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Two novel human anti‑CD25 
antibodies with antitumor activity 
inversely related to their affinity 
and in vitro activity
Deyong Song1,4, Xiu Liu1,4, Chuangchuang Dong1, Qiaoping Wang1, Chunjie Sha2, 
Chuan Liu3, Zhenfei Ning1, Jing Han1, Hong Liu1, Mengqi Zong1, Yanyan Zhao1, Ying Li1, 
Guangsheng Liu1, Xin Shao1 & Changlin Dou1*

High tumor regulatory T (Treg) cell infiltration is associated with poor prognosis of many cancers. 
CD25 is highly expressed on tumor Treg cells and is a potential target for Treg deletion. Previously 
characterized anti‑CD25 antibodies appear to have limited efficacy in tumor inhibition. Here we 
identified two human anti‑CD25 antibodies, BA9 and BT942, which did not prevent the activation of 
IL‑2R signaling pathway by IL‑2. BT942 had weaker binding and cytotoxic activity to human CD25‑
expressing cell lines than BA9. But both demonstrated significant tumor growth inhibition in early 
and late‑stage animal cancer models. BT942 resulted in a higher expansion of  CD8+ T cells and  CD4+ T 
cells in tumor microenvironment in mouse MC38 model compared to BA9. BT942 also demonstrated 
significant higher tumor growth inhibition and higher expansion of  CD8+ T cells and  CD4+ T cells in 
combination with an anti‑PD1 antibody. Pharmacokinetic study of BT942 in cynomolgus monkeys 
demonstrated a half‑life of 206.97 ± 19.03 h. Structural analysis by cryo‑EM revealed that BT942 
recognizes an epitope on opposite side of the CD25‑IL‑2 binding site, consistent with no IL‑2 signaling 
blockade in vitro. BT942 appears to be an excellent candidate for cancer immunotherapy.

In human, regulatory T (Treg) cell population accounts for only 5% of  CD4+ T cells, which are characterized by 
constitutively high expression of human CD25 (interleukin-2 receptor alpha, IL-2Ra) and immune  suppression1,2. 
There are two subgroups of Tregs: the naturally occurring Treg cells (nTregs) and the inducible or adaptive Tregs 
(iTreg, Tr1). nTregs and iTregs mediate their suppression via cell contact-dependent mechanisms or through the 
production of soluble factors, such as TGF-beta, IL-10 and  adenosine3,4. Removal of  CD25+CD4+ T cells cause 
several autoimmune diseases in  mice5,6.

The number of Treg cells is higher in peripheral blood mononuclear cells (PBMC) and tumors of many 
cancer patients, especially in  tumors7–11. Treg cells can suppress most immune cells including  CD4+ and  CD8+T 
cells, B cells, NK cells, NKT cells and APCs, such as DCs, monocytes and  macrophages3,4. High Treg infiltration 
is related to the poor prognosis of most solid tumors, such as cervical, ovarian, renal, melanomas, pancreatic, 
hepatocellular, gastric and breast  cancers12–18. Recent systematic review and meta-analysis on  FoxP3+ Treg cells 
revealed that prognostic role of  FoxP3+ Tregs was highly influenced by tumor site and was also correlated with 
the molecular subtype and tumor  stage12. Removing  CD25+CD4+ T cells or in vivo administration of anti-CD25 
monoclonal antibody in mice can induce tumor immunity or tumor  suppression19–21. Consequently, Treg dele-
tion from the tumor should be beneficial for tumor treatment. Removing Tregs is likely to increase the response 
rate of current immunotherapy by relieving Treg cell inhibition on effector T  (Teff) cells, B cells and NK cells in 
the tumor microenvironment.

There are several targets on Treg cells. In addition to antibodies targeting CD25, Smyth and  colleagues22 
revealed that antibodies against other targets such as CTLA4, OX40 and GITR may facilitate the elimination of 
regulatory T cells in tumor microenvironment by effector functions of the  antibody22–25. Such antibody-mediated 
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killing of regulatory T cells may be more important than the antibody-mediated activation of effector T cells for 
the anti-tumor activities of those antibodies. However, among those targets, CD25 is expressed at high  level26.

Although in vitro studies have confirmed that CD25 is transiently upregulated after  Teff cells are  activated27, 
the studies in mouse models show that both the expression percentage and the level of expression of mouse CD25 
in  Teff cells are much lower than Treg cells in  tumor19. In human cancers, human CD25 is mainly expressed on 
 CD4+FoxP3+ Treg cells and in all tumor types studied, the level of CD25 expression in  CD4+FoxP3+ Treg cells is 
also significantly higher than that in  CD4+FoxP3− and  CD8+ T  cells26.

Several anti-CD25 antibodies had been developed. Anti-mouse CD25 monoclonal antibodies (clone PC61, rat 
IgG1) can only be effective when injected before tumor inoculation or early tumor establishment. Rat IgG1 can 
engage inhibitory Fcγ receptors FcγRIIb and activatory receptors FcγRIII, but not FcγRI and FcγRIV in mice. 
Specifically, in mice MOPC-70A models, it can only be effective when administered before day 2 after tumor 
 inoculation20. In the mouse A20 model, anti-mouse CD25 monoclonal antibodies (PC61) could not inhibit tumor 
growth when administered at a time the tumor was  palpable19. Arce Vargas and  colleagues26 analyzed why the 
anti-CD25(clone PC61, rat IgG1) has only limited effects in mice. Their results shown that the high expression 
of FcRIIb and inappropriate Fc of anti-CD25 resulted in poor clearance of Treg in the tumor. Fc-optimized 
anti-CD25 (clone PC61, murine IgG2a) showed good efficacy in the established MC38, MCA205, CT26 models 
only in combination with anti-mouse PD1, but the efficacy of single anti-CD25 administration was  weak26. The 
anti-mouse CD25 antibody (clone PC61) can block IL-2  signaling28 just as two anti-human CD25 antibodies in 
the clinic, basiliximab and daclizumab, which were used for multiple sclerosis or acute organ rejection through 
blocking IL-2  signaling29,30. As CD25 is also transiently expressed on a small population of activated  Teff cells, 
IL-2 can stimulate the effector T cells through the IL-2 receptor complex to facilitate tumor suppression. Anti-
CD25 mAb that does not interfere with IL-2 downstream signaling should have better antitumor efficacy. The 
therapeutic potential of targeting CD25 led us to develop a screening strategy to identify potent human antibodies 
against CD25. Using immunized human antibody transgenic mice and phage display technologies we identified 
two human monoclonal antibodies, BA9 and BT942, that target CD25. In addition, we provide evidence that 
both BA9 and BT942 display significant binding activity to CD25 and that they do not prevent the activation of 
IL-2 downstream signaling pathway. Furthermore, we show that BA9 and BT942 have significant cell-mediated 
cytotoxicity and tumor suppression in both early phase and late phase of tumor establishment. Finally, we provide 
evidence that BT942 has the ability to synergize with PD1 inhibitor for cancer therapy.

Results
Phage display screening identifies human CD25‑specific antibody candidates BT942 and 
BA9. To identify potential CD25 targeting antibodies, immunized human antibody transgenic mice were 
used in conjunction with phage display. Here human antibody transgenic mice were immunized with human 
CD25 protein. Titers of antibodies in the mice serum were tested by ELISA (enzyme-linked immunosorbent 
assay). Three days after the last immunization, the spleen was harvested from each mouse and used for the 
construction of the phage libraries. For these plates coated with CD25 or streptavidin-magnetic beads binding 
biotinylatedCD25 were used to capture phage of interest. Enriched phages were used to infect E. coli TG1 for 
expressing single-chain variable fragments (scFvs) and the binding and blocking activity were tested by ELISA. 
Clones that bind CD25 without blocking IL-2 were sequenced and converted to human IgG1 for in vitro evalu-
ation. These analyses obtained two candidates BT942 and BA9 (Supplementary Fig. S1).

Monoclonal antibodies BA9 and BT942 do not prevent the activation of IL‑2R signaling path‑
way by IL‑2. We examined if the binding of BA9 and BT942 to human CD25 alters IL-2 signaling by analyz-
ing the phosphorylation of STAT5 in PBMCs by flow cytometry. The gating strategy for the flow cytometry is 
shown in Supplementary Fig. S2.

The data in Fig. 1a show that BA9 and BT942 do not block the activation of IL-2R signaling pathway by IL-2 
as assessed through the percentage phosphorylation of STAT5 in PBMC by flow cytometry, whereas daclizumab 
significantly affect IL-2 signaling consistent with its mechanism. Unlike daclizumab, BA9 and BT942 also do not 
alter activation and proliferation of  CD8+ and  CD4+ T cells with Granzyme B and Ki67 expression as markers 
in vitro IL-2 signaling by T cell activation assay (Fig. 1b).

BT942 displayed weaker binding activity than BA9 to human or cynomolgus CD25. To assess 
the binding activity of antibody candidates BT942 and BA9 to CD25, flow cytometry and surface plasmon reso-
nance (SPR) analysis were used.

Since it is difficult to obtain Treg cells from human tumors, we used Human diffuse tissue lymphoma cell line 
SU-DHL-1(CD25+) and human CD25 gene transfected HEK293T cells to perform in vitro cell-based evaluation 
with flow cytometry. Binding analysis of BA9 and BT942 revealed that both antibody candidates could specifically 
bind to SU-DHL-1 cells with EC50 of 0.35 μg/mL and 1.20 μg/mL, respectively (Fig. 2a). Similar results were seen 
using HEK293T-CD25 cell line with EC50 as 1.71 μg/mL and 2.21 μg/mL, respectively. BA9 also demonstrated 
higher top mean fluorescent intensity (Fig. 2b).

Binding kinetics of BT942 and BA9 to human CD25 were measured by surface plasmon resonance (SPR) 
using a Biacore 8K. The equilibrium constants (KD) of BA9 and BT942 with human CD25 were 1.29 ± 0.03 nM 
and 8.84 ± 1.16 nM, respectively (Fig. 2c,d). BA9 and BT942 also showed in the SPR assay they can react with 
cynomolgus CD25 with a KD of 1.70 ± 0.04 nM and 4.33 ± 1.83 nM, respectively (Fig. 2e,f). However, no reac-
tion with mouse CD25 was observed (Supplementary Fig. S3). Notably, BA9 had higher binding affinity than 
BT942 in all the above in vitro data.
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Given that BA9 and BT942 both do not prevent IL2 signaling, we measured the potential competitive bind-
ing of BA9 and BT942 to human CD25 using an Octet RED96 based epitope binding assay. For this biotinylated 
recombinant human CD25 protein was first immobilized on a streptavidin biosensor and then the biosensor was 
bound to saturation with excessive BA9 or BT942. Addition of BT942 to BA9 saturated sensor (Fig. 2g, blue) or 
BA9 to BT942 saturated sensor (Fig. 2h, blue) still showed binding response, indicating BA9 and BT942 do not 
block each other and bind distinct epitopes at human CD25.

BT942 demonstrated weaker ADCC activity than BA9 in vitro. The antibody-dependent cell-
mediated cytotoxicity (ADCC) is an important biological function attributed to the mechanism of action of 
Treg-deleting CD25 antibodies. The ADCC activity of BA9 and BT942 against SU-DHL-1 or HEK293T-CD25 
were characterized using two assays. One is a reporter bioassay (Promega, G7940) with Jurkat cells as effector 
cells and luciferase substrate as reacting regent for monitoring Fc receptor signaling, the other is a cytotoxicity 
assay with PBMC as effector cells. BA9 and BT942 showed IC50 towards SU-DHL-1 as 0.025 μg/mL, 0.037 μg/
mL, and IC50 towards HEK293T-CD25 as 0.116 μg/mL, 0.096 μg/mL, respectively, in the reporter bioassay. BA9 
also demonstrated stronger top signaling (Fig. 3a,b). Furthermore, BA9, BT942 and daclizumab showed IC50 
towards SU-DHL-1 as 2.008 ng/mL, 3.208 ng/mL, 4.975 ng/mL, and IC50 towards HEK293T-CD25 as 0.621 ng/
mL, 1.334 ng/mL, 2.595 ng/mL respectively when evaluated by PBMC-mediated cytotoxicity (Fig. 3c,d). BT942 
demonstrated weaker ADCC activity against SU-DHL-1 or HEK293T-CD25 cells with high CD25 expression. 
CD25 is also transiently expressed on activated  Teff cells although at a lower expression level than Treg cells. The 
unwanted ADCC activity of BT942 and BA9 against in vitro activated  CD8+ T cells were also evaluated. BT942 
showed weaker ADCC activity than BA9 on activated  CD8+ T cells wheather evaluated by an ADCC reporter 
bioassay (Fig. 3e) or PBMC-mediated cytotoxicity (Fig. 3f).

BA9 and BT942 demonstrated significant tumor suppression in early phase and late phase 
of tumor establishment. The effect of BA9 and BT942 on tumor suppression at early phase of tumor 
development was investigated in MC38 Model in B-hIL2RA humanized mice. B-hIL2RA mice are human CD25 
humanized mice with CRISPR technology (human CD25+/+, mouse CD25−/−). Eight mice for each antibody 
were administered intraperitoneally at 10 mg/kg on day-1 (the day before tumor inoculation) with vehicle group 
as control. Tumor suppression ability of antibodies is monitored by tumor growth inhibition rate (TGI) which 
reflect a decrease percentage of the mean tumor volume for one treatment group compared with the vehicle 
group at one day. Both BA9 and BT942 significantly reduced tumor growth with the dose of 10 mg/kg twice a 
week (BIW); the tumor growth inhibition rate was 60.6% and 66.6% at day 21 after tumor inoculation, respec-
tively (Fig. 4a).

To examine the effect of BA9 and BT942 on late phase tumor development 8 mice per group were adminis-
tered at 10 mg/kg on day 5 when group mean tumor volumes had grown to 50–60  mm3. Like early phase results 
the antibodies demonstrated remarkable reduced tumor growth; the TGI for BA9 and BT942 was 48.7% and 
74.7% at day 24 after tumor inoculation, respectively (Fig. 4b). Overall, both BA9 and BT942 showed significant 
tumor suppression effects whether administered in the early or late phase of tumor establishment.

The immune cell population in tumors and peripheral blood cells was also monitored in the same experi-
ments. BT942 treatment resulted in higher increase in  CD45+,  CD3+T,  CD4+ and  CD8+T percentage in tumor at 
early or late phase treatment experiment when compared with vehicle or BA9 treatment. p-values of BT942 com-
pared with vehicle were 0.027 for  CD8+T at day 16 after tumor inoculation in early phase, 0.048 for  CD4+T and 

Figure 1.  IL-2/IL-2 receptor blocking activity of BA9, BT942 and Daclizumab. (a) Characterization of 
anti-CD25 antibodies compared to isotype antibody in respect to blocking IL-2 signaling in a STAT5 
phosphorylation assay using human PBMCs. PBMCs were co-cultured with 10 μg/mL antibody for 30 min, then 
10 U/mL IL2 was added and cultured for 10 min. Isotype is a human IgG1 with kappa light chain (Crown Bio, 
C0001-2). Data were presented as mean ± SEM. (b) BA9 and BT942 do not alter activation and proliferation of 
 CD8+ and  CD4+ T cells in vitro IL-2 signaling by T cell activation assay. Antibodies were tested for 72 h at 10 µg/
mL. Data were presented as mean ± SEM.
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Figure 2.  Binding activity to human or cynomolgus CD25 and direct competitive binding characteristics of 
BA9 and BT942. (a) BA9 and BT942 specifically bind to SU-DHL-1 cells determined by flow cytometry. Data 
were presented as Mean ± SEM. (b) BA9 and BT942 specifically bind to HEK293T-CD25 cells determined by 
flow cytometry. Data were presented as mean ± SEM. (c,d) Binding kinetics of BA9 (c) or BT942 (d) for Human 
CD25 were measured in a surface plasmon resonance (SPR) assay with BIAcore. Experiments were performed 
in triplicate. (e,f) Cross-reactivity with cynomolgus CD25 by BA9 (e) and BT942 (f) were measured in a 
surface plasmon resonance (SPR) assay with BIAcore. Experiments were performed in triplicate. (g,h) Direct 
competitive binding characteristics of BA9 and BT942 was performed using in-tandem format binning assay. 
SA sensors immobilized with biotinylated human CD25 were saturated with the first antibody or PBST, then 
exposed to the second antibody or PBST. Data of  KD were presented as mean ± SD.
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0.037 for  CD8+T at day 24 after tumor inoculation in late phase, respectively (Fig. 5a,b,f,g). This difference was 
also seen in  CD45+ (p-value = 0.001) and  CD3+T (p-value = 0.001) proportions in tumor in late phase treatment 
(Supplementary Fig. S4). p-values of BT942 compared with BA9 were 0.013 for  CD45+T and 0.029 for  CD3+T 
in late phase treatment. This result is consistent with BT942’s weaker ADCC activity at activated  CD8+ T cells 
in vitro. Both BA9 and BT942 reduced the proportion of  hCD25+Foxp3+ cells and  Foxp3+(Treg) cells in the tumor 
at early or late phase treatment experiment (Fig. 5c,d,h,i). Interestingly, there were more residual  hCD25+Foxp3+ 
cells than BA9 (p-value = 0.008, 0.02) after BT942 treatment, in both early and late phase treatment, which is 

Figure 3.  ADCC activity of BA9 and BT942. (a,b) ADCC was evaluated for BA9 and BT942 by a reporter 
bioassay. The target cells were SU-DHL-1 (a) or 293T-CD25 (b), the effector cells were Jurkat cells from 
Promega. BA9 can induce higher ADCC activity to both cell lines than BT942. Experiments were performed 
in duplicate. Data were presented as mean ± SEM. (c,d) ADCC was evaluated for BA9, BT942 and daclizumab 
by PBMC-mediated cytotoxicity. The target cells were SU-DHL-1 (c) or HEK293T-CD25 cells (d), the effector 
cells were PBMC. BA9 has higher ADCC activity than BT942. Experiments were performed in duplicate. Data 
were presented as mean ± SEM. (e,f) ADCC against activated  CD8+T cells was evaluated for BA9 and BT942. 
The target cells were activated  CD8+T cells. ADCC was evaluated by a reporter bioassay and the effector cells 
were Jurkat cells (e). ADCC was evaluated by PBMC-mediated cytotoxicity and the effector cells were PBMC (f). 
Experiments were performed in duplicate. Data were presented as mean ± SEM.
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consistent with BT942’s weaker ADCC activity against high human CD25-expressing cells in vitro. While both 
BA9 and BT942 increased the  CD8+/Treg cell ratios, BA9 treatment resulted in higher cell ratio as fewer residual 
Treg cells remain (Fig. 5e,j).

In the late phase treatment experiment, BA9 significantly reduced the proportion of  hCD25+Foxp3+ cells and 
Treg cells in peripheral blood cells, but BT942 only had a slight effect (Supplementary Fig. S5). Unlike in tumor 
cells, there were no significant changes of  CD45+,  CD3+T,  CD4+T,  CD8+T proportion in peripheral blood in the 
late phase treatment experiment for both BA9 and BT942 (Supplementary Fig. S5).

Figure 4.  Antitumor effect of BA9 and BT942 in B-hIL2RA mice in MC38 tumor model for Early phase and 
Late phase treatment. (a) Early phase treatment: mean tumor volume of MC38 tumors in B-hIL2RA mice 
treated with vehicle versus anti-CD25 antibody (n = 8/group). Randomly, B-hIL2RA mice were grouped by 
weight and treated with anti-CD25 (10 mg/kg, i.p., twice a week). MC38 cells (5 ×  105 cells) were injected s.c. 
into mice in the next day (day 0). (b) Late phase treatment: mean tumor volume of MC38 tumors in B-hIL2RA 
mice treated with vehicle versus anti-CD25 (n = 8). MC38 cells (5 ×  105 cells) were injected subcutaneous 
into B-hIL2RA mice (day 0). Antibody treatments (10 mg/kg, i.p., twice a week) were started when tumors 
had grown to 50–60  mm3 (day 5). P values were calculated using two-way ANOVA (*p < 0.05, **p < 0.01, 
***p < 0.001).

Figure 5.  The immune cell population analysis after BA9 and BT942 treatment in MC38 tumor in B-hIL2RA 
mice. (a–e) Quantification of  CD4+ T,  CD8+ T,  Foxp3+ (Treg) and  hCD25+Foxp3+ population percentage in 
MC38 tumors from early phase treatment.  CD8+/Treg cell ratios were also analyzed. p values obtained by one-
way ANOVA. Data were presented as mean ± SEM. (f,g,h,i,j) Quantification of  CD4+ T,  CD8+ T,  Foxp3+ (Treg) 
and  hCD25+Foxp3+ population percentage in tumors from late phase treatment.  CD8+/Treg cell ratios were 
also analyzed. p values obtained by one-way ANOVA. Data were presented as mean ± SEM. Bars without labels 
indicate that no statistical significance was observed.
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BT942 showed stronger activity to Treg and iTreg than activated  CD4+ T and  CD8+ T cells. As 
CD25 is transiently upregulated following  Teff cells activation, we examined cytotoxicity to activated  CD4+ T and 
 CD8+ T cells using an anti-CD25 antibody. Human CD25 expression levels in naïve  CD4+ and  CD8+ T, activated 
 CD4+ and  CD8+ T, Treg, iTreg cells were evaluated in Flow cytometry. iTreg was induced from  CD4+T cells. 
Human CD25 expression levels of naïve  CD4+ and  CD8+ T cells were under detection limit. Treg and iTreg cells 
showed more CD25 expression than activated  CD4+ T and  CD8+ T cells (Fig. 6a). Furthermore, ADCC to these 
different cell types by BT942 was also evaluated (Fig. 6b). BT942 demonstrated stronger activity to Treg or iTreg 
than activated  CD4+ T or  CD8+ T cells.

BT942 demonstrates improved efficacy than IL‑2 blocking Daclizumab and synergizes with 
anti‑PD1 to eradicate established tumors in vivo. To explore if the non-IL2 blocking properties 
improve its efficacy, we sought to compare the efficacy of BT942 with daclizumab which blocks IL-2 signalling 
on IL-2R in the MC38 syngeneic tumor model in B-hIL2RA humanized mice. MC38 cells (5 ×  105 cells) were 
injected subcutaneously into B-hIL2RA mice. Mice were randomized with 8 mice per group and treated with 
BT942, Daclizumab (Sunshine Guojian Pharmaceutical) or vehicle (PBS) when mean tumor volume reached 
68  mm3 at day 5. Both BT942 and Daclizumab were dosed at 10 mg/kg intraperitoneally twice a week (BIW). 
Tumor growth inhibition rate (TGI) was used to define the antitumor efficacy of these mAbs. TGI of BT942 and 
daclizumab is 68.2% and 46.3% at day 26 after tumor inoculation, respectively. Non-IL2 blocking BT942 dem-
onstrates significant stronger efficacy (Fig. 7a).

Teff cell population in tumor is important for the efficacy of PD1 inhibitors. Treg’s inhibition of  Teff cells in 
tumor is one of the reasons for the weak response of PD1/PD-L1 inhibitors. Whereas anti-CD25 antibody can 
delete the Treg and further increase the  Teff percentage in the tumor, we examined combining BT942 and anti-
Mouse PD1(BioXcell, BE0146) to see if they had a synergistic effect in MC38 Model in the same experiment as 
above. Mice were treated with BT942, anti-mouse PD1, or their combination at 10 mg/kg intraperitoneally twice 
a week with vehicle group as control when tumors reached 68  mm3. The inhibitory rate of BT942 on the tumor 
is 68.2%, the inhibitory rate of BT942 and PD1 antibody on the tumor is 95.2%, the combined use significantly 
improved the effect of the single mAb (Fig. 7a, Supplementary Table S2). Individual data of tumor growth in 
each treatment group was showed in Supplementary Fig. S6.

Multiple immune cell populations were also analyzed in flow cytometry after BT942, daclizumab and com-
bination treatment in the same experiments. Cells in tumor, Spleen and Lymph Nodes (inguinal, axillary) were 
collected at day 26 after tumor inoculation for flow cytometry analysis. BT942 treatment resulted in remarkable 
increase in  CD45+,  CD3+,  CD8+,  CD8+ granzyme  B+,  CD8+Ki67+,  CD4+,  CD4+Teff,  CD4+Teff granzyme  B+ and 
 CD4+Teff  Ki67+ T cell percentage in MC38 tumor (Fig. 7b–j). BT942 treatment resulted in a significant bigger 
increase in  CD8+ T percentage when compared to vehicle treatment (p-value = 0.015) (Fig. 7d). Combination with 
BT942 and PD1 antibody resulted higher increase in these immune cell population percentage in the tumor, with 
p-values of 0.035 for  CD45+and 0.02 for  CD8+ T cells when compared to vehicle (Fig. 7b,d). BT942 treatment 
resulted in a slight bigger increase in these immune cell populations percentage than daclizumab except for  CD8+ 
granzyme  B+ T percentage. BT942, daclizumab and the combination all reduced the proportion of  Foxp3+(Treg) 
and  hCD25+Foxp3+ cells percentage in the tumor (Fig. 7k,l). While BT942, daclizumab and the combination all 

Figure 6.  Comparison of CD25 expression level in human naïve  CD4+ and  CD8+ T, activated  CD4+ and  CD8+ 
T, Treg, iTreg cells and ADCC activity toward these different cell types by BT942. (a) Comparison of CD25 
expression level in human naïve  CD4+ and  CD8+ T, activated  CD4+ T and  CD8+ T, Treg, iTreg cells.  CD4+ and 
 CD8+ T cells were activated by CD3/CD28 T Cell Activator for 48 h.  CD4+,  CD8+ naïve T cells and activated 
 CD4+T,  CD8+T cells were stained by anti-human CD4 or CD8 and CD25 fluorescent-labeled antibody. Treg 
and iTreg were stained by anti-human CD3, CD4, Foxp3 and CD25 fluorescent-labeled antibody. Cells were 
analyzed in flow cytometry by Beckman CytoFLEX. (b) ADCC activity toward these different cell types by 
BT942. The effector cell was PBMC.
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Figure 7.  Comparison of in vivo antitumor effects of BT942 with daclizumab or combination of BT942 
and anti-mouse PD1 antibody (n = 8). (a) Mean tumor growth volumes in different treatment groups. Mice 
were injected by BT942, Daclizumab (Sansheng Guojian), anti-mouse PD1, their combination of BT942 and 
anti-mouse PD1 antibody or vehicle (PBS) when mean tumor volumes reached 68  mm3 at day 5. Tumor 
size was measured twice a week by caliper. p values obtained by two-way ANOVA. (b–l) Quantification of 
 CD45+,  CD3+,  CD8+,  CD8+Granzyme  B+,  CD8+Ki67+,  CD4+T,  CD4+Teff  (CD4+FoxP3−), CD4 +Teff Granzyme 
 B+  (CD4+FoxP3−Granzyme  B+), CD4 +Teff  Ki67+  (CD4+FoxP3−Ki67+),  hCD25+Foxp3+ and  Foxp3+ (Treg) cell 
population percentage in live cells in MC38 tumors. p values obtained by one-way ANOVA. Bars without labels 
indicate that no statistical significance was observed. (m)  CD8+/Treg cell ratios were analyzed. p values obtained 
by one-way ANOVA. Bars without labels indicate that no statistical significance was observed. Data were 
presented as mean ± SEM.
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increased the  CD8+/Treg cell ratios, daclizumab treatment resulted the highest cell ratio as its fewer residual Treg 
cells (Fig. 7m). Multiple immune cell populations percentage in Spleen and Lymph Nodes were also analyzed 
after treatment. The combination just significantly reduced the proportion of  CD8+ population percentage in 
Spleen. Unlike in tumor, there was no significant changes of  CD45+,  CD3+,  CD4+T and  CD8+T proportion in 
Spleen and Lymph Nodes for both BT942 and their combination except for  CD8+ population percentage in 
Spleen by combination (Supplementary Fig. S7). Both BT942 and the combination significantly reduced the 
proportion of  hCD25+Foxp3+ cells and Treg cells in Spleen, but not in Lymph Nodes (Supplementary Fig. S7). 
CD25 levels of multiple immune cell populations from tumors and blood in vehicle group were also analyzed in 
flow cytometry at day 26 after tumor inoculation (Supplementary Fig. S8).  CD4+Foxp3+ cells have the highest 
CD25 level than other cell populations.

Pharmacokinetic and pharmacodynamic evaluation of BT942 in cynomolgus monkeys. As 
BT942 showed a significant efficacy in vivo we evaluated the pharmacokinetic (PK) and pharmacodynamic (PD) 
characteristics of this novel anti-CD25 antibody using healthy cynomolgus monkeys. For these experiments 2 
animals were administered BT942 intravenously at doses of 10 mg/kg. ELISA was used to determine the concen-
tration of BT942 in serum. Following a single-dose injection, BT942 showed a bi-exponential serum concentra-
tion–time profile with a short distribution phase followed by a long elimination phase, with a terminal half-life 
 (t1/2, λz) of 206.97 ± 19.03 hours and AUC (0−t) of 32,036.89 ± 1234.97 h*μg/mL (Fig. 8a; Supplementary Table S3). 
Interestingly, the pharmacodynamic tests showed that the percentage of  CD4+CD25+Foxp3+ cells in peripheral 
blood decreased significantly a few hours after administration, and it was still very low until 14 days (Fig. 8b). 
This indicated that the effect of BT942 was durable. No signs of toxicity were observed in monkey examinations 
or mice treated with multiple doses of BT942.

Structural analysis of the CD25‑IL‑2‑BT942 complex. To investigate the interaction between BT942 
and human CD25 protein we attempted to determine the structure of this complex using cryo-EM. However, the 
intrinsic flexibility of human CD25 protein had hindered our efforts to reconstruct the whole complex. Although 
CD25 was present in the complex, we could only get map of BT942 Fab with some extra blurred densities. To 
address this issue, we reconstituted the CD25-IL-2-BT942 Fab ternary complex for cryo-EM sample prepara-
tion. Raw cryo-EM micrographs and typical 2D class averages of this complex were shown in Supplementary 
Fig. S9. Fortunately, the binding of IL-2 stabilized CD25 further and we succeeded to get the density map of 
whole CD25-BT942 Fab complex. Density of IL-2 could be seen only if the threshold of the map was set to an 
extremely low value, suggesting the remaining flexibility of CD25. Considering the poor quality of IL-2 density 
in the cryo-EM reconstruction, we described the structure of CD25-BT942 Fab complex omitting IL-2 (Fig. 9a). 
Details of sample preparation, data collection and data processing are reported in the methods and Supplemen-
tary Table S4. The resolution of the final reconstruction reached 3.2 Å, which allows us to analyze the details of 
interactions between CD25 and BT942 (Fig. 9b). In this structure the binding site of BT942 at CD25 is on the 
opposite side of the CD25-IL-2 binding site (Fig. 9c), consistent with the observations in vitro where no IL-2 
signaling blocking was observed.

Hydrogen bonds and salt bridges around CD25 residues Q130, C131, Y135, R136, A137, H139, R140, G141 
and P142 contributed to the interaction between CD25 and BT942 (Fig. 9d,e). S31 from BT942 heavy chain 
CDR1, G101, D102, Y103, N105, S104 from CDR3, N34 from light chain CDR1, Y98 from light chain CDR3 
contributed to this interaction (Fig. 9d,e).

Figure 8.  Pharmacokinetic and pharmacodynamic characteristics of BT942 in healthy cynomolgus monkeys. 
(a) Two healthy cynomolgus monkeys were administered intravenously at a single dose of 10 mg/kg with 
BT942. Enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration of BT942 
in serum. ELISA experiment was performed in triplicates. The main PK kinetic parameters were calculated 
using Winnolin software. Data were presented as mean ± SEM. (b) The peripheral blood before and after 
administration were collected from monkeys, and then the percentage of  CD4+CD25+Foxp3+ cells in peripheral 
blood at different time points was analyzed with flow cytometry (CytomicsTM FC500). Data were presented as 
mean ± SEM.
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Discussion
Tregs protect cancer cells from immune attack. Tregs express CD25 on their surface and can be targeted for kill-
ing by antibodies and immunoconjugates targeting CD25. These antibodies have not been effective in control-
ling tumor growth of patients, probably because they also kill cytotoxic  CD8+ T cells expressing CD25 that are 
needed for antitumor activity. Here we describe two anti-CD25 monoclonal antibodies, BT942 and BA9, that 
were obtained through immunizing human antibody transgenic mice with recombinant human CD25 protein 
followed by phage display for library construction and potential hits screening with human CD25 protein. BT942 
has significant efficacy on both early and late stage MC38 colon cancer models, whether used alone or in com-
bination with anti-PD1. The previously examined anti-CD25 monoclonal antibodies are either effective only in 
the early stages of  tumors20, or only have a significant efficacy in combination with anti-PD126.

BT942 has weaker binding activity to human CD25 and weaker ADCC activity against human CD25-express-
ing cells compared with BA9. Nevertheless, BT942 also demonstrated significant efficacy and led to a higher 
 CD45+,  CD8+ T and  CD4+ T cell increase than BA9 in MC38 model. CD25 is also transiently expressed on 
activated  Teff cells although at lower percentage of the population and a lower expression level than Treg cells. 
BT942 showed a weaker ADCC activity than BA9 against in vitro activated  CD8+ T cells wheather evaluated by 
an ADCC reporter bioassay or by PBMC-mediated cytotoxicity. A clear limitation of the study is the difficulties 
around conducting this type of in vivo work, here the sample size was small with one group of 8 mice tested. 
Additionally, only a fixed duration of 21–24 days following tumor inoculation was examined. Further experimen-
tation by the field would be required to demonstrate clear differences between BA9 and BT942 and strengthen 
the outcomes seen in this study. The anti-tumor efficacy by BT942 in the B16-F10, Lewis lung carcinoma (LLC) 
and MCA205 Mouse Fibrosarcoma model was also explored but it did not demonstrate significant efficacy as 
single agent in these models.

Non-IL2 blocking BT942 also demonstrates significant stronger efficacy than the IL-2 blocking daclizumab in 
the MC38 syngeneic tumor model. This suggest non-IL2 blocking property is a necessary feature for the efficacy 
of anti-CD25 antibodies.

In addition, tumor growth inhibition of BT942 demonstrated synergy in combination with PD1 antibody 
using MC38 model and is higher than that of BT942 or anti-mouse PD1 alone. In terms of toxicity, the removal 
of Treg cells could trigger the excessive immune responses to microbial antigens, which will lead to the T cells 
hyper-reaction to intestinal commensal bacteria, causing inflammatory bowel disease (IBD), and other  diseases31. 
For BT942, there was no significant reduction in animal weight and clinical observation did not find any abnor-
malities in mice efficacy study or in monkey PD\PK study.

Figure 9.  Cryo-EM structure of CD25-BT942 Fab complex. (a) The cryo-EM map of CD25-BT942 Fab 
complex. CD25 is colored in yellow, and the light chain and heavy chain of BT942 Fab is shown as cyan and 
green density, respectively. (b) The atomic model of CD25-BT942 Fab complex. Color codes are as in (a). The 
left and right panels show two different views of this complex. (c) BT942 Fab and IL-2 bind with CD25 in 
opposite direction according to the superposition of the CD25-BT942 Fab cryo-EM structure with the IL-2 
quaternary signaling complex structure (PDB: 2B5I). The color codes of CD25-BT942 Fab complex are as in (a), 
with IL-2Rβ and IL-2Rγ shown as a grey transparent surface. IL-2 is shown in red to highlight its orientation. 
The boxed area represents the interface shown in (d) and (e). (d,e) The close-up views of the interface between 
CD25 and BT942 Fab showing the epitopes on CD25 (grey labels) and paratopes on BT942 (green labels). The 
hydrogen bonds are depicted as yellow dashed lines.
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No CD25 antibodies have demonstrated efficacy against cancer in clinic. BT942 appears to be an excellent 
candidate for immunotherapy of cancer.

Methods
Mice, cell lines and reagents. Reagents, cell lines and viral strains used in this study are listed in Sup-
plementary Table 1.

Generation of anti‑CD25 antibodies. The mice used for immunization are human antibody transgenic 
mice that generated by our company. They were bred and kept under specific-pathogen free conditions. All 
animal experiments were complied with relevant ethical regulations regarding animal research. Protocols of 
mice experiments for immunization were approved by LUYE PHARMA Animal Experimentation and Ethics 
Committee. Human antibody transgenic mice were sequentially immunized with human CD25. In the mean-
time, titers of antibodies in the mice serum were tested by ELISA. Three days after the last immunization, the 
spleen was harvested for library construction. The construct of the phage library was carried out according to 
the method described in Phage Display: A laboratory manual32. Plates coated with human CD25 or streptavi-
din-magnetic beads binding biotin-CD25 were used to capture interest phages. Enriched phages were used to 
infect E. coli TG1 for expressing single-chain variable fragments (scFvs) and the binding and blocking activity 
were tested by ELISA. Positive clones were obtained and sequenced.

ELISA‑based binding assay for scFvs. Human CD25 protein (10165-H08H, Sino Biological) was coated 
on high binding ELISA plates with 0.2 μg/mL at 4 °C overnight, and then the plates were blocked with 3% skim 
milk powder in PBST (PBS containing 0.05% Tween-20) at 37 °C for 1 h. After washing two times with PBST, 
100 μL Scfvs of different clones were added to each well, incubated at 37 °C for 1 h. Plates were washed two times 
and then HRP anti-M13 mAb was used to detect Scfv binding to human CD25.

ELISA‑based blocking assay for scFvs. Human CD25 protein (10165-H08H, Sino Biological) was 
coated on high binding ELISA plates with 0.5 μg/mL at 4 °C overnight. Plates were blocked with 3% skim milk 
powder in PBST (PBS containing 0.05% Tween-20) at 37 °C for 1 h. The mixture of IL2-biotin (0.03 μg/mL) and 
scFvs were added to the blocked ELISA plate and incubated at 37 °C for 1 h. After washing, the biotinylated IL2 
binding to coated CD25 was detected by HRP-conjugated Streptomycin.

Antibodies production. Heavy chain variable region and light chain variable region were amplified 
(2 × Phanta Max Master Mix, Vazyme, P515-01) using the positive clones screened from the library as templates. 
Overlap PCR was conducted to assemble variable region and signal peptide. Purified gene fragments were sepa-
rately fused (ClonExpress II One Step Cloning Kit, Vazyme, C112-01) into the linearized pcDNA3.4 vectors 
with human IgG1 constant regions. The recombinant plasmids were prepared for production. Antibodies were 
expressed with Expi-CHO Expression system (A29133, Gibco) for 12 days and the supernatants were harvested 
and purified by a AT Protein A Diamond (AA0272, Bestchrom).

ELISA‑based binding assay. Human CD25 protein (10165-H08H, Sino Biological) was coated on high 
binding ELISA plates with 0.2 μg/mL at 4 °C overnight, and then the plates were blocked with 3% skim milk 
powder in PBST (PBS containing 0.05% Tween-20) at 37 °C for 1 h. After washing two times with PBST, serially 
diluted antibodies were added to each well, incubated at 37 °C for 1 h. Plates were washed two times and then 
HRP-goat anti-human IgG mAb (474-1006, KPL) was used to detect antibodies binding to CD25. Experiments 
were performed in triplicate, value = mean ± SEM.

Cell based binding assay. SU-DHL-1(CRL-2955, ATCC) or HEK293T-CD25 cells were harvested and 
washed by FACS buffer (0.2% BSA in PBS) two times. Serially diluted antibodies were mixed with 1 ×  106 cells 
at 4 °C for 1 h. After washing two times by FACS buffer, cells were incubated in dark with Goat Anti-Human 
IgG-PE (2040-09, Southern Biotech) at 4 °C for 30 min and then analyzed by NovoCyte 2060R flow cytometry. 
Experiments were performed in triplicate, value = mean ± SEM.

ADCC reporter bioassay. ADCC reporter bioassay was conducted with SU-DHL-1 cells, HEK293T-CD25 
cells or  CD8+ T cells as target cells and Jurkat cells (G7011, Promega) as effector cells. Activated  CD8+ T cells 
were got by stimulating  CD8+ T cells for 72 h with OKT3, CD28 antibody and IL-2. 25 μL target cells at 1.2 E6/
mL, serially diluted antibodies and Jurkat cells at 2.4 E6/mL were sequentially added to a White Tissue Culture 
treated 96 well plate in a cell incubator for 5 h. Bio-Glo Luciferase Assay Buffer/Substrate (G7940, Promega) was 
added to react for 15 min and then the value of Luminescence was read on Tecan microplate reader. Experiments 
were performed in duplicate, value = mean ± SEM.

In vitro ADCC assay. Antibody-dependent cell-mediated cytotoxicity was conducted with SU-DHL-1 cells, 
inactivated  CD8+ T (PB009-3-C, ALLCELLS) cells or activated  CD8+ T cells as target cells and PBMCs as effector 
cells. Activated  CD8+ T cells were got by stimulating  CD8+ T cells for 72 h with OKT3, CD28 antibody and IL-2. 
Serially diluted antibodies were mixed with target cells in 96-well plates at 37 °C for 15–30 min. The effector cells 
PBMCs (PB003F-C, ALLCELLS) were added and the mixture was incubated at 37 °C for 5 h. After substrate was 
added, OD490 value was read on the microplate reader. Percent cytotoxicity was computed using following for-
mula: 100 × (OD490 of Experimental wells–OD490 of Experimental Wells Without Antibody)/(OD490 of Target 
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Cells Maximum LDH Release wells-OD490 of Target Cells Spontaneous LDH Release wells). Experiments were 
performed in duplicate, value = mean ± SEM.

Affinity analysis by surface plasmon resonance. SPR measurements were performed at room tem-
perature using a BIAcore 8K system with CM5 chip, which was amino coupled by human antibody capture kit. 
HBS-EP + buffer (150 mM NaCl, 10 mM HEPES, 3 mM EDTA and 0.05% (v/v) surfactant P20 pH 7.4) was used 
as running buffer. The blank channel of the chip served as the negative control. The antibodies were captured on 
the chip at 400–500 response units. Serial dilutions of human or cynomolgus CD25 (from 50 to 3.125 nM with 
twofold dilution) were applied to flow over the chip surface, which was regenerated with 3 M  MgCl2 after each 
cycle. The affinity was calculated using a 1:1 (Langmuir) binding fit model or two state reaction model with BIA 
evaluation software. Experiments were performed in duplicate, value = mean ± SD.

ELISA‑based IL2‑binding inhibition assay. Human CD25 protein (10165-H08H, Sino Biological) was 
coated on high binding ELISA plates with 0.5 μg/mL at 4 °C overnight. Plates were blocked with 3% skim milk 
powder in PBST (PBS containing 0.05% Tween-20) at 37 °C for 1 h. The mixture of IL2-biotin (0.03 μg/mL) and 
serially diluted CD25 antibodies were added to the blocked ELISA plate and incubated at 37 °C for 1 h. After 
washing, the biotinylated IL2 binding to coated CD25 was detected by HRP-conjugated Streptomycin. Experi-
ments were performed in duplicate, value = mean ± SEM.

In vitro IL‑2 signaling by STAT5 phosphorylation assay. PBMCs were co-cultured with 10 μg/mL 
CD25 antibody in a 96-U bottom plate for 30 min, then 10 U/mL IL2 was added and cultured for 10 min (work-
ing medium: 1640 + 10% FBS, containing 2 mM l-Glutamine). Cell suspension was prepared as follows. 200 µL 
Foxp3 fixation/breaking membrane working solution was added to cell pellet in each well and incubated for 
30–60 min at 2–8 °C or room temperature in the dark. After the sample was centrifuged at 400–600g for 5 min 
at room temperature, the supernatant was discarded and plates were washed twice with 200 µL/well 1× rupture 
solution and once with PBS at room temperature. Ice-cold Phosflow™ Perm Buffer III was slowly added and then 
incubated on ice for 30 min. After washing two times by FACS buffer, cells were stained with fluorescent-labeled 
antibody at 4 °C for 30 min and then analyzed by Beckman CytoFLEX flow cytometry. Experiments were per-
formed in triplicate, value = mean ± SEM.

In vitro IL‑2 signaling by T cell activation assay. Human  CD3+ T cells were activated by CD3/CD28 
T Cell Activator (StemCell) for 48 h in the presence of 10 μg/mL CD25 antibody in 1640 + 10% FBS (Gibco) 
medium. After staining by Fixable Viability Kit (Biolegend, 423105) for 15 min, cells were washed by two times. 
Cells were then stained by mixture of anti-human CD3, CD4 and CD8 fluorescent-labeled antibody at 4 °C for 
20 min and washed. After resuspending by 1 × Fixation/Permeabilization buffer, cells were incubated in dark 
for 30 min at room temperature and then resuspended by 1 × Permeabilization buffer. After centrifugation, cells 
were stained by Ki67 and Granzyme B fluorescent-labeled antibody for 30 min and then analyzed by Beckman 
CytoFLEX flow cytometry. Experiments were performed in triplicate, value = mean ± SEM.

CD25 expression level in naïve  CD4+ and  CD8+ T, activated  CD4+ T and  CD8+ T cells, Treg, iTreg 
and ADCC activity toward to these different cell types by BT942. Treg,  CD4+ T cells and  CD8+ T 
cells were isolated from PBMC.  CD4+ T and  CD8+ T cells were activated by CD3/CD28 T Cell Activator (Stem-
Cell) for 48 h.

In vitro induced Treg (iTreg) were induced from  CD4+ T cells.  CD4+ T cells were activated by CD3/CD28 T 
Cell Activator for 7 days in X-Vivo 15 medium containing 10% FBS, 1% Glutamax, 2 mg/mL N-acetylcysteine, 
1 × sodium pyruvate, 1 × HEPES, 1 × nonessential amino acids, 1 × pen/strep, 50 μM 2-mercaptoethanol, 500 U/
mL IL2, 100 ng/mL rapamycin and 10 ng/mL TGFβ1. For CD25 expression assay,  CD4+,  CD8+ naïve T cells and 
activated  CD4+T,  CD8+T cells were stained by anti-human CD4 or CD8 and CD25 fluorescent-labeled antibody. 
Treg and iTreg were stained by anti-human CD3, CD4, Foxp3 and CD25 fluorescent-labeled antibody. Cells were 
analyzed by Beckman CytoFLEX flow cytometry.

Methods of ADCC assay for these cell types was the same as described in “In vitro ADCC assay”.

Direct competitive binding characteristics of BA9 and BT942. Direct competitive binding of the 
antibodies was performed on a ForteBio Octet Red96 system (ForteBio) using in-tandem format binning assay. 
Biotinylated CD25 was loaded onto SA sensors (18-5019, fortebio). The sensors were then exposed to the first 
antibody at 50 µg/mL or PBST for 300 s, then to the second antibody at 50 µg/mL or PBST for 300 s. Data was 
processed using ForteBio’s Data Analysis Software 9.0.

Syngeneic mouse models. All animal works were carried out in compliance with ARRIVE guidelines 
(https:// arriv eguid elines. org). These experiments were carried out at Beijing Biocytogen Co. Ltd. B-hIL2RA 
humanized mice (C57BL/6-Cd25tm1(CD25)/Bcgen) were used for these efficacy studies.

For early phase of tumor development, mice were randomized into three groups, with 8 mice per group based 
on their body weight at day-1 (the day before tumor inoculation). Then BA9 and BT942 were dosed at 10 mg/
kg intraperitoneally twice a week with vehicle group as the control. 5 ×  105 MC38 cells in PBS were inoculated 
subcutaneously in the flank of mice at the next day (day 0). At day 16 after tumor inoculation, three mice in each 
group were sacrificed to test the proportion of  CD45+,  CD3+T,  CD4+T,  CD8+T,  CD25+Foxp3+,  Foxp3+(Treg) cells 

https://arriveguidelines.org
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in tumor by flow cytometry. Remaining animals were euthanized by  CO2 asphyxiation when the mean tumor 
volume reached about 1300  mm3 at day 21 after tumor inoculation.

For late phase of tumor development, B-hIL2RA humanized mice were implanted with 5 ×  105 cells MC38 
cells subcutaneously in the flank. Mice were distributed into three groups (n = 8) with group mean starting vol-
umes of 50 to 60  mm3 (day 5). Then BA9 and BT942 were also dosed at 10 mg/kg intraperitoneally twice a week 
with vehicle group as the control. Animals were euthanized by  CO2 asphyxiation when the mean tumor volume 
reached about 2000  mm3 at day 24 after tumor inoculation. Four mice with mean tumor volume close to the 
whole group were selected to test the proportion of  CD45+,  CD3+T,  CD4+T,  CD8+T,  CD25+Foxp3+,  Foxp3+(Treg) 
cells in tumor and peripheral blood by flow cytometry.

For the synergistic effect of BT942 and anti-mouse PD1 antibody at late phase of tumor development, 
B-hIL2RA humanized mice were implanted with 5 ×  105 MC38 cells subcutaneously in the flank. Mice were 
distributed into five groups with 8 mice per group and treated with BT942, Daclizumab (Sunshine Guojian 
Pharmaceutical) which block IL-2 signaling, anti-mouse PD1 (BioXCell), their combination (BT942 combined 
with the anti-mouse PD1) or vehicle (PBS) when mean tumor volume reached 68 mm3 (day 5). Animals were 
euthanized by  CO2 asphyxiation when mean tumor volume reached about 2000  mm3 at day 26 after tumor 
inoculation. Four mice with mean tumor volume close to the whole group were selected to test the proportion of 
 CD45+,  CD3+T,  CD4+T, activated  CD4+Teff, living  CD4+Teff,  Foxp3+(Treg),  CD25+Foxp3+,  CD8+T, living  CD8+T, 
activated  CD8+T,  CD8+Granzyme  B+CD25+ cells in tumor and peripheral blood by flow cytometry. And we also 
tested the proportion of  CD45+,  CD3+T,  CD4+T,  CD8+T,  Foxp3+(Treg),  CD25+Foxp3+ cells in spleen and lymph 
node by flow cytometry.

Tumor size was measured twice a week by caliper. Tumor volumes were calculated as volume =  (w2 × l)/2 
where w is the tumor width and l is the tumor length in millimeters.

The Tumor Growth Inhibition rate (TGI) were calculated as TGI (%) = [1 − (Ti − T0)/(Vi − V0)] × 100%. 
(Ti: Mean tumor volume of the treatment group at day i after tumor inoculation, T0: Mean tumor volume of 
the treatment group at the day of first administration; Vi: Mean tumor volume of the vehicle group at day i after 
tumor inoculation, V0: Mean tumor volume of the vehicle group at the day of first administration).

Flow cytometry analysis for multiple immune cell populations after treatment in B‑hIL2RA 
mice. For flow cytometry experiments, blood and tissues were collected and processed after animals were 
euthanized. Spleen, LNs (inguinal, axillary) and tumors were dissected into RPMI1640.

Aspiration of each blood sample 100 μL was transferred into a 1.5 mL EP tube. Add 1.4 mL of red blood 
cell lysate, Turn upside down mix, and lyse for 5 min at room temperature. Add 10 mL of PBS to stop the lysis.

Transfer the spleen to a 35 mm culture dish, and then grind with a sterile syringe tail. Wash and centrifuge 
at 500g for 5 min at 4 °C. Resuspend the cell pellets with 2 mL of red blood cell lysis buffer and incubate for 
5–10 min at room temperature. Add 10 mL of PBS to stop the lysis.

Transfer the lymph node to a 35 mm culture dish, and then grind with a sterile syringe tail. Wash and centri-
fuge at 500g for 5 min at 4 °C. Resuspend cells in PBS to the required volume for further applications.

Cut the tumor into small pieces of 2–4 mm, Transfer the tissue into the tube containing the enzyme mix 
(Tumor Dissociation Kit, Miltenyi Biotec) and placed on the gentleMACS Octo Dissociator, Performing semi-
automatic procedures and then grind with a sterile syringe tail with 10 mL of RPMI 1640 at 4 °C.

All cells (blood, tumor, spleen and LNs) were dispersed through a 70 μm filter and centrifuge at 500g for 
5 min at 4 °C. Count cells using a blood cell counting chamber. Resuspend cells in PBS to the required volume 
for further applications.

Samples were stained with Fixable Viability Dye eFluor™506 and anti-mouse CD45, CD3, CD4, CD8, anti-
human CD25. Intracellular staining of FoxP3, Granzyme B and Ki67 was performed using the FoxP3 Transcrip-
tion Factor Staining Buffer Set. All antibodies for flow cytometry are listed in Supplementary Table 1.

After incubation,  CD45+,  CD3+T,  CD4+T, activated  CD4+Teff  (CD4+FoxP3−), living CD4 +Teff 
 (CD4+FoxP3−Granzyme  B+ or  CD4+FoxP3−Ki67+),  CD8+T, living  CD8+T  (CD8+Granzyme  B+ or  CD8+Ki67+) 
in live cells and Treg  (CD4+FoxP3+),  hCD25+Foxp3+ in  CD4+T cells, and activated  CD8+T  (CD8+CD25+), 
 CD8+Granzyme  B+CD25+ in  CD8+T cells were gated and analyzed by Attune NxT Flow Cytometer (Thermo 
Fisher).

Pharmacokinetics and pharmacodynamics experiments. All animal care and experimental proce-
dures were complied with relevant ethical regulations regarding animal research. Pharmacokinetics and phar-
macodynamic study protocols in monkeys were approved by Institutional Animal Care and Use Committee 
(IACUC) and the Approval Number was UPP-IACUC-2020-00000. The BT942 antibody was administered 
intravenously to cynomolgus monkeys (N = 2, 2 males, body weight 3 ~ 5 kg) at a dose of 10 mg/kg. Peripheral 
bloods were collected at predose and 1 min, 30 min, 1 h, 3 h, 6 h, 24 h, 48 h, 96 h, 168 h, 240 h, 336 h, 504 h 
post-dose for PK study. ELISA was used to determine the concentration of BT942 in serum. In this method, 
CD25 protein was used as the capture reagent, and goat anti-human IgG, monkey ads-HRP was detecting agent. 
Results are shown as mean ± SEM. The main PK kinetic parameters were calculated using Phoenix WinNonlin.

Peripheral bloods were collected at pre-dose and 1 min, 3 h, 6 h, 24 h, 48 h, 72 h, 168 h, 336 h post-dose to 
determine  CD4+CD25+FoxP3+ percentage in CD4 + T cells with flow cytometry (CytomicsTM FC500).

Cryo‑electron microscopy analysis of the CD25‑IL‑2‑Fab complex. Sample preparation. 27 μL 
CD25 (extra cellular domain) at the concentration of 1.3 mg/mL was incubated with 20 μL IL-2 (1.76 mg/mL) 
and 30 μL BT942 Fab (2.5 mg/mL) on ice for 30 min and then the mixture was loaded onto a Superdex 200 SEC 
column. The eluted peak was applied to prepare cryo-EM grids. Frozen-hydrated cryo-EM specimens were 
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prepared with a Thermo Fisher Vitrobot Mark IV plunger. 4 μL of CD25-IL-2-Fab complex was placed on a 
glow discharged holey carbon grid (Quantifoil Au R1.2/1.3) coated with thin layer of graphene oxide. The excess 
of solution on the grid was blotted for 1.0 s at 100% humidity at 8 °C before the grid was flash frozen in liquid 
ethane slush cooled at liquid-nitrogen temperature.

Data collection. Cryo-EM data were collected on a Thermo Fisher Titan Krios G3i electron microscope 
equipped with a Gatan K3 direct electron counting camera. The microscope was operated at 300 kV, and images 
of the specimen were recorded with a defocus range of − 1.4 to − 2.4 μm at a calibrated magnification of 130 k 
in super-resolution mode of the K3 camera, thus yielding a pixel size of 0.27 Å on the object scale. A total of 
5836 movie stacks, each containing 32 sub-frames, were recorded with the semi-automated low-dose acquisition 
program EPU, with a total accumulated dose of 50 electrons/Å2.

Data processing. The raw super-resolution dose-fractionated images stacks were 2 × Fourier binned, aligned, 
dose-weighted and summed using MotionCor2, resulting in summed micrographs in a pixel size of 0.54  Å. 
Contrast transfer function (CTF) parameters were estimated using CTFFIND4.1. The following processing steps 
were performed in RELION3.1. First Laplacian-of-Gaussian method was used to pick particles automatically. 
Then all these particles were subjected to several rounds of reference-free 2D classification to remove contami-
nants and bad particles. After that 3D classification was performed using a map derived from PDB model as 
the initial reference model. The most homogeneous particles were selected for the final 3D auto-refinement. 
Reconstruction resolutions were determined based on the gold-standard Fourier shell correlation (FSC) 0.143 
criterion with the high-resolution noise substitution.

Data analysis. All one-way ANOVA statistical analyses were performed in SPSS Statistics 21 Software. All 
two-way ANOVA statistical analyses were performed in GraphPad Prism 8 Software. Details on the statistical 
tests applied are provided within the figure legends. The data are reported as bar graphs displaying individual 
values and means ± SEM, as indicated in the figure legends. No experiments were excluded from the analyses. 
p values were calculated using one-way ANOVA or two-way ANOVA (*p < 0.05, **p < 0.01, ***p < 0.001). EC50 
values were performed in GraphPad Prism 8 Software using the inbuilt nonlinear regression curve fit (log (ago-
nist) versus response, variable slope, 4 parameter).

Data availability
The variable region sequences of BT942 MAb have been deposited in GenBank with the accession codes 
MW251337 for heavy chain and MW251338 for light chain. The variable region sequences of BA9 MAb have 
been deposited in GenBank with the accession codes MW251339 for heavy chain and MW251340 for light chain. 
The structure of CD25 in complex with Fab has been deposited in the Protein Data Bank, with PDB code 7F9W. 
The corresponding cryo-EM map is available in the Electron Microscopy Data Bank, with code EMD-31499.
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