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Abstract: Although RAS family genes play essential roles in tumorigenesis, effective treatments
targeting RAS-related tumors are lacking, partly because of an incomplete understanding of the
complex signaling crosstalk within RAS-related tumors. Here, we performed a large-scale genetic
screen in Drosophila eye imaginal discs and identified Misshapen (Msn) as a tumor suppressor that
synergizes with oncogenic Ras (RasV12) to induce c-Jun N-terminal kinase (JNK) activation and
Hippo inactivation, then subsequently leads to tumor overgrowth and invasion. Moreover, ectopic
Msn expression activates Hippo signaling pathway and suppresses Hippo signaling disruption-
induced overgrowth. Importantly, we further found that Msn acts downstream of protocadherin Fat
(Ft) to regulate Hippo signaling. Finally, we identified msn as a Yki/Sd target gene that regulates
Hippo pathway in a negative feedback manner. Together, our findings identified Msn as a tumor
suppressor and provide a novel insight into RAS-related tumorigenesis that may be relevant to
human cancer biology.
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1. Introduction

The RAS genes (HRAS, NRAS, and KRAS) identified in 1982 are the most frequently
mutated oncogenes in various human cancers [1,2]. There are substantial experiments
showing that mutated RAS is a critical cancer driver and anti-RAS therapy is expected to be
a promising direction for cancer treatment [3,4]. However, despite decades of efforts and
breakthroughs, effective therapies are still underdeveloped for RAS-related tumors [1–4],
largely because of the complexity of signaling crosstalk and synergetic effects within
RAS-related tumors.

A large-scale genetic screen is an effective unbiased method to systematically dis-
sect the genetic bases in RAS-related tumors. Over the last few decades, Drosophila has
been proven to be an excellent model organism for cancer research [5–8] and a variety
of tumor models have been established in Drosophila [9–12]. Importantly, the genetic
screens in Drosophila have identified that the disruption of cell polarity genes (scrib, dlg,
lgl) collaborate with oncogenic Ras (RasV12) or Notch to promote tumor overgrowth and
invasion [12,13]. Thus, these established tumor models and genetic tools make it feasible to
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conduct large-scale genetic screens in Drosophila to dissect the mechanisms of RAS-related
cooperative oncogenesis.

Both c-Jun N-terminal kinase (JNK) and Hippo signaling pathways have been es-
tablished in tumorigenesis. JNK pathway activation cooperates with Ras signaling and
promotes tumor overgrowth and invasion [14]. Simultaneously, blocked JNK activity
could dramatically reduce tumor overgrowth and invasion in various Drosophila tumor
models [15–17]. Hippo signaling pathway has an essential role in organ size control and
cell proliferation; its dysregulation causes a lot of human disease, including cancer [18–21].

Recently, we performed a large-scale ethyl methanesulphonate (EMS)-induced ge-
netic screen, aiming to uncover novel tumor suppressors that could synergistically pro-
mote RasV12-induced tumor overgrowth [16,22]. Here, we identified that misshapen (msn,
CG16973) acts as a tumor suppressor that cooperates with oncogenic RasV12 to significantly
promote tumor overgrowth and invasion by simultaneously activating JNK pathway
and inactivating Hippo pathway. We found that Msn overexpression impeded Hippo-
disruption-induced overgrowth by genetically acting downstream of protocadherin Fat (Ft).
Additionally, we revealed that msn is a potential Yki/Sd target gene and it regulates Hippo
pathway in a negative feedback manner. Together, these findings not only uncovered Msn
as a novel regulator of RAS-related cooperative oncogenesis, but also provided a potential
therapeutic target for RAS-related tumors.

2. Results

2.1. msn Mutant Synergizes with Oncogenic RasV12 to Drive Tumorigenesis and Invasion

In order to identify novel tumor suppressors that can cooperate with RasV12 to pro-
mote tumor growth and invasion, we performed a large-scale EMS-induced genetic screen
on Drosophila eye-antennal imaginal discs utilizing the ey-FLP-based mosaic analysis
with repressible cell marker (MARCM) technique [16,22] (Figure 1A). Here, we identi-
fied a recessive-lethal allele (#3208) that exhibited invasive tumor overgrowth phenotype
(Figure 1B,D,F). Subsequent deficiency mapping and complementation test revealed that
#3208 allele disrupted the misshapen (CG16973) gene (labeled as msn3208 thereafter). Consis-
tent with this, we found that null allele of msn (msn172) [23] also synergized with RasV12

and exhibited similar degree of tumor overgrowth (Figure 1E). More importantly, the over-
growth phenotype and reduced pupation caused by msn3208/RasV12 were both completely
rescued by co-expression of wild type Msn (Figure 1G,I and Supplementary Materials
Figure S1L). We further validated the phenotype of msn mutant clones, and found that
compared with wild type clones, loss of msn alone did not show significant growth ad-
vantage or changes in apoptosis, as indicated by PH3 and Caspase 3 staining, respectively
(Figure 1B,C, Figure S1A,B,E,F,I–K,M). In accordance with previous reports [16,22], RasV12

expression alone only showed mild tumor overgrowth and did not invade into the ventral
nerve cord (VNC) (Figure 1D,K), a commonly used tissue for tumor invasion observation in
Drosophila [12,14,16,22], whereas larvae bearing msn3208/RasV12 tumors exhibited dramatic
tumor overgrowth (Figure 1F,F’), autonomous cell proliferation (Figure S1G,H,M), reduced
pupation ratio (Figure 1I), and increased VNC invasion behavior (Figure 1J,L). In contrast,
we did not observe a significant change in apoptosis (Figure S1C,D). Consistent with in-
creased tumor invasion, we also observed intensive MMP1 activation, a protein essential
for basement membrane degradation and epithelial–mesenchymal transition (EMT) [24,25],
in both primary tumor and invasive leading edges (Figure 1M). Taken together, these
findings suggest that msn is a tumor suppressor that cooperatively induces tumor growth
and invasion with RASV12.
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Figure 1. Loss of Misshapen (msn) synergizes with oncogenic Ras (RasV12) to induce tumorigenesis and invasion. (A) Strat-
egy of an ethyl methanesulphonate (EMS)-induced forward genetic screen in developing Drosophila eye to identify novel 
RasV12 collaborating tumor suppressors. (B–H) Fluorescence micrographs of GFP-labeled pupa/larva are shown in the top 
panels, cephalic complexes dissected from third-instar larvae are shown in the bottom. Compared with control (B,B’), loss 
of msn alone has no obvious overgrowth (C,C’), ectopic expression of RasV12 alone only induces mild tumor growth (D,D’). 
msn−/−/RasV12 tumors display significant overgrowth (E,F and E’,F’), which can be rescued by co-expression of Msn (G,G’) 
or co-expression of a dominant negative form of basket (H,H’). (I) Quantification of unpupated ratio for indicated geno-
types in B–H. (J–L) Fluorescence micrographs of GFP-labeled Optic lope and ventral nerve cord (VNC) dissected from 
third-instar larvae are shown, arrow indicates invasion sites (K,L). (J) Quantification of invasion ratio in (K) and (L). (M–
Q) Loss of msn collaborates with RasV12 to induce tumorigenesis through activating c-Jun N-terminal kinase (JNK) signal-
ing pathway. Expression of basket (bskDN ) suppressed msn−/−/RasV12-induced MMP1 expression, tumor invasion (M–N”), 
and upregulation of puc transcription (O–Q’); note that loss of msn alone does not significantly induce MMP1 activation 
(O,O’). Scale bars represent 500 μm (B–H), 200 μm (B’–H’, M–M”, and N–N”), or 100 μm (K–L, O–Q, and O’–Q’). 

2.2. msn−/− Collaborates with RasV12 to Activate JNK Signaling 
Given that MMP1 also acts as a transcriptional target of JNK signaling pathway 

[24,25], the increase of MMP1 in msn3208/RasV12 tumors implies that JNK activation might 
be essential for tumorigenesis. Inconsequently, previous studies indicate that Msn acts as 
an MKKKK to activate the c-Jun N-terminal kinase (JNK) signaling pathway [23,26,27]. 
Our research also shows that ectopic Msn overexpression indeed induced mild JNK acti-
vation (Figure 3A,B), whereas loss of msn alone had no significant change on puc tran-
scription (Figure 1O), another canonical JNK pathway target [25]. Intriguingly, we found 
loss of msn synergized with RasV12 to induce intensive MMP1 and puc activation (Figure 
1M,P), both of which were significantly suppressed by expression of a dominant-negative 
form of Drosophila JNK homologue basket (bskDN) (Figure 1H,N,Q and Figure S1L). It is also 
worth noting that although inhibition of JNK activity completely blocked msn−/−/RasV12-

Figure 1. Loss of Misshapen (msn) synergizes with oncogenic Ras (RasV12) to induce tumorigenesis and invasion. (A) Strategy
of an ethyl methanesulphonate (EMS)-induced forward genetic screen in developing Drosophila eye to identify novel RasV12

collaborating tumor suppressors. (B–H) Fluorescence micrographs of GFP-labeled pupa/larva are shown in the top panels,
cephalic complexes dissected from third-instar larvae are shown in the bottom. Compared with control (B,B’), loss of
msn alone has no obvious overgrowth (C,C’), ectopic expression of RasV12 alone only induces mild tumor growth (D,D’).
msn−/−/RasV12 tumors display significant overgrowth (E,F and E’,F’), which can be rescued by co-expression of Msn
(G,G’) or co-expression of a dominant negative form of basket (H,H’). (I) Quantification of unpupated ratio for indicated
genotypes in B–H. (J–L) Fluorescence micrographs of GFP-labeled Optic lope and ventral nerve cord (VNC) dissected
from third-instar larvae are shown, arrow indicates invasion sites (K,L). (J) Quantification of invasion ratio in (K) and (L).
(M–Q) Loss of msn collaborates with RasV12 to induce tumorigenesis through activating c-Jun N-terminal kinase (JNK)
signaling pathway. Expression of basket (bskDN ) suppressed msn−/−/RasV12-induced MMP1 expression, tumor invasion
(M–N”), and upregulation of puc transcription (O–Q’); note that loss of msn alone does not significantly induce MMP1
activation (O,O’). Scale bars represent 500 µm (B–H), 200 µm (B’–H’, M–M”, and N–N”), or 100 µm (K–L, O–Q, and O’–Q’).
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2.2. msn−/− Collaborates with RasV12 to Activate JNK Signaling

Given that MMP1 also acts as a transcriptional target of JNK signaling pathway [24,25],
the increase of MMP1 in msn3208/RasV12 tumors implies that JNK activation might be
essential for tumorigenesis. Inconsequently, previous studies indicate that Msn acts as an
MKKKK to activate the c-Jun N-terminal kinase (JNK) signaling pathway [23,26,27]. Our
research also shows that ectopic Msn overexpression indeed induced mild JNK activation
(Figure 3A,B), whereas loss of msn alone had no significant change on puc transcription
(Figure 1O), another canonical JNK pathway target [25]. Intriguingly, we found loss of
msn synergized with RasV12 to induce intensive MMP1 and puc activation (Figure 1M,P),
both of which were significantly suppressed by expression of a dominant-negative form of
Drosophila JNK homologue basket (bskDN) (Figure 1H,N,Q and Figure S1L). It is also worth
noting that although inhibition of JNK activity completely blocked msn−/−/RasV12-induced
puc upregulation in a cell-autonomous manner, we detected strong non-autonomous
JNK activation in the surrounding region (Figure 1Q), which is probably caused by JNK
propagation [28]. Together, these data indicate that loss of msn synergizes with RasV12 to
promote tumor overgrowth via activating JNK signaling in vivo.

2.3. Loss of msn Synergizes with RasV12 to Inactivate Hippo Pathway

Recent studies in Drosophila gut have uncovered a genetic link between the STE20 ki-
nase Msn and the Hippo pathway, indicating that Msn may act in parallel with mammalian
homologue MST 1/2 (Hpo), the key component of Hippo pathway, to regulate mammalian
homologue Lats 1/2 (Wts) and mammalian homologue YAP/TAZ (Yki) activity [29–34].
Given that Hippo pathway plays a key role in regulating tumorigenesis [18,20,21], we hy-
pothesized that the synergistic effect in msn−/−/RasV12 tumors might be caused by inactiva-
tion of Hippo signaling. We found that loss of msn alone in the developing eye disc showed
neither changes in the endogenous expression of Hippo pathway target gene including
Diap1 (Figure S2A,B), ex (Figure S2C,D), and Wg (Figure S2E,F), nor Yki localization (Fig-
ure S2G–H), while overexpression of RasV12 alone mildly upregulated Hippo target genes
(Figure 2A,C,E) and Yki nucleus localization (Figure 2G); it is also worth noting that overall
Yki levels were decreased in RasV12 clones (Figure 2G and Figure S2I). In msn−/−/RasV12

tumors, we observed intensive upregulation of Diap1, Wg, and ex (Figure 2B,D,F), as well
as strong Yki nucleus localization (Figure 2H). Interestingly, we found that Wts overexpres-
sion not only dramatically blocked msn−/−/RasV12-induced tumor growth (Figure 2I–J),
but also further enhanced the tumor suppression phenotype caused by JNK inhibition
(Figure 2K,L,P–R). Together, these data indicate that msn−/−/RasV12 drives tumor growth
via Hippo signaling inactivation in vivo.
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Diap1 (B–B”), ex-lacZ (D–D”), Wg (F–F”), and mammalian homologue YAP/TAZ (Yki) localization (H–H”). (I–L) Fluores-
cence micrographs of GFP-labeled pupa/larva and cephalic complexes are shown. msn−/−/RasV12-induced tumor growth 
phenotype is completely suppressed by mammalian homologue Lats 1/2 (Wts) overexpression with or without JNK block-
ing. (M–R) Ectopic Wts overexpression causes stronger suppression of msn−/−/RasV12 tumor growth phenotype than that of 
JNK inhibition alone (M–Q). Quantification of GFP-positive area of indicated genotypes (R). **** p < 0.0001(mean + S.D.). 
Scale bars represent 50 μm (A–F), 20 μm (G,H), 500 μm (I–L), 200 μm (I’–L’), 100 μm (M–Q). 

Figure 2. Loss of msn collaborates with RasV12 to inactivate Hippo pathway. (A–H) Fluorescence micrographs of GFP-labeled
clones of eye discs are shown. Compared with RasV12 clones, msn−/−/RasV12 tumors show dramatic upregulation of Diap1
(B–B”), ex-lacZ (D–D”), Wg (F–F”), and mammalian homologue YAP/TAZ (Yki) localization (H–H”). (I–L) Fluorescence
micrographs of GFP-labeled pupa/larva and cephalic complexes are shown. msn−/−/RasV12-induced tumor growth
phenotype is completely suppressed by mammalian homologue Lats 1/2 (Wts) overexpression with or without JNK blocking.
(M–R) Ectopic Wts overexpression causes stronger suppression of msn−/−/RasV12 tumor growth phenotype than that of
JNK inhibition alone (M–Q). Quantification of GFP-positive area of indicated genotypes (R). **** p < 0.0001(mean + S.D.).
Scale bars represent 50 µm (A–F), 20 µm (G,H), 500 µm (I–L), 200 µm (I’–L’), 100 µm (M–Q).

2.4. Msn Positively Regulates Hippo Signaling in Tumorigenesis

Previous studies indicated that Msn can functionally substitute for Hippo to re-
strict Yki activity in intestine [29–31]. Consistent with this notion that Msn is a positive
regulator of Hippo pathway, we found Msn overexpression alone caused clone under-
growth (Figure 3G,H,M) and significantly reduced endogenous expression of Yki reporter
Diap1 (Figure 3C,D and Figure S3G,H) and diap1-lacZ (Figure 3E,F and Figure S3I,J) in
Drosophila imaginal discs, whereas it had no obvious changes on apoptosis and mitosis
(Figure S3A–D). In Drosophila, cell polarity gene scribble (scrib) acts as a neoplastic tu-
mor suppressor and would be eliminated by Hippo-mediated cell competition [35,36].
We found that Msn overexpression caused a further reduction of scrib−/− clone sizes
(Figure 3I,J,M). It has been proven that the elimination of scrib−/− clone depends on
JNK-activation-induced Yki inhibition, and given that Msn overexpression can activate
both JNK and Hippo signaling (Figure 3A,B), we blocked JNK activity and simultane-
ously overexpressed Msn in scrib−/− clones. We found that the overgrowth phenotype
of scrib−/−/bskDN clone (Figure 3K) was significantly reduced by co-expression of Msn
(Figure 3L,M), indicating that Msn promotes scrib−/− elimination in a JNK-independent
manner. In accordance with this, we also found that Msn overexpression significantly sup-
pressed RasV12/scrib−/−-induced tumor overgrowth (Figure 3N,O and Figure S3E,F), which
has been proven to be mediated by Hippo signaling [37–39]. Moreover, we found that Msn
overexpression reduced both the relative and absolute clone sizes of RasV12 (Figure 3P–S).
Together, these results indicate that ectopic Msn overexpression activates Hippo signaling
to suppress tumorigenesis.
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Figure 3. Msn positively regulates Hippo signaling. (A–F, A’–F’ and A”–F”) Fluorescence micrographs of eye discs are
shown. Compared with wild type (A–A”, C–C” and E–E”), Msn overexpression induces mild JNK activation (B–B”) and
Hippo target gene downregulation (D–D” and F–F”). (G–L) Fluorescence micrographs of GFP-labeled clones of eye discs
are shown. Msn overexpression decreases wild type clone size (G and H), scribble (scrib)−/− clone size (I and J), and
significantly impedes scrib−/−/bskDN-induced clone overgrowth (K and L). (M) Quantification of GFP-positive area of
indicated genotypes. (N,O) Msn overexpression suppresses RasV12/scrib−/− tumor growth. (P–S) Msn overexpression
suppresses RasV12 absolute and relative clone size (P and Q). Quantification of GFP-positive absolute (R) and relative area
(S) of indicated genotypes. *** p < 0.001 (mean + S.D.); **** p < 0.0001 (mean + S.D.). Scale bars represent 50 µm (A–F),
100 µm (G–L and P,Q), 500 µm (N,O), 200 µm (N’,O’).

2.5. Msn Acts Downstream of Ft in Modulating Hippo Signaling

Although we and others proved that Msn positively activates Hippo signaling in
various fly organs, the upstream regulator, especially the membrane anchor of Msn, re-
mains unclear [31]. Fat signaling has previously been shown to be involved in both the
establishment of planar cell polarity and growth control, Ft is a transmembrane protein that
negatively regulates organ size and functions as a well-established, essential regulator of
Hippo signaling in both eye and wing disc [19,40–43]. Because the quantification of wing
size is relatively easy and standard deviation is lower, we dissected the genetic interactions
between Msn and Ft in developing wing, with specific focus on the overall size of the adult
wing [43]. As previously shown, knockdown of ft expression in the wing pouch region
using nub-Gal4 results in a significant increase in wing size [44] (Figure 4A,C,E), while
overexpression of Msn alone results in a significant decrease in wing size (Figure 4B,E),
consistent with its role as a positive regulator of Hippo signaling. When we knocked
down ft and simultaneously overexpressed Msn, the wing size phenocopies that of Msn
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overexpression alone (Figure 4D–E). Similarly, we found that ft knockdown-induced ex
upregulation was also suppressed when Msn was co-expressed (Figure 4F–H and Figure
S4B). To further dissect the physiological function of msn in regulating Ft-mediated growth,
we removed one copy of msn, and found that ectopic expression of truncated form of Ft
that removed most of the extracellular domains (Ft∆ECD) caused small wing phenotype
(Figure 4J); this reduction in wing size was suppressed by heterozygosity of the msn allele
(Figure 4L), phenocopying that of wts deletion (Figure 4K). Taken together, these genetic
data indicate that Msn acts downstream of Ft in modulating Hippo signaling.
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Figure 4. Msn acts downstream of protocadherin Fat (Ft) in modulating Hippo signaling. (A–E) Light micrographs of
Drosophila adult wings. Compared with control (A), Msn overexpression significantly impedes ft knockdown-induced
overgrowth phenotype (C and D); note that overexpression of Msn alone mildly reduces wing size (B). (E) Quantification
of wing size in (A–D). (F–H and F’–H’) Fluorescence micrographs of wing discs are shown. Msn overexpression does
not significantly affect ex transcription under hh-Gal4 (F and F’), but significantly suppresses ft knockdown-induced ex
upregulation (G–G’ and H–H’). (I–L) Light micrographs of Drosophila adult wings are shown. Removing one copy of wts
(K) or msn−/+ (L) significantly impedes nub > Ft∆ECD-induced wing undergrowth phenotype (J). (M) Quantification of wing
size in (I–L). (N–S) Fluorescence micrographs of wing discs are shown. Compared with control (N and N’), knockdown yki
or sd reduce endogenous msn transcription (O,P and O’,P’); Yki or YkiS168A overexpression upregulates msn transcription
(Q–R’), which is suppressed by knocking down sd (S). (T) Quantification of relative level of msn mRNA of indicated
genotypes. * p < 0.05 (mean + S.D.); **** p < 0.0001 (mean + S.D.). Scale bars represent 200 µm (A–D and I–L), 100 µm
(F–H, N–S, and N’–S’).

Interestingly, a protein–protein interaction screen in fly uncovered a potential physical
link between Ft and Msn [45]; therefore, we further examined the physical interaction between
Ft and Msn in S2 cells. Unfortunately, our co-immunoprecipitation experiment did not detect
a physical binding between Ft∆ECD and Msn, suggesting that Ft might act through other
unknown protein(s) to regulate Msn-mediated Hippo activation (Figure S4C,D).
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2.6. Msn Acts as a Hippo Target Gene in a Negative Feedback Manner

Given that human ortholog of Msn (MAP4K4) is overexpressed in various human
cancers [46–50] and a number of Hippo pathway components regulate Hippo signaling in
a negative feedback manner, including kibra, ex, wts [18,20,21,51], we utilized the Drosophila
wing imaginal discs to explore whether Msn also functions as a Hippo pathway target
gene. Compared with control, knockdown Hippo signaling effector Yki or the transcription
factor Scalloped (Sd) under en-Gal4 significantly reduced the Msn transcription level,
as demonstrated by a lacZ enhancer trap insertion within the msn locus (Figure 4N–P).
Conversely, Yki and active form of Yki (YkiS168A) overexpression significantly upregulated
msn transcription level (Figure 4Q,R) and co-expression of an sd RNAi significantly impeded
YkiS168A-induced msn-lacZ upregulation (Figure 4S). Interestingly, we also found that
Msn overexpression suppressed transcription of itself (Figure S4A). To further assess the
role of Yki and Sd in regulating msn expression, we performed qRT-PCR in vivo using
adult fly heads, which are relatively easy to collect and extract mRNA from for qPCR
analysis. Consistent with wing disc results, Yki overexpression in the developing eye disc
upregulated msn transcription, which was significantly impaired by knocking down sd
(Figure 4T). Taken together, these data indicate that Msn also acts as a Yki/Sd target to
form a negative feedback loop.

3. Discussion

Drosophila has been widely used as a cancer model for the past few decades to dis-
sect various human cancer biology questions, including cell–cell communication, tumor
heterogeneity, clonal evolution, cancer cachexia, and antitumor drug resistance [5–7]. The
powerful genetic tools established in Drosophila, especially the mosaic analysis with a
repressible cell marker (MARCM) system [52,53], make it possible to perform large-scale
genetic screens aimed at identifying novel tumor suppressor genes in vivo [12,16,22]. In
this study, we conducted an EMS-induced unbiased modified genetic screen and identified
misshapen (CG16973) as a tumor suppressor that synergizes with RasV12 to drive tumor
overgrowth by inactivating Hippo signaling in Drosophila (Figure S5).

Misshapen (Msn) is a member of the STE20 kinase family; it was initially identified as
a MAP kinase kinase kinase kinase (MKKKK) that activates the c-Jun N-terminal kinase
(JNK) pathway [23,26,27]. Msn also regulates diverse physiological functions including
dorsal closure, photoreceptor axon targeting, germline ring canal stabilization, and intes-
tine homeostasis [23,29,31,54,55]. Moreover, recent studies have shown that Drosophila Msn
and its mammalian homologue MAP4K4/6/7 act in parallel and partially redundantly
with canonical Hippo signaling component mammalian homologue MST 1/2 (Hpo) in
regulating mammalian homologue Lats 1/2 (Wts) and mammalian homologue YAP/TAZ
(Yki) [29–34,56,57]. Given that Hippo signaling pathway is an evolutionarily conserved
pathway that regulates various essential physiological processes and its disruption con-
tributes to a number of human diseases including cancer [18,20,21,58], it is possible that
Msn and its mammalian homologue MAP4K4/6/7 may also function as a tumor suppressor
in a context-dependent manner.

RAS family genes are considered to be one of the most highly mutated genes in various
cancers [1–4]; however, treatment targeting RAS-related tumors remains unsatisfactory,
and the in vivo molecular mechanisms of RAS-related tumorigenesis are still not com-
pletely understood. Here, we identified msn as a tumor suppressor that cooperates with
oncogenic RasV12 to promote tumor overgrowth and invasion by simultaneously activat-
ing JNK pathway and inactivating Hippo pathway. We found that Msn overexpression
dramatically suppressed scrib1/RasV12-induced tumor overgrowth and invasion, a well-
established Drosophila cancer model. Additionally, we revealed that msn acts downstream
of Ft and regulates Hippo pathway in a negative feedback manner. It is worth noting
that we could not exclude the possibility that msn−/−/RasV12 tumors could also regulate
other growth regulating pathways, including JAK-STAT signaling, which requires further
investigation (Figure S5).
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Given the high conservation of signaling pathways and cancer-related genes between
Drosophila and human, we assume that similar mechanisms could be involved in human
cancer progression. Our study here identified Msn as a tumor suppressor and further
investigation in mammal and human may provide potential therapeutic targets for cancer
treatment, especially for Hippo-related tumors.

4. Experimental Procedures
4.1. Drosophila Stocks and Genetics

All crosses were raised on standard Drosophila media at 25 ◦C unless otherwise in-
dicated. Fluorescently labeled clones were produced in the eye discs as previously de-
scribed [12,16,22] using the following strains: ey-Flp1; Act > y+ > Gal4, UAS-GFP; tub-Gal80,
FRT79E (79E tester); ey-Flp1; Act> y+ > Gal4, UAS-GFP; tub-Gal80, FRT80B (80B tester);
ey-Flp5, Act > y+ > Gal4, UAS-GFP; FRT82B, tub-Gal80 (82B tester). Additional strains,
including GMR-Gal4, en-Gal4, hh-Gal4, nub-Gal4, UAS-GFP, UAS-ft-IR, wtsX1 (#44251),
msn172 (#5947), msn-LacZ (#11707), and UAS-Msn (#5946), were obtained from Bloomington
Drosophila Stock Center; pucE69, UAS-RasV12 [15], UAS-bskDN [17], and scrib1 [59] were
previously described. UAS-Wts, UAS-Yki, UAS-YkiS168A, UAS-yki-IR, and UAS-sd-IR were
previously described [60]. UAS-Ft∆ECD is a kind gift from Kenneth Irvine.

4.2. EMS Mutagenesis and Genetic Screen

We focused on Drosophila chromosome 3 L in this screen. Male flies carrying FRT79E
(Sp/CyO-GFP; FRT79E) were starved for 8 h and subsequently fed with 25 mM EMS
solution overnight at room temperature. The mutagenized males were then mated to
females of the genotype UAS-RasV12; sb/TM6B. Single F1 males of the genotype UAS-
RasV12/CyO-GFP; ∗FRT79E/TM6B were crossed to Sp/CyO; sb/TM6B first and then
crossed with the 79E tester line for validation of GFP-labeled tumor overgrowth phenotype
under fluorescent microscope.

4.3. Immunostaining

Third-instar larvae eye-antennal discs were dissected in 1 × PBS, fixed in freshly
made 4% paraformaldehyde, and stained as described previously [61] using the following
primary antibodies: mouse anti-MMP1 (1:200, Developmental Studies Hybridoma Bank,
DSHB, Iowa City, IA, USA), mouse anti-β-Gal (1:1000, Promoga, Madison, WI, USA),
rabbit anti-phospho-histone 3 (PH3) (1:200, Cell Signaling Technology, CST, Danvers, MA,
USA), rabbit anti-active caspase-3 (1:400, Cell Signaling Technology, CST, Danvers, MA,
USA), mouse anti-Diap1 (1:200, a gift from Bruce Hay, California Institute of Technology,
Pasadena, CA, USA), rabbit anti-Yki (1:500, gift from Duojia Pan, University of Texas
Southwestern Medical Center, Dallas, TX, USA), and mouse anti-Wg (1:200, Developmental
Studies Hybridoma Bank, DSHB, Iowa City, IA, USA). Secondary antibodies were anti-
rabbit-Cy3 (1:400, Thermo Fisher Scientific, Waltham, MA, USA) and anti-mouse-Cy3
(1:400, Thermo Fisher Scientific, Waltham, MA, USA).

4.4. Cell Culture

S2 cells were maintained in Schneider’s Drosophila Medium (Gibco #21720024) sup-
plemented with 10% fetal bovine serum (Cellmax #SA112) and 1% penicillin–streptomycin
(Gibco #15140122) at 28 ◦C.

4.5. Immunoprecipitation and Western Blotting

Transfection, Co-IP, and Western blot analysis were performed as previously described
with some modification [62]. paw-Gal4, UAS-attB-msn-HA, and UAS-attB-Fat∆ECD-FLAG
plasmids were co-transfected to S2 cells, performed using Effectene transfection reagent
(Qiagen #301427) following the manufacturer’s instructions and harvested 72 h after trans-
fection. Harvested S2 cells were lysed in 500 µL RIPA lysis buffer (50 mM Tris pH 7.5,
150 mM NaCl, 1 mM EDTA, 1% NP40, 5% glycerol, protease inhibitor cocktail, DTT). After
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the samples were rotated for 1 h at 4 ◦C, lysates were centrifuged at 13000 rpm for 13 min
at 4 ◦C. The lysate supernatant was incubated at 4 ◦C with 20 µL cleaned anti-FLAG M2
Affinity Gel (Sigma #A2220) for 3 h. The beads were washed with PBST four times, then
mixed with SDS-PAGE Loading Buffer (reducing, 5×) (CWBIO #CW0027S) and heated to
95 ◦C for 7 min. After separation of proteins by SDS-PAGE, proteins were transferred to
PVDF membrane (Merck Millipore #IPVH00010) which was blocked with 5% milk–PBST
for 1 h, incubated in primary antibody overnight at 4 ◦C, washed with PBST, incubated with
secondary antibody at room temperature for 1 h, and washed with PBST four times. Protein
was detected using a Viber Fusion FX6 Spectra imaging system (Vilber, Collégien, France).
The following antibodies for Western blotting were used: primary antibodies, rabbit-anti-
FLAG (1:10,000) (EASYBIO #BE2005); rabbit-anti–HA (1:9000) (EASYBIO #BE2006); and
secondary antibody anti-rabbit-HRP (1:8000) (Promega #W4011).

4.6. Quantitative Real-Time PCR

Drosophila adult head of indicated genotypes was removed and total RNA was then ex-
tracted using TRIzol (Ambion). Total RNA was reverse-transcribed into cDNA with the HiS-
cript II 1st Strand cDNA Synthesis Kit (Vazyme); and quantitative PCR was performed with
KAPA SYBR® FAST (KAPA BIOSYSTEMS) and quantified by the QuantStudio™ 5 Real-
Time PCR System (ThermoFisher). RP49 was used as an internal control. The following
primer sequences were used for real-time PCR. msn: F: 5′-TCCCTTGGACAGCAGCGATT-
3′, R: 5′-AGTTCCATCGTTCCTAGCC-3′; rp49: F: 5′-TCCTACCAGCTTCAAGATGACC-3′,
R: 5′-CACGTTGTGCACCAGGAACT-3′.

4.7. Statistical Analysis

Clone and wing size were measured with ImageJ and Photoshop, respectively. Quan-
tification of the data was presented in bar graphs created with GraphPad Prism 8. Data
represent mean values + SD. We used Mann–Whitney U test for multiple comparisons to
calculate statistical significance (* p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10040894/s1, Figure S1: Loss of msn collaborates with RasV12 to induce tumorigen-
esis. Figure S2: Loss of msn alone does not affect Hippo signaling activation. Figure S3: Msn
overexpression suppresses tumorigenesis. Figure S4: Msn regulates Hippo signaling in a feedback
manner. Figure S5: A schematic model depicting the role of Msn in regulating Hippo signaling
and tumorigenesis.
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