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Difference exists widely in cognition, behavior and psychopathology between males

and females, while the underlying neurobiology is still unclear. As brain structure is the

fundament of its function, getting insight into structural brain may help us to better

understand the functional mechanism of gender difference. Previous structural studies

of gender difference in Magnetic Resonance Imaging (MRI) usually focused on gray

matter (GM) concentration and structural connectivity (SC), leaving cortical morphology

not characterized properly. In this study a large dataset is used to explore whether cortical

three-dimensional (3-D) morphology can offer enough discriminative morphological

features to effectively identify gender. Data of all available healthy controls (N = 1113)

from the Human Connectome Project (HCP) were utilized. We suggested a multivariate

pattern analysis method called Hierarchical Sparse Representation Classifier (HSRC) and

got an accuracy of 96.77% for gender identification. Permutation tests were used to

testify the reliability of gender discrimination (p < 0.001). Cortical 3-D morphological

features within the frontal lobe were found the most important contributors to gender

difference of human brain morphology. Moreover, we investigated gender discriminative

ability of cortical 3-D morphology in predefined Anatomical Automatic Labeling (AAL)

and Resting-State Networks (RSN) templates, and found the superior frontal gyrus the

most discriminative in AAL and the default mode network the most discriminative in RSN.

Gender difference of surface-based morphology was also discussed. The frontal lobe, as

well as the default mode network, was widely reported of gender difference in previous

structural and functional MRI studies, which suggested that morphology indeed affect

human brain function. Our study indicates that gender can be identified on individual level

by using cortical 3-D morphology and offers a new approach for structural MRI research,

as well as highlights the importance of gender balance in brain imaging studies.

Keywords: cortical three-dimensional morphology, gender difference, hierarchical sparse representation

classifier, Magnetic Resonance Imaging, multivariate pattern analysis

1. INTRODUCTION

Gender difference has been widely reported in psychiatric and neurological diseases (Piccinelli and
Wilkinson, 2000; Baron-Cohen et al., 2005; Shulman, 2007; Eranti et al., 2013; Lai et al., 2015),
cognitive functions (Ren et al., 2009; Ohla and Lundstr, 2013; Yin et al., 2017; Chen et al., 2018)
and behaviors (Christov-Moore et al., 2014), while its neurobiological mechanism is unclear yet
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(Giudice, 2009). As neural function has its structural basis,
studying brain neuroanatomy may provide us new insights and
understandings of gender difference.

Previous reports tend to explain gender difference in the view
of GM concentration, SC and Functional Connectivity (FC).
Wang et al. (2012) applied multivariate pattern analysis on GM
concentration and resting state fMRI from healthy young adults
and got an accuracy of 89%, and they found the occipital lobe
and the cerebellum the most discriminative regions of gender
difference; Yuan et al. (2018a) proposed a three-dimensional
weighted histogram of gradient orientation to describe the
complex spatial structure of human brain image, and they got
an over 90% accuracy of gender classification on 527 healthy
adults from four research sites; Ruigrok et al. (2014) reported
gender difference in the amygdala, hippocampus, and insula after
meta-analysis in human brain structure; Goldstein et al. (2001)
found females had higher percentage of GM than males, while
Gur et al. (1999) got a converse result in white matter; Feis et al.
(2013) used multimodal gender classification of T1-weighted,
T2-weighted and fractional anisotropy images and indicated the
frontal lobe the most discriminative lobe. Gong et al. (2009)
found greater overall cortical connectivity and more efficient
cortical network organizations in women; Ingalhalikar et al.
(2013) reported that males had stronger intra-hemispheric SC
while females had stronger inter-hemispheric SC using diffusion
tensor imaging. Zhang et al. (2018) used 4 fMRI runs of 820
healthy controls from the HCP and got the accuracy of 87%
using FC features for gender prediction, and they suggested
that FC within the default, fronto-parietal and sensorimotor
networks had the greatest gender prediction abilities while the
right fusiform gyrus and the right ventromedial prefrontal cortex
contributed the most in the default mode network.

Recently, gender difference in surface-based morphology
such as cortical thickness, surface area, cortical curvature and
cortical volume has attracted much attention. Im et al. (2006)
indicated that women showed more significant localized cortical
thickening in the frontal, parietal and occipital lobes, which
were also reported of significant gender-related difference by Lv
et al. (2010) using graph theoretical approaches; Sowell et al.
(2007) found women had thicker cortices in posterior temporal
and right inferior parietal regions, while men showed larger
brain in all locations, especially in the frontal and occipital
poles of both hemispheres; Sepehrband et al. (2018) developed
a multivariate statistical learning model to predict gender from
regional neuroanatomical features on different brain atlases,
and they got an 83% cross-validated prediction accuracy and
found the middle occipital lobes and the angular gyri the major
predictors of gender.

Despite studies of gender difference in surface-based
morphology, few paid attention to the original cortical 3-D
morphology, which is defined as the voxel-based morphology
of the cerebral cortex without gray matter concentration
in the standard MNI space. Clearly the original cortical
3-D morphology contains more abundant and complete
morphological information, andmost surface-based morphology
such as cortical thickness and curvature are measured on the
cortical 3-D morphology (cortical volume and surface area are

measured in the subject’s undistorted native volume space).
Moreover, most previous morphology studies focused on finding
gender difference using statistical analysis while few of them
have effectively discriminated males from females with high
classification accuracy using those morphological features to
support their conclusions.

In this study, we aimed to find gender difference of cortical
3-D morphology and focused on two questions: (a) Can gender
be discriminated with a high accuracy using cortical 3-D
morphology? (b) What is the most discriminative region of
gender in cortical 3-D morphology?

2. MATERIALS AND METHODS

2.1. Data Acquisition and Preprocessing
Structural MRI was acquired from the HCP S1200 release, and
details about the HCP can be seen in Essen et al. (2012).
Subjects were scanned on a customized 3T Siemens scanner
(Connectome Skyra) with a standard 32-channel head coil and
a body transmission coil and scan parameters were as follows:
TR = 2400 ms, TE = 2.14 ms, Voxel Size = 0.7 mm isotropic.
All 1113 available subjects (age: 22–37 years, gender: 507
males and 606 females) were selected for our gender difference
study.

Data were initially preprocessed by the HCP structural
pipelines in this study, and a highlight of the HCP pipelines is
that it uses T2-weighted structural images for registration so
as to get more precise registration and segmentation results.
The main preprocessing steps include gradient distortion
correction, brain extracting, readout distortion correction,
boundarybased cross-modal registration, bias field correction,
recon-all pipeline in FreeSurfer, and native to MNI nonlinear
volume transformation, and detailed preprocessing steps
can be seen in Glasser et al. (2013). One of the outputs, the
wmparc, is an accurate subject-specific human brain mask
of the gray matter and white matter in the MNI space. In
the file “MNINonLinear/wmparc.nii” of each subject of the
HCP, the scattered integers between 251 and 2035 stand
for different subregions of the cerebral cortex, and when
they were defined as 1 and others as 0, the original 3-D
morphology of the cerebral cortex were obtained (Figure 1A).
We also attempted to analyse the discriminative abilities of
both anatomical and functional subregions, so atlas-based
morphology analysis (Meyer et al., 2017) was conducted with
two predefined atlas: the AAL template (Tzourio-Mazoyer et al.,
2002) was used as structural atlas and the 7 RSN template
(Thomas Yeo et al., 2011) was used as functional atlas (https://
surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_
Yeo2011, “Yeo2011_7Networks_MNI152_FreeSurfer-
Conformed1mm_LiberalMask.nii,” downsampled to 1.4 mm
isotropic). All the MRI files and templates were in the standard
MNI space for comparisons across subjects.

As surface-based morphology was discussed in this study,
we obtained 4 surface-based morphological features (thickness,
curvature, sulc and myelinmap) in the HCP for gender difference
analysis. They were all spatially downsampled to a∼32k mesh of
each hemisphere (average vertex spacing of∼2 mm).
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FIGURE 1 | Framework of gender identification of cortical 3-D morphology via HSRC. (A) Process of cortical 3-D morphology extraction. For each subject, T1w and

T2w were used in the HCP structural pipelines to generate a normalized volume parcellation—the wmparc, which is an accurate subject-specific human brain mask of

the gray matter and white matter in the MNI space. We defined the value of the gray matter voxels as 1 and others as 0, and got the original cortical 3-D morphology.

(B) Gender classification with cortical 3-D morphology using HSRC. The original cortical 3-D morphology (0.7 mm) of each subject was first downsampled into 1.4

and 2.8 mm, then gender classification was conducted on the 2.8 mm 3-D morphology with 10-fold cross validation, RFS was used on the training data to select

voxels in each fold. We set the overall classification accuracy as a function of the number of selected voxels in each fold, and selected the union of the selected voxels

in each fold corresponding to the highest accuracy as discriminative voxels, the corresponding voxels in 1.4 mm morphology were selected as the initial input for the

next 10-fold across validation. The same operation was conducted in 0.7 mm data.

2.2. Hierarchical Sparsity Feature Selection
Considering the scale of the dataset in this study, a 10-
fold cross validation was conducted for gender classification,
and in consideration of numerous features of MRI data
(dimensionality=1,113 × 4,352,560 after abandon all-0 and all-
1 columns for 0.7 mm data matrix), dimensionality reduction is

essential to alleviate or avoid the curse of dimensionality (Liu and
Motoda, 1998).

Feature extraction algorithms like Principal Component
Analysis (PCA) combine all features to create new dimensionality
reduced features in a new feature space, and general statistical
tests like t-test are unsuitable to filter 0-1 distributed features.
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Comparatively, sparse representations select typical features
from the original feature space directly, so that we can maintain
the original physical meanings of the cortical morphological
features and have a better explanation.

Since sparse representation is not good at dealing with
data with too large dimensionality (Su et al., 2012), we
proposed a Hierarchical Sparse Representation Classifier (HSRC)
algorithm for informative feature selection and classification
(Figure 1B). MRI data were downsampled to voxel size=1.4 mm
isotropic (feature dimensionality=544,069 after abandon all-0
and all-1 columns) and voxel size=2.8 mm isotropic (feature
dimensionality=67,994 after abandon all-0 and all-1 columns).
The 10-fold cross-validation classification was first conducted in
2.8 mm data. In each fold, we aligned all the 67,994 features
of the training set using sparse representation and empirically
select the first 10,000 features in 200 intervals, and thus we had
50 (10,000/200) classification results in each fold. The overall
classification accuracy was the average accuracy of classification
with the same number of training data features across folds,
and when the highest overall classification accuracy was got, the
union of the selected features in each fold were regarded as the
most discriminative features of 2.8 mm data. The corresponding
1.4 mm features of all the selected features in 2.8 mm data were
defined as the original features (8 times the dimensionality of
the selected 2.8 mm features) for the next sparse representation
operation. The same operation was conducted in 1.4–0.7 mm
data.

Given training data X = [x1, x2, · · · , xn] ∈ R
d×n and

the associated class labels y ∈ R
n, the sparse representation

algorithm can be modeled as follows:

y = XTw, (1)

where w ∈ R
d is the weight vector to be solved and it should

be as sparse as possible. It can be described as the following
optimization problem:

min ‖w‖0

s.t. XTw = y,
(2)

it is a ℓ0-norm problem which is difficult to get the solution
although the solution is the most desirable to Equation 1.

Under practical conditions, the ℓ0-norm problem is
equivalent or approximately equivalent to the ℓ1-norm problem.
It is convex and thus can be easily optimized. Besides, the utility
of ℓ1-normmakes w less sensitive to noise. Consequently, we can
get w by solving the following problem:

min ‖w‖1

s.t. XTw = y,
(3)

considering that the constraint condition XTw = y makes w

sensitive to outliers of X, we suggested a new equation:

min
w

f (w) =
∥

∥

∥
XTw − y

∥

∥

∥

1
+ γ ‖w‖1, (4)

thus we can get the approximate solution of Equation 1, andmake
sparse representation more robust.

We find Equation 4 is a specific form of the Robust
Feature Selection (RFS) algorithm proposed by Nie et al.
(2010). The RFS is based on regression and ℓ2,1-norm sparsity
regularization. Unlike the traditional least square regression
which uses the squared ℓ2-norm loss, RFS emphasizes joint ℓ2,1-
norm minimization on both loss function and regularization.
Before introducing RFS method, we first present the definition
of the ℓ2,1-norm of a matrix.

For the matrixM ∈ Rn×m, its ℓ2,1-norm is defined as:

‖M‖2,1 =

n
∑

i=1

√

√

√

√

m
∑

j=1

m2
ij =

n
∑

i=1

∥

∥mi
∥

∥

2
, (5)

wheremi is the i-th row ofM.
Given training data {x1, x2, · · · , xn} ∈ R

d, the RFS algorithm
employs the one-vs-rest binary coding scheme to encode the class
labels. Denote the total number of classes as c. The label vector of
training data xi is represented by yi ∈ {0, 1}c×1, such that yi(j) =
1 if xi belongs to the j-th category and yi(j) = 0 otherwise. The
associated class labels of all data points are {y1, y2, · · · , yn} ∈ R

c.
RFS optimizes the following robust loss function:

min
W

n
∑

i=1

∥

∥

∥
WTxi + b− yi

∥

∥

∥

2
, (6)

where W ∈ R
d×c is the projection matrix and b ∈ R

c is the bias
vector.

For simplicity, the bias b can be absorbed into W when the
constant value 1 is added as an additional dimension for each data
xi(1 ≤ i ≤ n) . Thus, the problem becomes:

min
W

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
. (7)

For the sake of feature selection, we will add a sparse
regularizer. Essentially, the i-row vector ofW corresponds to the
transformation vector of the i-th feature in regression. It can also
be regarded as a vector that measures the importance of the i-th
feature. Considering the task of feature selection, we expect that
the transformation matrix holds the sparsity property for feature
selection. More concretely, we expect that only a small number
of row vectors ofW are non-zeros. As a result, the corresponding
features are selected since these features are enough to regress
the original data xi to its label vector yi. When we employ the ℓ2-
norm of each row vector as a metrix to measure its contribution
in this regression, the sparsity property, i.e., a small number
of row vectors that are non-zeros, indicates the following RFS
objective function:

min
W

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
+ γ

n
∑

i=1

∥

∥wi
∥

∥

2
, (8)

where wi denotes the i-th row of W. The parameter γ is to
balance the regression loss and the influence of sparse regularizer,
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and it was set to be the default value 0.01 suggested by Nie et al.
(2010) through a series of empirical studies.

Denote data matrix X = [x1, x2, · · · , xn] ∈ R
d×n and label

matrix Y = [y1, y2, · · · , yn]
T ∈ R

n×c, the objective function
becomes:

min
W

J(W) =

n
∑

i=1

∥

∥

∥
WTxi − yi

∥

∥

∥

2
+ γ

n
∑

i=1

∥

∥wi
∥

∥

2

=

∥

∥

∥
XTW − Y

∥

∥

∥

2,1
+ γ ‖W‖2,1.

(9)

The ℓ2,1-norm based loss function makes RFS robust to outliers
in data points and the ℓ2,1-norm regularization enables RFS
to select features across all data points with joint sparsity.
Though both terms of the objective function are non-smooth, the
problem can be solved efficiently with the reweighted method,
which has been proved to be convergent. More details about the
RFS algorithm can be seen in Nie et al. (2010).

After obtaining the solution of W, features are ranked
according to the value of

∥

∥wi
∥

∥

2
. In other words, the larger value

of
∥

∥wi
∥

∥

2
denotes that the i-th feature are more important. The

features with less importance are then discarded.

2.3. Classification and Cross Validation
In each of the 10-fold cross validation, 90% samples were
regarded as the training set and the remaining 10% samples were
served as the testing set. The classifier used in this study was linear
support vector machine (SVM), whose goal is to find a decision
function:

y = h′x+ b, (10)

by solving the following optimization problem:

min
h,ε

1

2
h2 + C

N
∑

i=1

ξi

s.t. yi
(

h′xi + b
)

≥ 1− ξi,

(11)

where h denotes the normal of the hyperplane, xi denotes
the i-th training vector and yi is its corresponding lebel, ξi
is the misclassification errors of non-separable cases, and C is
the empirical risk and model complexity which was set to be
1 in this study. Females were labeled as -1 and males were
labeled as 1, and thus the classification threshold was 0. The
classification accuracy and the area under curve (AUC) of the
receiver operating characteristic (ROC) curve were used as the
classification performance index, and 1,000 times of permutation
tests and 1,000 times of bootstrap tests were conducted to access
the overall statistical significance of the classification results. In
the permutation test of each fold, gender labels were randomly
permuted when gender features kept stable, and 1,000 AUC
values were used to construct a null distribution and compare
with AUC value of using true gender labels. In each bootstrap test,
90% of the training set were randomly chosen as new training set,
and inspired by the back projection stage of Wang et al. (2012),

TABLE 1 | AUC and accuracy for gender classification.

0.7 mm 1.4 mm 2.8 mm

HSRC AUC 0.9925 0.9868 0.9821

Accuracy (%) 96.77 95.69 94.49

Direct sparsity AUC 0.9829 0.9831 0.9821

Accuracy (%) 94.34 94.70 94.49

PCA AUC 0.9874 0.9870 0.9844

Accuracy (%) 94.43 94.52 94.07

the weight of voxels was defined as the absolute of h, and detailed
equation was as follows:

g = abs h = abs

N
∑

i=1

αiyixi, (12)

where g denotes the weight vector of voxels, αi is the i-th value
of alpha coefficient vector α in SVM, and N is the number of
subjects in the training set. The mean of g in 1,000 times of
bootstrap tests was the final weight vector g.

3. RESULTS

3.1. Gender Classification Results: AUC
and Accuracy
Results of gender classification using HSRC of three resolutions
are provided in the top two rows of Table 1. The highest AUC
and accuracy, both of which are got from 0.7 mm data, are
0.9925 and 96.77%, respectively. The relationship of classification
accuracy and the number of selected features in each fold are
provided in Figure 2B, which indicates that the classification
accuracy of all the three resolutions improves rapidly up to 0.9
with a few voxels and with the same number of voxels, the higher
resolution data always have higher classification accuracies with
much less computation time (platform: Linux server with 2
Inter(R) Xeon(R) CUP@ 2.10 GHz, 28 kernels, 260 GiBMemory.
CentOS 6.7, MATLAB R2015b, 1 fold RFS: 151.3 (0.7 mm)
+158.8 (1.4 mm) +64.3 (2.8 mm) = 374.4 s for HSRC; 5682.6 s
(0.7 mm) for direct sparsity) and storage demanded, but when
direct sparsity is conducted in different resolution data, we do
not see improvement of overall classification performance in
higher resolution data, which proves that our HSRC algorithm
indeed plays a part. The outcomes of conducting direct sparsity
in different resolution data are in the median two rows of Table 1
and Figure 2A.

Gender classification using PCA was also conducted for
comparing, and results are provided in the bottom two rows
of Table 1, the classification performance of using PCA is
comparable with using direct sparsity, but poor than usingHSRC.

We conducted 1,000 times of permutation tests to testify
the statistical significance of overall gender classification
performance, and detailed results for all three resolution data
are in Figure 3. Concurring with expectations, null distributions
of the AUCs scattered around 0.5, which implied that the
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FIGURE 2 | Classification results of the sparse representation, and the classification was a function of the number of voxels selected in each fold. In HSRC, the higher

resolution data always have the higher classification accuracy, while in direct sparsity the classification accuracys of three resolution data are roughly the same. The

highest accuracy is 96.77% which is got from 0.7 mm data using HSRC.

FIGURE 3 | Permutation tests of AUC index for gender classification. (A) 0.7 mm; (B) 1.4 mm; (C) 2.8 mm. The light blue histograms indicates the null distributions of

AUC for randomly permuted gender labels and the solid red line show the AUC when gender labels were true.

FIGURE 4 | Surface rendering of discriminative regions of gender difference derived from normalized mean bootstrap result [visualized by BrainNet Viewer Xia et al.,

2013]. The main morphology difference for gender exists mainly in the Frontal Lobe and the Limbic Lobe, others scattered in the Parietal Lobe, the Temporal Lobe, the

Corpus Callosum, and the Precuneus.
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TABLE 2 | The main locations of the voxels that were selected by HSRC in 0.7

mm.

Cluster Voxels Hemisphere MNI Coordinate

x y z

Uncus 120 L –25.5 2.1 –21.6

Uncus 143 R 20 4.2 –25.8

Superior Temporal Gyrus 103 L –48.6 –23.8 2.9

Superior Frontal Gyrus 271 R 14.4 69.3 14.1

Corpus Callosum 141 R 2.5 –35 7.1

Superior Frontal Gyrus 139 L –8.7 67.2 20.4

Middle Frontal Gyrus 117 L –25.5 21.7 42.8

Precuneus 101 L –9.4 –75.6 55.4

performance of the classifier for the randomly permuted data sets
whose subjects were randomly labeled was just no better than the
probability of getting positive side in random coin tossing. All of
the AUC values for permuted labels fell behind the AUCs of real
labels, which demonstrated high statistical significance of gender
classification (p < 0.001) for all three resolutions.

3.2. Important 3-D Morphological Features
in Gender Discrimination
As the best classification performance was obtained from 0.7 mm
data, and other resolution data were downsampled from them,
we conducted 1,000 times of bootstrap tests in 0.7 mm data, and
the outcome is shown in Figure 4 and detailed information of the
main clusters is in Table 2.

The main morphology difference for gender exists mainly
in the frontal lobe and the limbic lobe, others scattered in
the parietal lobe, the temporal lobe, the corpus callosum and
the precuneus. Considering the high relevance of cortical 3-
D morphology and GM, we compared our study and previous
studies of gender difference with GM concentration, and found
that our study had high accordance with the study of gender
difference using T1w, T2w, and FA (Feis et al., 2013) and using
GM concentration and fMRI (Wang et al., 2012), and also those
using cortical thickness (Im et al., 2006; Sowell et al., 2007; Lv
et al., 2010) in reporting the main gender difference in the frontal
lobe, the limbic lobe, the parietal lobe and the temporal lobe.
Moreover, there are reports of gender difference in the precuneus
(Kaiser et al., 2008; Taki et al., 2011; Semrud-Clikeman et al.,
2012) and the corpus callosum (Witelson, 1989; Allen et al., 1991;
Bishop and Wahlsten, 1997).

3.3. Discriminative Ability of Brain
Subregions
The accuracy of each brain subregion in AAL for gender
classification is in Figure 5, and the top and bottom 5
discriminative subregions and their classification accuracy are
in Table 3. The most discriminative regions of gender exist
in the front of the brain and the least discriminative regions
are the temporal gyrus. It can be seen from Figure 5 that the
accuracy distribution of two hemi-spheres is roughly bilateral

symmetrical, which means that the corresponding brain areas
of two hemi-spheres have approximately equal discriminative
abilities in gender difference.

An interesting phenomenon which should be paid attention
to is that the brain subregions’ discriminative ability for
gender arises from posterior to anterior in the brain, and this
phenomenon has high accordance with the evolution regular of
human brain: these brain areas located in the anterior of the
brain evolved first, while these posterior brain areas evolved
later (Buckner and Krienen, 2013). A possible explanation is
that these brain areas evolving advanced and better in human
evolution history have more abundant and complex function, so
they should develop first in individual brain to ensure the basic
function, and with evolution the functional difference of gender
grows thus the structural difference grows, too. And those brain
areas evolving not so full have less functions and those functions
are common among human beings.

The accuracies and AUCs of 7 RSN for gender classification
are in Table 4. Considering the dimensionality of data, the
classification of 7 RSN was conducted in 1.4 mm data. The most
discriminative brain areas of gender difference mainly distribute
in the default mode network, which is also indicated in Zhang
et al. (2018). While a majority of the least discriminative regions
belong to the visual network and dorsal attention network.
The outcome offers a new evidence of the accordance between
structural and functional brain.

Surface-based gender difference is in Figure 6 which shows
that gender difference is most obvious in myelinmap of all the
4 surface-based morphology. The average gender classification
accuracy in 10 times of 10-fold cross-validation of thickness,
curvature, sulc and myelinmap are 0.8740, 0.8022, 0.8431, and
0.8820, respectively. The details of the most discriminative
areas are as follows: isthmuscingulate, left superiortemporal,
and right insula for cortical thickness; posteriorcingulate and
insula for sulc; inferiorparietal, isthmuscingulate and left
posteriorcingulate for curvtura; precuneus, rostralmiddlefrontal
and superiorfrontal for myelinmap. Interestingly, myelinmap
showed greater gender difference and those discriminative areas
of myelinmap have high accordance with those areas we find
in cortical 3-D morphology, especially in the frontal lobe and
the precuneus; those discriminative areas in the other 3 surface-
based morphology are mainly in the insula, which is also found
in cortical 3-D morphology.

4. DISCUSSION

In this study, we investigated gender difference of cortical 3-
D morphology by proposing an HSRC approach, and got an
accuracy of 96.77% in a 10-fold cross-validation. The robustness
of classification was testified by permutation tests, and the
frontal lobe was found the most discriminative region of gender
difference in cortical 3-D morphology selected by HSRC. The
superior frontal gyrus in AAL and the default mode network in
RSN got the highest accuracy in template based classification.
Moreover, the advantages of our proposed HSRC method were
mentioned. Discussions are in the following.
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FIGURE 5 | Surface rendering of gender classification accuracy of brain region in AAL. The discriminative ability of brain area improves roughly from behind to front,

and the accuracy distribution of two hemi-spheres is roughly bilateral symmetrical.

TABLE 3 | The top and bottom 5 discriminative regions of AAL template and

accuracy for gender classification, the highest gender classification accuracy

distributed in the Frontal Lobe while the bottommost gender classification

accuracy distributed in the Temporal Lobe.

Top 5 discriminative regions

[acc (%)]

Bottom 5 discriminative

regions [acc (%)]

Frontal_Sup_Medial_R (87.87) Temporal_Inf_R (62.89)

Frontal_Sup_Medial_L (87.78) Temporal_Pole_Mid_R (63.07)

Frontal_Sup_R (87.78) Temporal_Inf_L (63.34)

Supp_Motor_Area_R (87.42) Temporal_Pole_Mid_L (63.61)

Frontal_Sup_L (87.42) Temporal_Mid_R (64.06)

TABLE 4 | AUC and accuracy for gender classification of 7 RSN Networks.

RSN network 1 2 3 4 5 6 7

AUC 0.8782 0.9257 0.8849 0.9359 93.68 0.9285 0.9568

Accuracy (%) 80.05 86.16 81.22 86.25 86.88 85.44 90.21

(1) Visual network; (2) Somatomotor network; (3) Dorsal attention network; (4) Ventral

network; (5) Limbic network; (6) Frontoparietal contral network; (7) Default mode network.

There are reports of gender difference in cortical morphology
(Im et al., 2006; Sowell et al., 2007; Lv et al., 2010; Sepehrband
et al., 2018) and brain morphology changes in aging (Resnick
et al., 2000; Bigler et al., 2002; Rusinek et al., 2003; Fjell et al.,
2009) and multiple inherent brain disorders (Lieberman et al.,
2001; Ashburner et al., 2003; Thompson et al., 2004; Jouvent et al.,
2008; Aylward et al., 2010), and our proposed method may have
the potential in auxiliary diagnosis of those disorders combined
with other modalities. Theoretically brain morphology is less
sensitive to the scan variables than GM concentration, whichmay
help the fusion of sMRI data from different datasets, and thus our

discovery may also offer a new thinking in dealing with multi-
site MRI data (Ma et al., 2018; Yuan et al., 2018b; Zeng et al.,
2018).

As far as we know, this work is the first to classify gender
with original cortical 3-D morphology and to get an accuracy of
over 95% in gender classification using morphological features.
It encouraged us to draw a conclusion that genders can be
distinguished on individual level by cortical 3-D morphology
features, and supported those opinions in the aspect of
brain morphology that males and females can be effectively
classified (Chekroud et al., 2016; Rosenblatt, 2016; Anderson
et al., 2018), as well as challenged these suggestions that
brains are essentially indistinguishable in gender (Joel et al.,
2015).

The result of bootstrap tests showed that those discriminative
regions of gender difference found by cortical 3-D morphology
had high accordance with those found by GM concentration and
surface-based morphology in previous studies, especially in the
frontal lobe, the limbic lobe and the partial lobe. We suggested a
hypothesis that those gender difference of GM concentration, to
some extent, may be the result of morphology difference.

Atlas-based morphology analysis indicated different
discriminative abilities among brain areas, that is to say,
some brain areas contributed much to the gender difference,
while some areas exert a smaller influence, and even some
areas had no contribution for gender difference, which may
be referred to as so-called mosaic areas (Rippon et al., 2014;
Joel et al., 2015). According to the brain areas classification
results, those brain areas with complex functions and
functions related to gender reap high accuracy in gender
classification. The bootstrap results also show that the high
difference voxels are located in the high difference brain
areas, which is comprehensible and consistent with the
classification results. Moreover, we found good symmetry in
AAL-based morphology analysis which is rarely mentioned in
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FIGURE 6 | Gender difference of surface-based morphology denoted by absolute value of the t-value of two sample t-test (p < 0.01, visualized by workbench of the

HCP).

previous studies of gender difference; RSN-based morphology
analysis suggested that the default mode network is the most
discriminative network, and the same result was also reported
in the studies of gender difference using fMRI Zhang et al.
(2018).

Considering that sample size was emphasized in recent
studies (Ritchie et al., 2018), we particularly compared our
findings with those using more than 1,000 samples (Chekroud
et al., 2016; Gur and Gur, 2016; Anderson et al., 2018; Ritchie
et al., 2018), and we found considerable accordance. First,
the reported classification accuracies were more than 90% to
support the opinions of sexual dimorphism with different MRI
modalities. Second, the most discriminative areas/networks of
gender difference were found to be the frontal lobe (Gur
and Gur, 2016; Anderson et al., 2018; Ritchie et al., 2018)
and the default mode network (Gur and Gur, 2016; Ritchie
et al., 2018), further indicating high relevance of cortical
morphology, GM concentration and fMRI based on large
sample size.

The proposed HSRC algorithm was testified to be helpful in
improving classification accuracy while reducing computation
and storage resource for high-dimensional MRI data. It also
selected features directly, making discriminative voxels more
explainable in MRI data and may help to accurately locate lesion
of diseased brain (Antel et al., 2003; Lladó et al., 2012).

We noticed several possible limitations in this work. Firstly,
there are papers suggesting that important gender difference
also exists in subcortical structures like cerebellum, amygdala
and hippocampus (Giedd et al., 2012; Ruigrok et al., 2014).
As cortical thickness of these subcortical structures is much
less than that of the cerebral cortex, it cannot be automatically
segmented by the pipelines offered by the HCP at present
(Glasser et al., 2013). Since morphology data provided by the

HCP did not include these subcortical structures so far, the
influence of subcortical morphology to gender difference was
not studied. Secondly, the effect of aging on brain morphology
was not discussed because of narrow age range of adults (22–
37 years old) in our study. Thirdly, because of the lack of
T2w images, we have not conducted multi-site experiment to
test the robustness of brain morphology by now. Moreover,
although we have conducted dimension reduction, linear SVM
and cross-validation to alleviate the risk of overfitting in the
classification methodology as far as possible, an independent
dataset is still required to validate the generalizability of our
proposed model, which should be done once possible in
the future.
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