sodium sulfide in
slurries resulted in the isolation of strains classified into different
STs (Table 1).

Table 5 | FST values between each population.

Snail Archaean Pika Urashima SMT OT

Snail 0.0000

Archaean −0.0173 0.0000

Pika −0.4221 −0.3450 0.0000

Urashima −0.0130 0.1200 −0.1909 0.0000

SMT − − − − 0.0000

OT − − − − 0.8711 0.0000

P-values <0.05 are bold.

The split graph obtained from the concatenated sequence
data displayed bushy network structures with complex parallel-
ogram formation indicative of extensive homologous recombi-
nation (Figure 3). The result of PHI test (Bruen et al., 2006)
for the concatenated sequences also showed the presence of the
past recombination events during the evolution of Persephonella
(p < 0.05).

POPULATION DIFFERENCE BETWEEN THE OT AND THE SMT
A ML phylogenetic tree derived from the concatenated align-
ment of six loci showed two different clades with high bootstrap
support (Figure 4). The two clades corresponded to the two
geographic regions, showing that the SMT strains share a com-
mon evolutionary history distinct from the OT strains. The FST

value confirmed that the OT and the SMT populations were
significantly different (FST = 0.8711, p < 0.05) (Table 5).

CORRELATION BETWEEN CHEMISTRY AND GENETIC DIVERSITY
Geochemical analysis revealed that different vent fluids had dis-
tinctive end-member chemical compositions (Table 6). Although
the vent fluids from Archaean and Pika were respectively

FIGURE 5 | Relationship between genetic and geographic distance

(R2 = 0.98). π, number of base substitutions per site from between
sequences.

Table 6 | End-member compositions of vent fluids from the OT and the SMT.

Venting sit Sampling Tmax*3 pH*4 Cl− Na K Ca Mn NH+
4

SO2−
4

H2S

year ◦C mmol/kg mmol/kg mmol/kg mmol/kg µmol/kg µ mol/kg mmol/kg mmol/kg

Iheya North*1(NBC) 2007 309 5.0 557 407 72.4 21.9 6.58 × 102 1.71 × 103 0 –

Hatoma Knoll*2 2000 240 5.2 381 285 54.6 17.0 4.83 × 102 7.20 × 103 – –

Urashima 2010 280 3.0 623 456 37.0 31.9 2.22 × 103 <100 −4.11 2.4

Snail 2010 61 3.5 558 442 28.4 28.0 1.84 × 103 <100 −0.41 2.0

Archaean 2010 318 3.0 401 312 33.0 15.8 1.28 × 103 <100 −0.24 9.6

Pika 2010 322 3.0 469 444 31.6 37.8 1.14 × 103 <100 −2.98 7.0

*1Kawagucci et al. (2011).
*2Kishida et al. (2004).
*3Maximum temperature.
*4Measured at 25◦C.

−, No data.
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Cl−-depleted and -enriched in 2004 and 2005 (Ishibashi et al.,
2006), no significant difference was found between them in this
study. We assessed the relative contributions of environmental
factors (such as pH and maximum temperature of vent flu-
ids) and geographic distance to Persephonella genetic structure
using the Mantel test. The pH of SMT vent fluids (pH 3.0–3.5)
were significantly lower than those (pH 5.0–5.2) of OT (Table 6).
However, we found no significant correlation between the genetic
distance and the absolute difference in vent fluid pH and temper-
ature (Mantel r = −0.28, p = 0.4). In contrast, a large, significant
correlation coefficient (Mantel r = 0.993, p < 0.0001) was found
in a Mantel test of all pairwise comparisons of the genetic and the
geographic distance between strains (Figure 5).

WHOLE-CELL MALDI-TOF/MS ANALYSIS
MALDI-TOF/MS fingerprinting of whole microbial cells was
highly reproducible. A peak at m/z 9678 in the MALDI-TOF/MS

spectra was detected in all strains despite their geographical origin
(Figure 6). Some peaks were detected in some strains with rel-
atively low intensities. Cluster analysis based on the presence
or absence of peaks identified two clusters that would corre-
spond to the geographical regions of isolation (Figure 7). Two
Persephonella trees, one generated from the whole-cell MALDI-
TOF/MS data and a ML tree from concatenated MLSA sequences,
show similar topologies (Figure 7).

DISCUSSION
Here we investigated the microdiversity and phenotypic het-
erogeneity of extremely thermophilic chemolithoautotrophic
bacteria in deep-sea hydrothermal vents. Genetic and phe-
notypic differences corresponding to the geographic origins
were discovered by the combined use of MLSA and whole-
cell MALDI-TOF/MS fingerprinting. The biogeography of
hydrothermal vent-associated microbial community has been

FIGURE 6 | Representative whole-cell MALDI-TOF/MS spectra from the OT strain (OT-2, A) and the SMT strain (MT-26, B).
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FIGURE 7 | Correlation between genotype and phenotype inferred from MALDI-TOF/MS analysis (A) and MLSA (B). Origins of isolates are indicated as
follows: light blue, Iheya North; blue, Hatoma Knoll; red, Archaean; orange, Snail; green, Pika; brown, Urashima.

well studied (Takai et al., 2004; Nakagawa et al., 2005a,b; Kato
et al., 2010). Members of the genus Persephonella have been found
in global hydrothermal vent fields, however, their genetic and
phenotypic heterogeneities were poorly understood.

GENETIC DIFFERENCE BETWEEN OT AND SMT POPULATIONS
We identified 35 STs among 36 Persephonella strains by MLSA
based on 6 protein-coding genes, indicating high genetic diversity
of Persephonella population. The same ST is rarely shared among
Persephonella strains, however, all SMT strains have the same alle-
les with other SMT strains but not with OT strains in one or more
MLSA loci, suggesting that OT and SMT populations are signifi-
cantly different. Likewise, two OT strains, i.e., OT-1 and -4, have
the same allele (no. 7) at napA (Table 4), although the number of
OT strains obtained in this study is small.

The split decomposition tree showed the evidence of recom-
bination (Figure 3), which might contribute to increased STs.
Previous studies showed that recombination generated the large
number of unique combinations of alleles in some archaea and
bacteria (Suerbaum et al., 2001; Whitaker et al., 2005; Doroghazi
and Buckley, 2010).

BIOGEOGRAPHY OF Persephonella
The phylogenetic analysis based on concatenated gene sequences
separated the strains into two clusters according to their geo-
graphic origins (Figure 4). The FST value supported significant
biogeographical isolation between SMT and OT populations.
These results indicate that ubiquitous occurrence of Persephonella
in deep-sea vents has not resulted from widespread contemporary
dispersal but is an ancient historical legacy.

The microbial distribution seems to be not only influenced
by local environmental conditions (Martiny et al., 2006). In this
study, we observed clear correlation between the genetic distance

and the geographic distance of isolates (Figure 5) as described in
thermophilic archaea (Whitaker et al., 2003; Flores et al., 2012).
On the contrary, genetic distance has no significant correlation
with the difference in vent fluid pH and temperature. We cannot
rule out the possibility that other factors not determined in this
study, including grazing pressure and virus activity, may be cor-
related with the genetic difference of Persephonella. Recently, H2

concentration in vent fluids was shown to have an impact on the
formation of microbial community structures in deep-sea vents
(Takai and Nakamura, 2011).

CORRELATION BETWEEN GENOTYPIC AND PHENOTYPIC
HETEROGENEITY
Some peaks in the MALDI-TOF/MS spectra were shared among
some Persephonella strains. Major peaks of whole-cell MALDI-
TOF/MS analysis are considered to reflect ribosomal proteins
(Fenselau and Plamen, 2001; Ryzhov and Fenselau, 2001) and
thus are independent of growth conditions (Bernardo et al.,
2002). There were also some minor peaks that were specific
to SMT or OT strains. Likewise the concatenated nucleotide
alignment of MLSA loci, MALDI-TOF/MS data clustered the
strains into two distinct groups corresponding to the geo-
graphic regions (Figure 7), suggesting that protein expression of
Persephonella is tuned to function optimally in their original habi-
tats. The genotypic and phenotypic correlation found among
Persephonella isolates indicates the occurrence of allopatric
speciation.

CONCLUSION
By using both comparative genetic and phenotypic population
characterizations, this study for the first time indicated
the Persephonella populations were geographically distinct.
Since the Persephonella members are extremely thermophilic
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chemoautotrophs endemic to deep-sea vents, considerable dis-
persal barriers for the migration to spatially distinct niches
should exist. Focal points raised by this study for future
research include the effects of cold, oxic deep-sea conditions
on the viability of deep-sea vent (hyper) thermophiles during
the dispersal, the biogeographical comparison with other ubiq-
uitous thermophiles with different metabolic traits (e.g., het-
erotrophic fermenters and methanogens), and the comparison
with moderately thermophiles or mesophiles with similar

energy/carbon metabolisms (e.g., Epsilonproteobacteria) in deep-
sea vents.
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