
1Scientific Reports | 6:30465 | DOI: 10.1038/srep30465

www.nature.com/scientificreports

Insights into Population Health 
Management Through Disease 
Diagnoses Networks
Keith Feldman1,2, Gregor Stiglic3,4, Dipanwita Dasgupta1,2, Mark Kricheff5, Zoran Obradovic6 
& Nitesh V. Chawla1,2,7

The increasing availability of electronic health care records has provided remarkable progress in the 
field of population health. In particular the identification of disease risk factors has flourished under the 
surge of available data. Researchers can now access patient data across a broad range of demographics 
and geographic locations. Utilizing this Big healthcare data researchers have been able to empirically 
identify specific high-risk conditions found within differing populations. However to date the majority 
of studies approached the issue from the top down, focusing on the prevalence of specific diseases 
within a population. Through our work we demonstrate the power of addressing this issue bottom-up 
by identifying specifically which diseases are higher-risk for a specific population. In this work we 
demonstrate that network-based analysis can present a foundation to identify pairs of diagnoses that 
differentiate across population segments. We provide a case study highlighting differences between 
high and low income individuals in the United States. This work is particularly valuable when addressing 
population health management within resource-constrained environments such as community health 
programs where it can be used to provide insight and resource planning into targeted care for the 
population served.

Today we are witnessing a shift in the landscape of modern healthcare. The rapid emergence and adoption of 
Electronic Medical Records (EMR) has led to a sundry of analytic technologies. These technologies utilize aggre-
gated EMR’s from numerous individuals in conjunction with machine learning and statistical techniques to pro-
vide personalized diagnoses based on a patient’s specific health conditions, clinical decision support systems, and 
numerous other tools employing secondary uses of EMR data1–5.

While these methods and technologies have provided advancements to both diagnostic accuracy and patient 
safety, the research thus far has been limited in leveraging data-driven methods to understand population level 
health dynamics. The EMR data, indeed, provides an exciting opportunity to gain a more complete and holistic 
understanding of a population segment. This not only offers an understanding of the risks faced by the population 
at large, but also offer insights into more effective resource management and application.

Traditionally, those studies that do attempt to address the issue at a population level have done so with respect 
to specific diseases such as diabetes, cardiovascular disease and mental disorders6–8. Further these population 
studies often evaluate attributes outside of an individual’s direct control, such as age, gender, and ethnicity. 
However, prior population health works have shown these attributes account for only a small portion of an indi-
vidual’s overall health condition. In fact, the set of factors contributing most notably to an individual’s health have 
been linked to their socioeconomic “circle,” or as stated by Dahlgren and Whitehead, the set of material and social 
conditions in which people live and work9.

One factor that has drawn a great deal of attention from population health researchers, is that of income. 
Two fundamental studies related to population income disparity were performed by Adler and Marmont respec-
tively10,11. In their work Marmot et al. go so far as to claim that “all modern analysis must now ‘control for’ social 
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class as they do for sex”. Since the publication of these works, there have been a number of additional studies 
investigating the relation of income to health more closely12–14. While these studies have provided a detailed 
evaluation into how socioeconomics can influence a population’s health, they fail to address the major factor of 
identifying specifically which diseases the population is at risk for.

The methodology presented in this work addresses this exact deficiency, helping to answer the question: what are 
the distribution of diseases, including comorbidities, of varying subgroups within a population? An understand-
ing of a population’s high-risk diagnoses has been shown to offer substantial benefits at both an administrative 
and community level. From an administrative perspective, population health can have a direct impact on public 
policy. A study by Tarlov proposed four frameworks that must be used in conjunction to provide guidance for 
constructing effective public policy, one of which is constructed from the “determinants of population health”15. 
Building on ideas similar to Dahlgren, Tarlov believes social/societal factors account for more than half of all 
influences on a population’s health. He adds to the importance of this understanding by posing that population 
interventions are unlikely to be successful without social/societal change.

On the community side, diagnosis specific inference can provide a direct impact on individual care. 
Community healthcare operations often struggle with restricted healthcare budgets or limited resource access, 
and as a result the allocation of their current resources has become increasingly important. An early study by 
Birch et al. detailed a need-based healthcare resource allocation system, which like many early works focused on 
population attributes such as age and sex16. With their work Birch et al. demonstrated that external data could be 
utilized to improve healthcare allocation, and offered that the next challenge was to “construct indicators of rela-
tive need” for a population. Building from this, we believe the ability to identify a population’s specific high-risk 
diagnoses could provide more effective resource allocation and treatment plans.

Although the quantity and quality of healthcare data is increasing, the analysis needed to obtain the diagnosis 
specific insights still present some challenges. Just as the complexities of human physiology and the unique nature 
of individual’s medical history have provided difficulties in the field of personalized medicine, the wide range of 
ethnicities, genders and ages between individuals offers a similar obstacle to the field of population healthcare. 
Variations such as these become particularly evident as we analyze populations stratified on attributes such as 
income, which fall on the outer edge of an individual’s socioeconomic circle.

In an attempt to address these complexities many studies have drawn on the field of network science. One of 
the first approaches, a study by Hidalgo et al., constructed networks based on disease comorbidities17. In these 
early works Hidalgo et al. and others demonstrated how diagnosis networks could be used to quantitatively 
study the properties of comorbid diseases18–21. Over the past decade network-based techniques have contin-
ued to evolve, with applications ranging from the identification of cancer-specific disease comorbidities, to the  
utilization of diagnostic data to identify the skeletal components that contribute to pathological disequilibrium 
in dental patients22–25.

Beyond the macro-level physical interactions found in diagnosis networks, extensive work has also been per-
formed on utilizing networks to model the complex interactions that occur on a molecular-level26–29. Further, in 
addition to their diagnostic applications, exciting new work has emerged with a focus on utilizing networks to 
model human physiology. These networks aim to inform our knowledge of the interdependency among several 
organs systems, and their function within the complex biological systems of the human body30–32.

It has become increasingly clear that population health management can no longer operate under a 
one-size-fits-all paradigm. In this work we leverage the network based framework, which allows for the anal-
ysis of the deviations in comorbidities and specific diagnoses between population subgroups. We intro-
duce a network-focused metric termed fold-change. The fold-change provides a normalized metric of the 
over-representation for diagnosis comorbidity pairs between two generalized population subgroups. Through 
the analyses presented we will establish not only the utility of the fold-change metric in identifying high-risk 
diagnoses targeted for specific population subgroups, but also demonstrate how partitioning the network using 
the fold-change metric as edge weights can help to uncover new and interesting diagnosis patterns not discern-
ible through naive partitioning techniques. We provide a case study of patients from high and low income pop-
ulations, based on median household income, within the United States. Additionally, we provide an extended 
analysis detailing the effects of further stratification based on insurance of the patient, discovering potentially 
cost saving disease hubs that could be used to guide the preventive actions of healthcare organizations and policy 
makers.

Results
The evaluation of the network-based technique proposed in this work was broken down into two distinct analysis, 
each of which investigated a different aspect of the diagnosis variations between the population subgroups. These 
subgroups represent individuals in the highest and lowest quartiles of median income across the United States. A 
summary of each analysis and the corresponding results can be found in the respective sections below.

The foundation for each of the following analyses was the creation of a diagnosis network to help standardize 
a disease intearaction representation as also done in the related works. As such, prior to detailing the analysis 
results we offer a brief overview of the experimental framework, providing context around the specific attributes 
of the networks utilized throughout the work.

Network Construction.  In the simplest form a network is a relational data representation. This representa-
tion is comprised of a set of entities, known as nodes, and connections between pairs of nodes, known as edges. 
Within the context of the diagnosis networks used in this work, each node represents a unique diagnosis code 
(provided in the ICD9-CM international standard), and co-morbid diagnoses share an edge. Diagnoses are 
comorbid if they co-occur in a patient.
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Additionally, the edges of the network were assigned a weight corresponding to the frequency at which the 
diagnosis nodes occurred comorbidly across all patients of the particular subgroup. It should be noted the edge 
weights of each diagnosis pair were normalized, the complete formalization of this process can be found in the 
Study Data and Methods section.

Comorbidity Analysis.  Our first analysis focused on the identification of over-represented network edges 
(comorbid diagnoses) for a particular population subgroup. The over-representation of a specific edge was quan-
tified by a normalized ratio of the corresponding edge weights in each of the two subgroup networks, a quantity 
henceforth referred to as “fold change”. A detailed discussion of the fold change metric can be found in the Study 
Data and Methods section.

Figure 1a presents a single-network representation of the diagnosis fold-change between the low and high 
income populations. The numbers within each node represent the respective ICD9-CM diagnosis code, and the 
edge coloring conveys whether the comorbid diagnoses were over-represented in the high or low income sub-
group. Edges where the fold-change ratio was greater than 1 for the high income subgroup were colored green, 
and those where fold-change ratio was greater than 1 for the low income subgroup were colored red. For clarity 
a fold-change value over 1 represents the case where the edge weight, representing the normalized comorbidity 
frequency between two diagnoses, is greater in a particular subgroup.

One benefit of the network visualization seen in Fig. 1a stems from the ability to quickly identify specific 
groupings of diagnoses. The figure was generated using what is known as a force-directed layout, where nodes are 
positioned in an effort to separate groups of adjacent (connected) nodes in a visually interpretable manner. As 
a result the prevalence of complications for pregnancy and childbirth in a group of high income female patients 
could be seen with relative ease. To account this an additional visualization is provided in Fig. 1b, which excludes 
pregnancy/birth related diagnoses, allowing a far more detailed view of the network composition.

A review of the low income population’s over-represented edges revealed a high prevalence of mental dis-
orders (schizophrenia), chronic diseases (obesity, diabetes) and drug related abuse and dependence. Conversely 
over-represented edges within the high income population were comprised almost entirely of pregnancy related 
conditions, ranging from labor conditions to delivery trauma. Conditions including obstructed labor represent 
a risk to the mother while others such as umbilical cord complications, and malposition indicate risk to the fetus.

For reference we have provided the top 10 diagnosis code pairs ranked by highest fold-change in Tables 1 and 
2 for the low and high populations respectively. It is important to note that all edges listed in the top 10, as well as 
all edges shown in Fig. 1, are significantly over-represented at p <​ 0.001.

Diagnosis Analysis.  Next we extend the comorbidity results to investigate the specific diagnosis nodes 
which comprise the over-represented edges of each subgroup.

Focusing on the low income population’s top 10 over-represented edge pairs (Table 1) we find multiple occur-
rences of nodes that constitute drug abuse or dependence. Analyzing the top 10 over-represented edge pairs for 
the high income population (Table 2) reveals multiple occurrences of edges containing the specific ICD9-CM 
code 664: Trauma to perineum and vulva during delivery. Trauma code 664 contained edges to a number of condi-
tions which included known or suspected fetal and placental problems, abnormality of forces of labor, and umbilical 
cord complications.

Network Metric Analyses.  Thus far, the analyses presented in this work have demonstrated the utility of 
the proposed fold-change metric. These analyses have highlighted how fold-change rankings can be utilized to 
identify significantly over-represented diagnoses, which can be beneficial in differentiating the health concerns 
of various population subgroups. However, with our final analysis we take the fold-change metric one step fur-
ther, demonstrating that combined with a standard network analysis (betweenness-centrality), it can be used to 
discern core-differences between the population groups. These differences are not immediately evident on the 
network not weighted by fold-change metric. Betweenness-centrality is a network metric which provides a nor-
malized measure of the global importance of a node in communicating between pairs of nodes in the network, 
considering the shortest paths33.

Utilizing the methodology detailed in the Network Construction section prior, two networks were constructed 
representing the high and low income populations. These networks were created utilizing a naive partitioning, in 
which the over-represented comorbidity pairs of patients in the high income population were added as edges to 
one network, while the over-represented comorbidity pairs of the low income population were added as edges to 
the other. The standard metric of betweenness-centrality was calculated on each network independently, and the 
top 10 diagnosis nodes ranked in decreasing order by betweenness-centrality are presented within Table 3. As can 
be seen from the results, there are a number of high-ranking diagnoses which coincide with the over-represented 
diagnoses identified by the fold-change rankings. For the high income population these included pregnancy 
related conditions such as Other current conditions in the mother classified elsewhere, while Nondependent abuse 
of drugs and a number of chronic conditions receive high centrality scores within the low income population.

Looking to Tables 4 and 5, we again provide rankings of betweenness-centrality calculated on both the low 
and high income population networks. However, in this case, each network underwent a range of pruning 
thresholds, at which all edges with a fold-change below the specified threshold value were removed. A complete 
overview of the process can be found in the Methods section. As a note, the high income population (Table 5) 
threshold at 2.0 has only two non-zero centrality scores after pruning, the remaining three spots are intention-
ally blank. It is overtly evident that the threshold value has a profound impact on the network structure, as the 
betweenness-centrality rankings undergo significant reordering across the range of thresholds. This can be 
seen in the high income population where diagnosis such as diabetes mellitus drops from Rank 1 to 5, while  
schizophrenic disorders, which was previously ranked outside the top-5, rises to rank 2. This phenomena is mirrored 
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in the low income population where diagnoses such as hypertension and cardiac dysrhythmias were initially ranked  
1 and 2, quickly fall outside the top 5, and are replaced by pregnancy related conditions such as trauma to per-
ineum and vulva during delivery at higher threshold values. A deeper discussion as to the implications of these 
changes can be found in the Discussion section.

Finally, in an effort to compare the observations from our fold-change ranking, with those detected using 
network structure alone, we performed community detection on the complete high and low income population 
networks. The results of these analyses can be found in the supplementary material.

Figure 1.  Presents a visualization detailing the diagnosis fold-change between the low and high income 
populations in a single network representation. (a) Complete Network Visualization comparing low income 
and high income populations. (b) Network Visualization without pregnancy/birth related diagnoses.
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Discussion
A review of the relevant literature reveals strong support for the observations derived from the income-stratified 
networks above. Beginning with the low income population, prior work has linked individuals’ with lower soci-
oeconomic status to a higher prevalence of chronic disease such as diabetes and obesity34–36. A study by Bassuk 
et al., which focused on the “Prevalence of Mental Health and Substance Use Disorders Among Homeless and 
Low-Income Housed Mothers”, found a significant increase in the rate of both mental health and substance use 
disorders amongst the low-income population when compared the general population. Additionally, the study 
highlighted an increased prevalence of the mental disorder schizophrenia amongst homeless solitary women37.

Likewise we find support in the literature for the over-represented diagnoses of the high income population. 
As noted prior, pregnancy related conditions constituted almost the entirely of the high income populations 
over-represented conditions. We conjecture the preponderance of pregnancy related conditions may be attributed 
to increased access to prenatal care, as many of the identified conditions were likely diagnosed during an expect-
ant mothers prenatal visits over the course her pregnancy. It is well established that due to the cost of these visits, 
and limited access to resources, lower socioeconomic populations often times fail to receive prenatal care at the 
appropriate times, if at all38.

In a similar fashion we find that a survey of diagnosis nodes corresponding to these over-represented edges 
can be supported by medical literature. The low income population’s prevalence of drug abuse or dependence 
nodes are connected to well documented comorbid conditions such as hepatitis and recurrent seizures39–41. 
Additionally a closer investigation of the diagnosis pairs yields another less apparent condition, kidney disease. 
Recent work has begun linking the long established toxic effects of drug use and abuse to the development of 
chronic kidney disease, fostering additional support for the power of our network-based technique to identify 
clinically useful comorbidities within a population subgroup42–44. For the high income population we evalu-
ated conditions that occurred comorbidly with the diagnosis Trauma to perineum and vulva during delivery 
(ICD9-CM code 664), which appeared multiple times in the set of over-represented edges. Investigation revealed 
that women who experience the pregnancy complications comorbid to code 664 have a significantly higher prob-
ability of their child being delivered with the aid of forceps45. This is particularly noteworthy as prior work has 
associated delivery with forceps with a 10-fold increased risk of perineal injury46. These findings again highlight 
the power of our network technique to identify high-risk diagnoses for a population subgroup, in this case repre-
senting high income pregnant women.

Moving to the network-focused analyses, as the overarching goal of this work was to provide a technique 
through which differentiating and representative diagnoses between two population sub-groups could be identi-
fied, the measure of betweenness-centrality is an excellent evaluation lens. In the context of co-morbidity network 
structures betweenness-centrality can be viewed as a measure of a diagnosis’s connectivity, i.e. the number of edge 
pairs which contain the diagnosis. Looking back over the betweenness-centrality results, one of the principle 

Rank Edge Pair

Count Normalized

Fold-changeHI LI HI LI

1
295 - Schizophrenic disorders

26,603 110,521 0.00285 0.00894 3.135
305 - Nondependent abuse of drugs

2
295 - Schizophrenic disorders

20,198 74,082 0.00216 0.00599 2.768
250 - Diabetes mellitus

3
401 - Essential hypertension

31,180 113,647 0.00334 0.00919 2.750
295 - Schizophrenic disorders

4
070 - Viral hepatitis

30,753 108,271 0.0033 0.00875 2.657
305 - Nondependent abuse of drugs

5
403 - Hypertensive chronic kidney disease

23,494 81,366 0.00252 0.00658 2.613
305 - Nondependent abuse of drugs

6
304 - Drug dependence

9,669 33,232 0.00104 0.00269 2.593
493 - Asthma

7
345 - Epilepsy and recurrent seizures

11,249 37,667 0.00121 0.00305 2.527
305 - Nondependent abuse of drugs

8
585 - Chronic kidney disease (CKD)

22,892 75,822 0.00245 0.00613 2.499
305 - Nondependent abuse of drugs

9
278 - Overweight, obesity and other 
hyperalimentation 9,576 31,602 0.00103 0.00256 2.490
295 - Schizophrenic disorders

10

648 - Other current conditions in the mother 
classifiable elsewhere but complicating 
pregnancy, childbirth, or the puerperium 17,608 57,798 0.00189 0.00467 2.477

305 - Nondependent abuse of drugs

Table 1.   Ranked list of edges where Low Income (LI) population is over-represented in comparison to 
High Income (HI) population.



www.nature.com/scientificreports/

6Scientific Reports | 6:30465 | DOI: 10.1038/srep30465

observations can be found in the stark difference between the centrality rankings on the unmodified and pruned 
networks for each population subgroup.

This differentiation is critically important as it demonstrates the utility of the fold-change metric in uncover-
ing the core differences between population subgroups. By punning the network using the fold-change metric, 
we are able to remove peripheral edges for comorbidity pairs that have only a slight over-representation in either 
population. Recalculating the betweenness-centrality on these pruned networks offers us the opportunity to iden-
tify key nodes of a network representing highly polarizing comorbidities between the population subgroups.

Breaking down the results we can find explicit examples of where the identification of specific diagnoses would 
not have been apparent though analysis of the networks alone, but required the introduction of the fold-change 
metic into the analysis pipeline. For the high income population we see a ranking of 1, 2 and 3 for diabetes mellitus,  
essential hypertension and nondependent abuse of drugs respectively on the unmodified network. As noted 
prior these are certainly conditions which are to expected to be over-represented in a lower income population. 
However, these are also extremely prevalent diagnoses, particularly hypertension which can occur comorbidly 
with a multitude of diagnoses. Increasing the threshold value to 2, provides a number of interesting changes. First, 
prevalent diagnoses such as diabetes mellitus and essential hypertension fall in the rankings, indicating that the 
majority of their connections were only weakly over-represented between the two subgroups. While diagnoses 
such as nondependent abuse of drugs and schizophrenic disorders claim the top 2 spots. While less prevalent these 
diagnosis have a much stronger over-representation between the population subgroups, potentially helping to 
highlight avenues of care or resource distribution.

Rank Edge Pair

Count Normalized

Fold-changeHI LI HI LI

1

244 - Acquired hypothyroidism

36,054 15,020 0.00386 0.00121 3.181
648 - Other current conditions in 
the mother classifiable elsewhere 
but complicating pregnancy, 
childbirth, or the puerperium

2

659 - Other indications for care or 
intervention related to labor and 
delivery, not elsewhere classified 139,723 63,894 0.01497 0.00517 2.898
664 - Trauma to perineum and 
vulva during delivery

3

654 - Abnormality of organs and 
soft tissues of pelvis

86,596 47,674 0.00928 0.00385 2.407659 - Other indications for care or 
intervention related to labor and 
delivery, not elsewhere classified

4

652 - Malposition and 
malpresentation of fetus

39,193 21,995 0.0042 0.00178 2.361659 - Other indications for care or 
intervention related to labor and 
delivery, not elsewhere classified

5

663 - Umbilical cord complications

113,957 66,694 0.01221 0.00539 2.264659 - Other indications for care or 
intervention related to labor and 
delivery, not elsewhere classified

6
663 - Umbilical cord complications

134,474 80,865 0.01441 0.00654 2.204664 - Trauma to perineum and 
vulva during delivery

7

660 - Obstructed labor

27,094 16,627 0.0029 0.00134 2.160659 - Other indications for care or 
intervention related to labor and 
delivery, not elsewhere classified

8

645 - Late pregnancy

57,453 37,220 0.00616 0.00301 2.046659 - Other indications for care or 
intervention related to labor and 
delivery, not elsewhere classified

9

656 - Other known or suspected 
fetal and placental problems 
affecting management of mother 40,455 26,209 0.00433 0.00212 2.046
664 - Trauma to perineum and 
vulva during delivery

10
661 - Abnormality of forces of labor

27,986 18,203 0.003 0.00147 2.038664 - Trauma to perineum and 
vulva during delivery

Table 2.   Ranked list of edges where High Income (HI) population is over-represented in comparison to 
Low Income (LI) population.
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We find similar patterns upon analysis of the high income population’s results. While the unpruned net-
work presents various cardiac conditions such as essential hypertension, dysrhythmias and unspecified anemias. 
Increasing the threshold highlights previously discussed pregnancy related conditions. At 1.5 we find current 
conditions in the mother classified elsewhere, and 2.0 presents trauma to perineum and vulva during delivery.

For completeness we ran two standard community detection algorithms WalkTrap and label-propagation. 
These analyses can aid in an understanding of how the underlying network structure may effect network metrics 
such as centrality measures, as it will help provide insights into the connectivity between various comorbidity 
patterns. As can be seen from the results (found in the supplementary material), community detection on the par-
titioned subgroup networks offers little insight into the populations diagnoses distribution. The majority of diag-
noses are grouped into a single community, with only a select few placed into meaningful communities. Although 
this subset of communities may appear to highlight some similar occurrence patterns to the fold-change rank-
ings, such as pregnancy related conditions, these occurrences are in fact an artifact of the highly interconnected 
subgraph of co-occurring diagnoses during pregnancy. It is clear that standard community detection alone fails 
to provide the ability to identify specific differentiations between population sub-groups, again highlighting the 
utility of the incorporating the fold-change metric into the analysis pipeline.

Through this work we have demonstrated and validated that the proposed network technique provides a 
clear differentiation in frequent diagnosis between population subgroups, in particular individuals in the upper 
and lower quartiles of income within the United States adult population. While this case study was focused on 
the identification of specific population health conditions based on varying socioeconomic levels, the network 

Rank

Low Income Population High Income Population

ICD 
Code

Betweenness 
Centrality Diagnosis Name

ICD 
Code

Betweenness 
Centrality Diagnosis Name

1 250 0.300 Diabetes mellitus 401 0.295 Essential hypertension

2 401 0.210 Essential hypertension 427 0.162 Cardiac dysrhythmias

3 305 0.102 Nondependent abuse of 
drugs 272 0.128 Disorders of lipoid metabolism

4 276 0.070 Disorders of fluid, 
electrolyte, and acid-base 285 0.121 Other and unspecified anemias

5 496 0.047 Chronic airway obstruction 
not elsewhere classified 244 0.094 Acquired hypothyroidism

6 285 0.041 Other and unspecified 
anemias 648 0.081

Other current conditions in the 
mother classifiable elsewhere but 
complicating pregnancy, childbirth, or 
the puerperium

7 428 0.038 Heart failure 276 0.080 Disorders of fluid electrolyte, and acid-
base balance

8 278 0.028 Overweight, obesity and 
other hyperalimentatio 311 0.057 Depressive disorder not elsewhere 

classified

9 414 0.026 Other forms of chronic 
ischemic heart disease 424 0.028 Other diseases of endocardium

10 599 0.020 Other disorders of urethra 
and urinary tract 733 0.026 Other disorders of bone and cartilage

Table 3.   Betweenness-Centrality Rankings on unmodified High and Low income population networks.

Rank
ICD 
Code Betweenness Centrality Diagnosis Name

ICD 
Code Betweenness Centrality Diagnosis Name

Threshold - 1.25 Threshold - 1.50

1 305 0.218 Nondependent abuse 
of drugs 305 0.200 Nondependent abuse 

of drugs

2 250 0.179 Diabetes mellitus 250 0.045 Diabetes mellitus

3 401 0.036 Essential hypertension 491 0.012 Chronic bronchitis

4 496 0.034 Chronic airway 
obstruction 401 0.012 Essential hypertension

5 571 0.025 Chronic liver disease and 
cirrhosis 295 0.012 Schizophrenic disorders

Threshold - 1.75 Threshold - 2.0

1 305 0.070 Nondependent abuse 
of drugs 305 0.020 Nondependent abuse 

of drugs

2 250 0.012 Diabetes mellitus 295 0.007 Schizophrenic disorders

3 70 0.010 Viral hepatitis 491 0.005 Chronic bronchitis

4 491 0.008 Chronic bronchitis 70 0.004 Viral hepatitis

5 295 0.006 Schizophrenic disorders 250 0.001 Diabetes mellitus

Table 4.   Thresholded Betweenness-Centrality Rankings - Low Income Population.
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approach used for this identification can be easily extended to a multitude of population subgroups and external 
factors. As an example a similar analysis is provided in the supplementary material with patients further stratified 
by various insurance providers. It is important to note the scale of the data and observations discussed. Both the 
data used for this analysis as well as many of the cited works were collected at the national level. This was done 
intentionally in an effort to validate the observations and results of our technique against established medical 
literature acting as a ground truth. While national data is imperative for effective analysis of the general popula-
tion, we believe this technique can be applied at the community level to start making differences, for example, to 
Accountable Care Organizations grappling for answers around resource allocation and budgeting. Our method-
ology may aid in identifying potentially unique comorbidities within a specific subgroup or population, allowing 
physicians and nurses to provide more accurate and targeted care for individuals they see on a daily basis as well 
as direct potential resources and information.

Finally, it is clear that this work is only a stepping stone to greater population heath management. For this type 
of analytics to truly take hold we will need the collaboration of data scientists, medical professionals and policy 
makers alike to produce, analyze and act on the insights gained through tools such as this. Looking forward as 
personalized treatment options have been key to improving the quality of patient care, a deeper understanding 
of the population health conditions will be critical for improving treatment options and resource management 
for a population.

Study Data and Methods
Data.  For the analyses performed in this work we utilized the Nationwide Inpatient Sample (NIS) provided by 
the Healthcare Cost and Utilization Project (HCUP)47. At the time of this publication the NIS is the largest pub-
licly available all-payer inpatient health care database in the United States. The NIS contains hospital discharge 
records for a stratified sample of patients from approximately 20% of United States hospitals, representing 44 
different states (at the time of this publication) and has been cited in over two thousand different peer-reviewed 
journal articles.

Each record contains both the personal characteristics of the patient, including their age, gender, and race, 
and administrative information including their length of stay, and discharge status. Additionally, the NIS provides 
diagnostic information, including up to 15 (2003–2008 datasets) or 25 (2009) diagnoses, surgical and nonsurgi-
cal procedures. Diagnoses were coded using The International Classification of Diseases, 9th Revision, Clinical 
Modification (ICD-9-CM)48. The ICD-9-CM coding methodology uses a taxonomy of five-digit codes, where the 
first three digits represent the general diagnosis and the remaining two digits can be used as modifiers describing 
factors such as location or severity. For this work we “collapsed” the codes, using only the first three digit general 
diagnosis. This allows us to both prevent similar diagnoses from being represented as multiple edges within the 
network, as well improve the overall interpretability of the results.

To construct the diagnosis networks used in our analyses we utilized a total of 21,662,600 patient hospitali-
zation records representing the set of 9,306,956 high income and 12,355,644 low income records; the details of 
this partitioning from the HCUP data can be found in the Methods section below. These networks represent the 
co-occurrences of 934 unique ICD9-CM diagnosis codes between patients in the low and high income popula-
tions. Additionally it should be noted that for this analysis we considered records from only those patients with 
an age over 20 to exclude child related diagnoses and focus on the adult population.

Rank ICD Code Betweenness Centrality Diagnosis Name ICD Code Betweenness Centrality Diagnosis Name

Threshold - 1.25 Threshold - 1.50

1 427 0.068 Cardiac dysrhythmias 244 0.027 Acquired hypothyroidism

2 244 0.065 Acquired hypothyroidism 648 0.022
Other current conditions in the mother 
classifiable elsewhere but complicating 
pregnancy, childbirth, or the puerperium

3 424 0.060 Other diseases of endocardium 424 0.019 Other diseases of endocardium

4 272 0.055 Disorders of lipoid metabolism 427 0.017 Cardiac dysrhythmias

5 648 0.047
Other current conditions in the mother 
classifiable elsewhere but complicating 
pregnancy, childbirth, or the puerperium

272 0.014 Disorders of lipoid metabolism

Threshold - 1.75 Threshold - 2.0

1 664 0.001 Trauma to perineum and vulva during 
delivery 659 0.001

Other indications for care or 
intervention related to labor and delivery 
not elsewhere classified

2 659 0.001
Other indications for care or 
intervention related to labor and delivery 
not elsewhere classified

664 0.0006 Trauma to perineum and vulva during 
delivery

3 648 0.0005
Other current conditions in the mother 
classifiable elsewhere but complicating 
pregnancy, childbirth, or the puerperium

4 663 0.0001 Umbilical cord complications

5 645 0.00001 Late pregnancy

Table 5.   Thresholded Betweenness-Centrality Rankings - High Income Population.
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Methods
Before detailing the methodology used in the network construction and analysis it is important to detail the pop-
ulation being evaluated. As stated earlier this case study focuses on the comparison of low and high income indi-
viduals. The NIS income data is based on the median household income for a patient’s specific zip code. Under 
this definition an income level of 1 represents a reported income in the lowest quartile, while a 4 represents the 
highest median quartile at the individual’s respective location. The low income population subgroup was deter-
mined as the set of all patient records in the lowest median income quartile (1), while the high income population 
subgroup represents those in highest median income quartile (4).

To build the diagnosis networks, first we extracted the unique set of ICD9-CM comorbid diagnosis codes 
between patients in the low and high income populations. To account for the difference in population size the 
network edge weights were normalized using Equation 1. Here N represents the total number of records in a 
population (low or high income), while Cij represents the number of co-occurrences of diagnosis i and j within 
the patients of each population respectively.

=w
C
N (1)n

ij
ij

Next the ratios between W LI( )nij
 and W HI( )nij

 were computed to identify those diagnoses which occur in 
greater proportion amongst each of the populations. We define the ratio of diagnoses i and j between the two 
population subgroups as the fold-change (Equation 2). For clarity, the edge analysis performed in this work 
focuses on differences in diagnoses occurrence between each population, rather than the population on the 
whole. This is done in an effort to demonstrate the potential benefit of utilizing population level health records for 
specific community analysis. It should be noted that all normalized edge weights below the threshold 0.0001 were 
set to 0 to prevent high fold-change ratios from an extremely rare diagnosis.
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To aid in interpretation of the differences in the observed networks, the edge weights were normalized further 
to fall within the interval [−​1, 1] using the transformation found in Equation 3. WHL represents the edge weight 
calculated as a quotient of the high income population’s edge weight by the low income population’s respec-
tive edge weight and WLH represents the opposite quotient. Finally, due to the density of the network to avoid 
over-saturation of nodes and edges and allow for an optimal visualization we introduce a visualization threshold 
Vt. The threshold displays only those edges where Vt <​ abs(WDiff). It should be noted that while the threshold Vt 
was set experimentally to reduce the number of edges and related nodes with low weights for the visualizations 
provided, the analyses in this work were performed on the complete network.
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In order to determine statistical significance of the fold change results we performed permutation tests using 
the Fisher-Yeats shuffle algorithm49. For each diagnosis code pair we performed a 10,000 iteration shuffle. At each 
iteration we randomly shuffled the high and low income level labels at each occurrence and calculated the result-
ing fold-change. The resulting 10,000 fold-changes are averaged and compared to the true fold-change to obtain a 
Z-score evaluated at 95% significance level.

For our final set of analysis we perform a set of network analyses, including betweenness-centrality and com-
munity detection. Betweenness-centrality is a network metric, which on per node basis provides the proportion 
of shortest-paths through the network which pass through each node50. The mathematical definition is provided 
in Equation 4, where SPst is the total number of shortest paths from node s to node t and SPst(v) is the number of 
those paths that pass through v.

∑− =
≠ ≠ ∈

Betweenness Centrality SP v
SP

( )
(4)s v t V

st

st

We began the betweenness-centrality analysis by computing node rankings on the complete network for both 
populations independently. The networks are undirected, but have edge weights corresponding to the fold-change 
metric detailed prior. For the pruning analysis the complete network was created for each population, and all 
edges below the specified fold-change threshold were removed. The betweenness-centrality was calculated at 
every step from 1–2 at intervals of 0.25.

It should be noted that all fold-change values are above 1. As noted fold-change is a normalized metric, indi-
cating the level of over-representation of specific diagnosis co-occurance pattern between the population sub-
groups. As such, under represented comorbidities in one network (fold-change values less than 1) are presented 
in the second network where the reciprocal fold-change is utilized.

For our community detection we chose two widely utilized algorithms in Walktrap and label-propagation, 
both run with default parameters51,52. These algorithms represent two distinctly different approaches to 
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discovering communities from the underlying network structure in an unsupervised manner, and thus can offer 
a fairly comprehensive overview of the types of diagnosis communities within each population subgroup. While 
Walktrap attempts to find densely connected subgraphs, via random walks, label propagation utilizes a majority 
voting technique where at each iteration a diagnosis node adopts the label that most of its neighbors currently 
have.
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