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Analysis of high-throughput omics data is one of the most important approaches for

obtaining information regarding interactions between proteins/genes. Time-series omics

data are a series of omics data points indexed in time order and normally contain more

abundant information about the interactions between biological macromolecules than

static omics data. In addition, phosphorylation is a key posttranslational modification

(PTM) that is indicative of possible protein function changes in cellular processes. Analysis

of time-series phosphoproteomic data should provide more meaningful information

about protein interactions. However, althoughmany algorithms, databases, andwebsites

have been developed to analyze omics data, the tools dedicated to discoveringmolecular

interactions from time-series omics data, especially from time-series phosphoproteomic

data, are still scarce. Moreover, most reported tools ignore the lag between functional

alterations and the corresponding changes in protein synthesis/PTM and are highly

dependent on previous knowledge, resulting in high false-positive rates and difficulties

in finding newly discovered protein–protein interactions (PPIs). Therefore, in the present

study, we developed a new method to discover protein–protein interactions with the

delayed comparison and Apriori algorithm (DCAA) to address the aforementioned

problems. DCAA is based on the idea that there is a lag between functional alterations

and the corresponding changes in protein synthesis/PTM. The Apriori algorithm was

used to mine association rules from the relationships between items in a dataset

and find PPIs based on time-series phosphoproteomic data. The advantage of DCAA

is that it does not rely on previous knowledge and the PPI database. The analysis

of actual time-series phosphoproteomic data showed that more than 68% of the
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protein interactions/regulatory relationships predicted by DCAA were accurate. As an

analytical tool for PPIs that does not rely on a priori knowledge, DCAA should be

useful to predict PPIs from time-series omics data, and this approach is not limited to

phosphoproteomic data.

Keywords: protein–protein interactions, phosphoproteomics, delayed comparison, Apriori, DCAA

INTRODUCTION

Protein–protein interactions (PPIs) are the basis and prerequisite
for protein functions. Proteins in vivo are part of complex
regulatory networks involving sophisticated interactions to
coordinately regulate various biological processes and functions
under different spatiotemporal conditions. The PPIs in living
organisms are more complex than one might imagine. Therefore,
PPI is one of the most critical issues in biomedical research
(Braun and Gingras, 2012). Many experimental techniques
and equipment for studying PPIs have been developed, such
as immunoprecipitation, biolayer interferometry, and surface
plasmon resonance (Douzi, 2017; Lin and Lai, 2017; Wu et al.,
2017). Although these techniques are reliable and widely used,
they are time- and cost-consuming and low-throughput. To
reveal the mechanisms underlying physiological and pathological
processes, high-throughput methods for studying PPIs are
urgently needed. To date, some high-throughput experimental
methods for detecting PPIs have been reported, such as yeast two-
hybrid, tandem affinity purification, phage display, and protein
chip methods (Gavin et al., 2002; Rao et al., 2014; Sundell
and Ivarsson, 2014; Mehla et al., 2015; Huang et al., 2017;
Viala and Bouveret, 2017; Woloschuk et al., 2020). However,
these methods also have many drawbacks, including complexity,
required time, and high cost. Therefore, computational methods
could be useful supplements to high-throughput experimental
methods (Lei et al., 2016; Sun et al., 2017; Zhang et al., 2017).

In the past two decades, high-throughput omics technologies,
including genomes, transcriptomes and proteomes, have
developed rapidly (Mortazavi et al., 2008; Consortium, 2012;
Liu et al., 2018; Jiang et al., 2019). Likewise, many tools have
been developed to analyze these omics data and obtain useful
information about protein/gene interactions. For example,
BindML+ can predict PPIs using an amino acid substitution
model, and PIC (Protein Interaction Calculator) is a web tool
to compute intra- and interprotein interactions (Tina et al.,
2007; La et al., 2013). Time-series omics data are a series of
omics data points indexed in time order and normally contain
more abundant information about the interactions between
biological macromolecules than static omics data. Therefore,
many tools and websites have been proposed for discovering
PPIs based on these data. To date, the algorithms used in the
reported tools include learning vector quantization (LVQ),
profile-kernel support vector machine, random forest classifier,
semantic-based regularization (a machine learning framework),
feature extraction, and deep learning (Planas-Iglesias et al., 2013;
Yousef and Moghadam Charkari, 2013; Saccà et al., 2014; Hamp
and Rost, 2015; Sun et al., 2017; Zeng et al., 2020). However,

many of the reported tools require substantial amounts of
supporting data in addition to omics data, such as protein
structure, protein/gene sequence, gene functional similarity,
and protein–protein interaction databases (Planas-Iglesias et al.,
2013; Sun et al., 2017; Zeng et al., 2020).

Phosphorylation is the most common posttranslational
modification (PTM) of proteins for functional regulation (Cohen,
2000; Ardito et al., 2017). Thus, phosphoproteomic data might
suggest possible changes in protein function. Analysis of time-
series phosphoproteomic data should provide more meaningful
information about protein interactions. However, althoughmany
algorithms, databases, and websites have been developed to
analyze omics data, the tools dedicated to discovering molecular
interactions from time-series omics data, especially from time-
series phosphoproteomic data, are still scarce. More importantly,
protein interactions and PTMs are a series of events that undergo
sequential and dynamic alterations. There are lags between
functional alterations and the corresponding changes in protein
synthesis/PTM. However, the most widely reported tools ignore
these lags and are highly dependent on previous knowledge,
resulting in high false-positive rates and difficulties in finding
newly discovered PPIs. In addition, the false-positive rates of PPIs
predicted by many tools from static omics data are very high.

In this study, considering the aforementioned lags, we
propose a novel method for predicting PPIs combining delayed
comparison and the Apriori algorithm (DCAA), which does
not rely on previous knowledge. High-throughput dynamic
phosphoproteomic data from human umbilical vein endothelial
cells treated with oxidized low-density lipoprotein (ox-LDL) were
used to verify this method. By not relying on previous knowledge
and the PPI database, DCAA could discover PPIs from dynamic
phosphoproteomic data with a relatively low false-positive rate.
Moreover, DCAA should also be applied to other time-series
omics data.

MATERIALS AND METHODS

Cell Treatment and Protein Digestion by
Trypsin
EA.hy926 cells were purchased from the American Tissue
Culture Collection (Manassas, USA) and cultured in Dulbecco’s
modified essential medium containing 10% fetal bovine serum
(FBS), 100 U/ml penicillin G, and 100µg/ml streptomycin. After
treatment with 50µg/ml ox-LDL for 0, 0.5, 1, 1.5, 2, 4, 6, 8, 12,
18, 24, 36, 48, and 72 h, all cells were harvested and lysed in lysis
buffer (8M urea, 50mM Tris–HCl, 10% isopropyl alcohol, 12.5%
isobutyl alcohol containing complete protease inhibitor cocktail
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and PhosSTOP phosphatase inhibitor cocktail). The common
control samples were produced by mixing equal amounts of
all 14 samples. All samples (2 common controls and 14 time
point samples, 400 µg/sample) were reduced with dithiothreitol
for 1 h after alkylation by iodoacetamide for 1 h in the dark.
After replacing the solvent with 50mM triethylammonium
bicarbonate using ultracentrifugal filtration units (MWCO 10
kDa), all samples were digested by trypsin at 37◦C for 18 h with a
50:1 protein-to-protease ratio.

Phosphopeptide Enrichment and iTRAQ
Labeling
The tryptic digests of all 16 samples were labeled with 8-Plex
iTRAQ (SCIEX, MA, USA) according to the manufacturer’s
instructions. Then, the 16 samples were equally divided into
two sample pools. Each sample pool contained equal amounts
of proteins from a common control (labeled with iTRAQ 113)
and seven time point samples (from 0 to 6 h, respectively labeled
with iTRAQ 114-iTRAQ 121; or from 8 to 72 h, respectively
labeled with iTRAQ 114-iTRAQ 121). After desalting and drying,
the peptides from two sample pools were dissolved in 5ml
of TiO2 loading buffer (1.25M glycolic acid, 80% ACN, 1%
TFA) and incubated with 16mg of Titanosphere TiO2 (5µm;
GL Science, Tokyo, Japan) for 30min. The TiO2 beads were
washed sequentially with TiO2 loading buffer, 1% TFA in 80%
aqueous ACN, and 0.1% TFA in 2% aqueous ACN. Then, the
beads were eluted sequentially with 8% NH4OH and 50mM
phosphate buffer (pH 12.0). Finally, the eluates were combined
and immediately neutralized with 10% FA.

Peptide Fractionation Using Basic
Reversed-Phase Liquid Chromatography
After neutralization, each sample pool was dissolved in 80
µl of buffer A (2% ACN, 15mM NH4COOH, pH 10.0) and
separated using basic reversed-phase liquid chromatography
at 0.14 ml/min with a Kinetex EVO C18 column (2.6µm
particles, 100 Å, 15 cm× 2.1mm; Phenomenex, Torrance, USA).
For separation, a step gradient of 2% B (80% ACN, 15mM
NH4COOH, pH 10.0), 0–8min; 2–28% B, 8–68min; 28–40%
B, 68–78min; 40–100% B, 78–83min; and 100% B, 83–93min
was used. The eluates were collected at 1-min intervals and then
pooled into 16 fractions. After desalting and drying, the fractions
were dissolved in 0.1% FA for LC-MS/MS analysis.

Nano-LC-MS/MS Analysis
Each sample pool was loaded on a ReproSil-Pur C18 precolumn
(3 cm× 100µm, 5µm, 120 Å; Dr Maisch, Germany) at 5 µl/min
using an Easy nLC-1000 nano-LC system (Thermo Scientific,
San Jose, CA, USA). For separation, mobile phase A was 0.1%
FA in 2% ACN, and mobile phase B was 0.1% FA in 98%
ACN. A step gradient of 2–8% B, 0–5min; 8–22% B, 5–85min;
22–30% B, 85–105min; 30–90% B, 105–110min; and 90% B,
110–120min was used at 300 nl/min. Data-dependent MS/MS
was performed using an Orbitrap Fusion mass spectrometer in
positive ion mode with the following parameters: 2.2 kV spray
voltage, 275◦C capillary temperature, 55% S-lens level, 350–1,550
mass acquisition range, and 120,000 resolution for MS analysis.

Each precursor ion scan was followed by a 4-s top speed data-
dependent HCD MS/MS at 35% normalized collision energy.
The resolution for MS/MS analysis was 30,000. The quadrupole
isolation width was 2 m/z. The dynamic exclusion time was
60 s with a ±10 ppm exclusion mass width. The raw data were
processed using Proteome Discoverer version 1.4.0.28 and the
UniProt database. The PhosphoRS 3.0 algorithm was used to
evaluate the localization probabilities of phosphorylation sites.

Clustering Process of the DCAA Method
To reduce the data volume for better processing, the original data
consisting of the relative expression levels of phosphopeptides
were first clustered according to shape similarity, namely, based
on the well-known fact that trends of greater data similarity
indicate closer relationships between data. Three clustering
methods, including full trend clustering, angle clustering, and
Pearson clustering, were used in the present study. Full
trend clustering classifies the original data according to the
changing trend (increasing, decreasing, or unchanging) of
every line segment, which is constructed with two close time
points of the relative expression data of phosphopeptides. The
phosphopeptides with the same changing trends are classified
into one cluster. The angle clustering classifies the original
data considering both the speed and trend of the changes
in the relative expression of phosphopeptides. The change
speeds are measured by the angle between two-line segments
constructed as mentioned previously. The phosphopeptides
with angles less than a given value are classified into one
cluster. Pearson clustering classifies the original data based on
the Pearson correlation coefficient of the relative expression
of phosphopeptides, which indicates the degree of linear
correlation. The Pearson correlation coefficient between vectors
X and Y is defined as follows:

ρX,Y =
cov(X,Y)

δXδY
=

∑

XY −

∑

X
∑

Y
N

√

(

∑

X2 −
(
∑

X)
2

N

) (

∑

Y2 −
(
∑

Y)
2

N

)

(1)

where N is the dimension number of vectors X and Y.

The Delayed Comparison Processes of the
DCAA Method
Delayed comparison and shopping basket dataset construction
were used to reflect the lags between upstream and downstream
events of PPIs. The shopping basket dataset is named to reflect
the concept of shopping in supermarkets in the data mining
area. The data selection process is analogized as a good selection
process in supermarkets. The shopping basket dataset is the
set containing the selected data from all candidate data. There
were 13 different time-points of phosphoprotein change data
compared with the data at 0 h. Normally, the lags between
upstream and downstream PPIs did not last very long. Therefore,
we fixed nine time periods to build sliding time windows and
control the delayed time periods within three time periods. The
steps of delayed comparison are as follows:

a) Establish representatives of classes: the representative of a
class was the arithmetic average of all the data in this class.
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FIGURE 1 | Schematic of delayed comparison to build the shopping basket dataset. (A) Representative establishment of a cluster. (B) Data points were subtracted to

convert data points into time periods. (C) Delayed comparison for addressing the lags between functional alterations and their corresponding changes in protein

synthesis/PTMs. (D) Construction of the shopping basket dataset for the Apriori algorithm.

b) Convert data points into time periods: two adjacent data
points were subtracted (T1 = t2-t1, T2 = t3-t2, . . . , T12 = t13-
t12), and the values of time periods were obtained (T1, T2,
. . . , T12).

c) Use delayed comparison: to fix time periods, a start time
and delayed time periods were chosen. For example, 9.1.2
means there are 9 time periods, the start time is 1 and
there are 2 delayed time periods. Sliding windows of six
groups (9.1.1, 9.1.2, 9.1.3, 9.2.1, 9.2.2, and 9.3.1.) will cover
all delayed scenarios.

d) Construct the shopping basket dataset: one cluster of original
data was compared with another cluster of original data after
sliding to achieve delayed comparison, thereby producing
one shopping basket data item. Six shopping basket datasets
obtained by delayed comparison were aggregated into
one dataset to build the experimental dataset for the
Apriori algorithm.

The Processes of the Apriori Algorithm in
the DCAA Method
The Apriori algorithm is a kind of machine learning algorithm,
and its core purpose is to mine frequent sets of customer

shopping records and excavate association rules (Agrawal et al.,
1993). The nonempty subset of a frequent item set must be
a frequent item set. The Apriori algorithm first generates one
frequent item sets and then uses one frequent item sets to
generate two frequent item sets. Next, three frequent item
sets are generated from two frequent item sets. Finally, all
frequent item sets are generated. Then, the association rules are
found from these frequent item sets. The Apriori algorithm is
outlined in Appendix 1. The confidence and minimum support
of the Apriori algorithm are set up for obtaining interclass
inference results. The support degree and confidence degree of
an association rule between X and Y are, respectively, as follows:

Support (X,Y) = P (XY) =
number(XY)

num(All Samples)
(2)

Confidence(X ⇐ Y) = P (X|Y) = P(XY)/P(Y) (3)

An example of building a shopping basket dataset with a delayed
comparison of 9.1.2 is shown in Figure 1. A customer shopping
record was constructed as follows: Tk (class i)∗Tk+2 (class j)>0
or Tk (class i)=0 and Tk+2(class j)=0 (k = 1, 2, . . . , 9), class i
and class j are put into one record. After applying the sliding
window treatment described previously once, n (n≥ 0) customer
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FIGURE 2 | Three rules for matching association. The connections of two peptides were divided into three types: direct connection, twofold reasoning sessions, and

threefold reasoning sessions. Direct connection (one-time reasoning): two phosphopeptides/proteins were directly linked. Twofold reasoning: two

phosphopeptides/proteins were linked through a different phosphopeptide/protein. Threefold reasoning: two phosphopeptides/proteins were linked through two

different phosphopeptides/proteins.

shopping records can be produced. Six shopping basket datasets
are obtained using six kinds of sliding windows. They are
combined into one dataset as the experimental dataset of the
Apriori algorithm.

Matching Process of the DCAA Method
The association rules among phosphopeptides were discovered
from the delayed comparison and Apriori algorithm results
using different reasoning methods, including direct relationship
(one-time reasoning), two-times reasoning, and three-times
reasoning (Figure 2). One-time reasoning means that two
phosphopeptides/proteins are directly linked. Two-times
reasoning means that two phosphopeptides/proteins are linked
through one different phosphopeptide/protein. Three-times
reasoning means that two phosphopeptides/proteins are linked
through two different phosphopeptides/proteins, but the existing
relationships in one-time reasoning and two-time reasoning

were excluded. Finally, a database of interacting proteins
(DIP) consisting of the reported PPIs was used to evaluate the
relationships discovered by DCAA by matching the relationships
discovered by DCAA and the relationships recorded in the DIP
(Xenarios et al., 2002).

RESULTS AND DISCUSSION

Different Clustering Methods Reflect
Similar Patterns of Change in Data
In the present study, endothelial cells were seeded in T-175
flasks and treated with ox-LDL for different time periods
to investigate the changes in protein phosphorylation. Four-
hundred-microgram samples of proteins were taken from each
time point to map phosphorylation sites using nano-LC-MS/MS.
A total of 17,287 phosphorylation sites were identified on 15,037
phosphopeptides from 4,539 proteins. The dataset was used for
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FIGURE 3 | Pie charts of the percentages of clusters containing different numbers of phosphopeptides. The original time-series data of the relative expression levels

of phosphorylated peptides were clustered, and then the percentage of the clusters containing different numbers of phosphopeptides was calculated by different

clustering methods, including angle clustering at 5◦ (A), 10◦ (B), and 40◦ (C), full trend clustering (D), and Pearson clustering (E). Full trend clustering: considering

only the direction and not the extent of the changes. Pearson clustering: clustering based on Pearson’s correlation coefficients.

mining the protein–protein interaction network. Each group
contained 13 data points at different times (0.5, 1, 1.5, 2, 4, 6, 8,
12, 18, 24, 36, 48, and 72 h). To reduce the computational load
of subsequent data processing, clustering was the first process
of DCAA. Three different clustering methods, named full trend
clustering, angle clustering, and Pearson clustering, were used to
classify the original data set (Figure 3). The clustering algorithm
in the paper can be regarded as the direct angle threshold
method. For one group of data, 13 points can produce 12
line segments connected by two adjacent points. The 12 angles
of the corresponding lines from the two groups of data were
compared. If all of the angles are not larger than the threshold,
they are classified into two classes. Physically, this indicates that
the changes in every specific period between the two groups of
data are similar. Angle clustering clustered the data groups with
the same changing trend and similar changing speed. Therefore,
angle clustering should divide the clusters of full trend clustering
into smaller clusters. When the angle was set to 5◦, 97.8% of
clusters only contained one element class (only one peptide in
the class), which implies failure of clustering (Figure 3A). When
the angle was set to 10◦, the percentage of clusters containing one
peptide was significantly decreased (Figure 3B). When the angle
was set to 40◦, the percentages of clusters containing different
amounts of peptides were similar to those of full trend clustering
(Figures 3C,D). For Pearson clustering, different thresholds of
the Pearson correlation coefficient (R) were tested on the original
dataset. Most peptides with obvious relativities were put into one

cluster when the threshold was set to 0.97. Therefore, we classify
the data with |R| >0.97 as one cluster (Figure 3E). In sum, we
obtained 3,494 clusters by full trend clustering, 12,300 clusters by
angle clustering at 10◦, and 13,686 clusters by Pearson clustering.

The indicators for evaluation of clustering algorithms
included external and internal standards. External standards
required knowing the previous distribution of samples. However,
angle clustering at 10◦, full trend clustering, and Pearson
clustering are unsupervised clustering methods, so we evaluated
them by internal standards. The internal standards were mainly
based on the principle of inner-class distance and interclass
distance. As Figure 4 shows, compared with angle clustering at
10◦ and Pearson clustering, full trend clustering had a higher
degree of aggregation in the clustering of time-series data. The
actual hit rates of interclass inference rules were obtained under
different conditions for the aforementioned three clustering
methods (Table 1). The average hit rate of full trend clustering
was 68.7%, and full trend clustering was better than the other two
clustering methods.

As examples, the clustering results for proteins P41236
and O00497 using the three clustering methods are shown in
Figure 4. For protein P41236, 22, 11, and 3 peptides were placed
into one cluster by full trend clustering, angle clustering at 10◦,
and Pearson clustering, respectively (Figures 4A–C). For protein
O00497, 14, 8, and 3 peptides were placed into one cluster by full
trend clustering, angle clustering at 10◦, and Pearson clustering,
respectively (Figures 4D–F).
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FIGURE 4 | The representative results of clustering using different clustering methods. (A–C) The clusters obtained by different clustering methods, including full trend

clustering (A), angle clustering (B), and Pearson clustering (C). The trends of relative expression levels of the proteins in these clusters were consistent with P41236.

(D–F) The clusters obtained by different clustering methods, including full trend clustering (D), angle clustering (E), and Pearson clustering (F). The trends of the

relative expression levels of the proteins in these clusters were consistent with O00479.

TABLE 1 | The numbers of interclass inference rules using different minimum supporting degrees and confidence degrees.

Full trend clustering Angle clustering at 10◦ Pearson clustering

MSD MCD Rule numbers MSD MCD Rule numbers MSD MCD Rule numbers

0.0054 0.9 0 0.026 0.9 0 0.020 0.9 2

0.0052 0.9 28 0.024 0.9 528 0.018 0.9 2

0.0050 0.9 106 0.022 0.9 566 0.016 0.9 78

0.0048 0.9 1,111 0.020 0.9 1,768 0.014 0.9 210

0.0046 0.9 2,252 0.018 0.9 2,094 0.012 0.9 427

0.0044 0.9 4,290 0.016 0.9 3,950 0.010 0.9 960

0.0042 0.9 11,136 0.014 0.9 5,168 0.008 0.9 3,263

0.0040 0.9 37,692 0.012 0.9 6,932 0.006 0.9 6,982

0.0038 0.9 74,941 0.010 0.9 11,223 0.004 0.9 17,641

0.0036 0.9 129,345 0.008 0.9 14,453 0.002 0.9 36,150

MSD, minimum support degree; MCD, minimum confidence degree.

The bold and italic values indicates the most suitable MSD and MCD degree for different clustering.

Evaluation of Different Clustering Methods
of DCAA
To evaluate different clustering methods used in DCAA, the
DCAA hit rates for the association rules in the DIP were
calculated by comparing the association rules based on each
interclass inference rule obtained from DCAA with the records
of association rules in the DIP. In addition, the same number of
protein pairs as that in the association rules obtained fromDCAA
were randomly selected from the original dataset containing

over 4,000 proteins, and the random association rules were
created by randomly associating pairs of these proteins. Then,
the random hit rates of association rules in DIP were calculated
by comparing the random association rules with the records
of association rules in DIP. The operation was repeated 100
times to obtain the average hit rate of random matching. Next,
the DCAA hit rates of association rules in DIP were compared
with the random hit rates of association rules. The calculation
formulas of hit rates of DCAA and random matching were
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as follows:

R =
m

M
(4)

R′ =
n

M′
(5)

where m is the number of association rules in the DIP predicted
by DCAA and n is the number of randomly predicted association
rules in the DIP. M and M

′

are the number of predicted
association rules and random association rules, respectively. The
results showed that there were significant differences between

FIGURE 5 | Comparison of the association rules predicted by DCAA and the random association rules using different reasoning modes. Using different clustering

methods (direct connection, twofold reasoning, and threefold reasoning), the hit rates of association rules were calculated by comparing the predicted association

rules with the association rules recorded in the DIP. Hit rates of DCAA and random matching were compared to judge whether there was a significant difference.

TABLE 2 | Examples of sliding windows with different strategies.

Type Compared class Time (hours)

0.5 1 1.5 2 4 6 8 12 18 24 36 48 72

9.1.1 Class one −0.11 −0.21 −0.33 −0.05 −0.01 −0.27 0.06 0.54 0.07 −0.05 −0.21 −0.37 −1.05

Class two −0.15 −0.11 −0.08 −0.12 −0.24 −0.25 −0.18 −0.21 −0.32 −0.54 −0.68 −0.28 −0.19

9.1.2 Class one −0.11 −0.21 −0.33 −0.05 −0.01 −0.27 0.06 0.54 0.07 −0.05 −0.21 −0.37 −1.05

Class two −0.15 −0.11 −0.08 −0.12 −0.24 −0.25 −0.18 −0.21 −0.32 −0.54 −0.68 −0.28 −0.19

9.1.3 Class one −0.11 −0.21 −0.33 −0.05 −0.01 −0.27 0.06 0.54 0.07 −0.05 −0.21 −0.37 −1.05

Class two −0.15 −0.11 −0.08 −0.12 −0.24 −0.25 −0.18 −0.21 −0.32 −0.54 −0.68 −0.28 −0.19

9.2.1 Class one −0.11 −0.21 −0.33 −0.05 −0.01 −0.27 0.06 0.54 0.07 −0.05 −0.21 −0.37 −1.05

Class two −0.15 −0.11 −0.08 −0.12 −0.24 −0.25 −0.18 −0.21 −0.32 −0.54 −0.68 −0.28 −0.19

9.2.2 Class one −0.11 −0.21 −0.33 −0.05 −0.01 −0.27 0.06 0.54 0.07 −0.05 −0.21 −0.37 −1.05

Class two −0.15 −0.11 −0.08 −0.12 −0.24 −0.25 −0.18 −0.21 −0.32 −0.54 −0.68 −0.28 −0.19

9.3.1 Class one −0.11 −0.21 −0.33 −0.05 −0.01 −0.27 0.06 0.54 0.07 −0.05 −0.21 −0.37 −1.05

Class two −0.15 −0.11 −0.08 −0.12 −0.24 −0.25 −0.18 −0.21 −0.32 −0.54 −0.68 −0.28 −0.19

By comparing the situation before and after sliding, a sliding window with different strategies could reflect the lags between upstream and downstream events of PPIs. The same color

indicates the classes to be compared.
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FIGURE 6 | The representation of the association rules/PPIs revealed by DCAA. (A–C) The representation of the PPIs recorded in the DIP revealed by DCAA using

different reasoning modes, namely, direct connection (A), twofold reasoning (B), and threefold reasoning (C). (D) Representation of the PPIs that were predicted by

DCAA but were not recorded in the DIP. The black solid lines represent the PPIs recorded in the DIP. The red dashed lines represent the PPIs predicted by DCAA. The

thickness represents the distance of the relationship; the thicker the line is, the closer the relationship is (E) Representation of PPIs that were combined with the results

of (A–D).
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FIGURE 7 | The procedure for the DCAA method. Clustering using different methods was the first step in DCAA analysis. After clustering, the delayed comparison

was constructed by using sliding time windows to cover different situations involved in the hysteresis effect. Then, the Apriori algorithm was used to discover

association rules for the potential PPIs. Next, the association rules predicted by DCAA and random linking were matched to the association records in the database of

interacting proteins (DIP), and the hit rates were calculated. Finally, the hit rates of DCAA and random linking were compared to evaluate the prediction accuracy.

the DCAA hit rates and the random hit rates (p < 0.01;
Figure 5).

The three clustering methods used in this study were based
on the shape similarity of time-series data, whereas popular
approaches, including k-means and hierarchical clustering,
measure the relevance between two clusters by distance. The
methods based on distance ignore similar changing trends.
However, the changing trends are important features of PPIs.
Therefore, many peptides with similar changing trends but
long distances are divided into different categories by clustering
methods based on distance. Compared with these methods, full
trend clustering, angle clustering, and Pearson clustering might
be more suitable for PPI analysis.

Types of Sliding Windows to Obtain
Interclass Inference Rules
In the present study, a sliding time window was used for delayed
comparison to reflect the lags between upstream and downstream
events of PPIs. The size of the time window represents the
affected time of delayed influence. Because the time of delayed
influence in the test was not certain, many delayed comparisons
with different time windows were executed. All possible delayed
influences were attained by these tests. The type of delayed
comparison was denoted as a combination of three integers
connected by two dots. The first number indicated the length
of data to be compared (the size of the sliding window). The
start time and the length of the delayed time period were
denoted by the second and third numbers, respectively. Some

examples of delayed sliding window comparisons are shown
in Table 2. The delayed comparison resulted in six datasets,
which were merged into one dataset to construct the dataset
for the Apriori algorithm. After processing with the Apriori
algorithm, 3,494, 12,213, and 13,138 customer shopping records
were obtained by full trend clustering, angle clustering, and
Pearson clustering, respectively.

Because too many rules could drastically increase the
computational load, and too few rules may not support sufficient
reasoning, the number of rules should be controlled at a proper
level. In this paper, the number of rules was controlled to
a few hundred. As the confidence degree mainly affected the
probability of rule occurrence, we fixed the confidence degree at
0.9 and only adjusted the value of the support degree. Equally
spaced values of support degree were tested, and the numbers
of obtained rules are shown in Table 1. When using full trend
clustering, 106 interclass inference rules were produced at a
minimum support degree of 0.005. When using angle clustering
at 10◦, 528 interclass inference rules were obtained at a minimum
support degree of 0.024. When using Pearson clustering, 210
interclass inference rules were obtained at a minimum support
degree of 0.014 (Supplementary Table 1).

The Matching Process of DCAA and Its
Comparison With PPI Records in the DIP
The association rules identified by DCAA were compared with
the reported association rules in the DIP. Figure 6 shows an
example of the matching results. Figures 6A–C represents the
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inference results identified from the DIP under the conditions
of direct connection, two-times reasoning, and three-times
reasoning, respectively. Figure 6D shows the association rules
that were predicted by DCAA but were not recorded in the DIP.
These newly discovered PPIs should be helpful for designing
biological experiments.

CONCLUSIONS

In the present study, a novel tool, DCAA, was developed
to discover PPIs from time-series phosphoproteomic data.
The basic idea of DCAA was to classify the peptides with
similar changing trends into one class by clustering and then
identify the association rules among different classes by delayed
comparison and the Apriori algorithm. DCAA consists of three
main steps, namely, clustering, delayed comparison, and the
Apriori algorithm, as well as matching (Figure 7). In DCAA,
the lags between upstream and downstream events of PPIs were
considered. Therefore, DCAA can find novel association rules
of proteins with relatively lower false-positive rates without
previous knowledge and databases. DCAA should be useful to
predict PPIs from time-series omics data, which is not limited to
phosphoproteomic data.
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