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Abstract: The purpose of this study was to observe whether the repetitive firing of dental zirconia
caused changes in surface characteristics, S. mutans viability, and optical properties of zirconia.
Dental zirconia blocks were sintered and randomly distributed into seven experimental groups:
F0–F6. Except for F0, which only went through sintering, the additive firing was performed in order
for F1–F6. Surface roughness, contact angle, S. mutans viability by fluorescence, and translucency
parameter were measured. They were all highest after sintering (F0) and decreased after additive
firings (F1–F6). The additive firing of zirconia after sintering decreased surface roughness, contact
angle, S. mutans viability, and translucency. The number of firings after the first firing was not found
to be critical in surface characteristics, S. mutans viability, and optical property. Changes in surface
characteristics might have led to a decrease in S. mutans viability, while the change of translucency
was not clinically significant. This implies that additive firing may prevent secondary caries under
zirconia restorations, not compromising esthetic appearance.

Keywords: zirconia; firing; roughness; contact angle; S. mutans; translucency

1. Introduction

Dental zirconia has been widely used for esthetic prostheses that required high physi-
cal properties due to its superior mechanical properties and chemical stability compared to
conventional ceramic materials [1–3]. It has been used not only as all-ceramic restorations,
core materials, and orthodontic brackets, but also as an implant material because of its
excellent biocompatibility and bone fusion with the alveolar bone [4].

The method of using zirconia for tooth restoration can be divided into two categories.
One is its use as a core material; ceramic material is then fabricated on the top of zirconia
in a bilayer form (porcelain fused zirconia; PFZ). Due to the optical impermeability of
zirconia, it is covered with veneering porcelain. Feldspar is mainly used to reproduce the
esthetic characteristics of natural teeth. The veneering process of placing ceramics on the
zirconia surface generally requires five stages of firings (750–900 ◦C) Another method is
a pre-colored dental zirconia block that overcomes the porcelain chipping, which is the
biggest drawback of PFZ. Zirconia is manufactured and used in a crown shape without
ceramic material (full-contour zirconia; FCZ). However, the colored zirconia blocks are also
insufficient to reproduce the colors of various teeth, so additional coloring or firing in the
dental laboratory is required. Therefore, additive firing is one of the essential parts in the
fabrication of dental zirconia prostheses.

Firing process and its effect on properties of zirconia are not fully understood, but
there have been several reports on the negative effects of firing. Although the additive firing
temperature was lower than the sintering temperature of the core material, it decreased the
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flexural strength and microhardness of zirconia [5]. In addition, even at lower temperatures,
low-temperature degradation was found to be accelerated in yttria-stabilized zirconia
implants used in orthopedics [6]. In contrast, one of the clinical advantages of firing was
that it improved marginal fit [7]. With regard to translucency, previous studies reported its
decrease after repeated firing [8,9], but the clinical significance of such decrease was not
fully investigated.

Surface characteristics such as surface roughness and contact angle are closely re-
lated [10,11]. Their relationship that an increase in one increases another and vice versa
has been well known and shown in the researches regarding dental zirconia [12,13]. To
understand the effect of surface roughness and contact angle on zirconia, various processes
such as laser scanning, sandblasting, polishing, machining, and heat treatment were per-
formed to produce diverse topography [14–16]. However, the effect of repeated firing on
the surface roughness and contact angle of zirconia has not been studied yet.

Analysis of surface roughness and contact angle in terms of biofilm accumulation is
also important since they affect microbial adhesion to induce biofilm formation [17–19].
In particular, increased surface roughness [20,21] and specific surface topography [22]
were reported to be major contributing factors of microbial adhesion. Biofilm on dental
restorations has been known to have harmful effects since it causes secondary caries and
peri-implantitis [23–25]. Among various microorganisms participating in biofilm formation
and caries, S. mutans plays a main role [26]. For successful dental restorations, reducing S.
mutans adhesion might be important, so there has been research on adhesion of S. mutans
on zirconia [27,28]. To provide a more favorable surface to reduce S. mutans adhesion,
reduction in surface roughness and hydrophobicity has been found to be successful [29,30].
However, the previous studies were limited to zirconia without firing, and there have been
a lack of studies in relation to adhesion after firing.

Despite the importance and advantage of firing in zirconia, its effect has not been
clearly identified in relation to surface roughness, contact angle, S. mutans viability, and
translucency. In addition, those characteristics have not been integrated to suggest clinical
relevance. Therefore, the purpose of this study was to observe whether the repetitive firing
of dental zirconia caused changes in surface characteristics, S. mutans viability, and optical
property of zirconia and to discuss the importance of them in clinical perspective.

2. Materials and Methods
2.1. Preparation of Specimen

Dental zirconia blocks (Lava Plus, 3M ESPE, St. Paul, MN, USA) were cut and finished
by a low-speed diamond disc (MD-Piano, Struers, Ballerup, Denmark). They were then
sintered, up to 1450 ◦C, according to the manufacturer’s instructions. The specimens were
randomly distributed into seven experimental groups: F0 (control; sintering only), F1 (first
additive firing (ZirLiner; zirconia lining material)), F2 (second additive firing (Margin)),
F3 (third additive firing (Wash)), F4 (fourth additive firing (Dentin and Enamel)), F5 (fifth
additive firing (Stain)), and F6 (sixth additive firing (Glazing)); n = 7 each. Except for F0,
which only went through sintering, the additive firing was performed for F1–F6 according
to the manufacturer’s instructions (Figure 1). They were embedded in an epoxy resin (Cold
Mounting Systems Epoxy Systems, Metallurgical Supplies, Buffalo, NY, USA) and went
through final finishing and polishing up to 0.06 µm abrasive (LaboPol-5, Struers, Ballerup,
Denmark).
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Figure 1. Firing schedule of sintered zirconia (ZirLiner: zirconia lining material).

2.2. Surface Characteristics

For all the groups (F0–F6), surface roughness was measured by confocal laser scanning
microscopy (CLSM) (LMS 5-Pascal, Carl Zeiss, Oberhausen, Germany) at 20 × objective to
obtain the image field of 500 × 500 µm. High pass filter cut-off (λc) of 800 µm and low pass
filter cut-off (λs) of 2.5 µm were used to determine roughness from noise and waviness.
Ra (arithmetic mean roughness of profile), Sa (mean height of the surface), Sz (maximum
height of surface), and Sv (maximum pit height of surface) values were obtained for the
roughness parameters. Representative surface profiles were also obtained and also contact
angles were measured (Phoenix 150, SEO, Suwon, Korea). At room temperature, one drop
of distilled water was placed at the center of the zirconia surface and the camera acquired
the profile image. A computer software determined the contact angle between the surface
and the tangent of the water drop on the zirconia. Roughness and contact angles were
measured with three specimens from each group.

2.3. Streptococcus Mutans Viability

Streptococcus mutans (UA159) was cultured in Brain Heart Infusion Broth (Sigma-
Aldrich, St. Louis, MO, USA) at 37 ◦C of 100% relative humidity. Zirconia specimens were
prepared by ultrasonication with ethanol and distilled water. Then S. mutans (OD600 = 0.5)
was cultured over the prepared specimen for 24 h. S. mutans was treated by bacterial
viability kit (LIVE/DEAD® BacLightTM, Invitrogen by Thermo Fisher Scientific, San Jose,
CA, USA) for 15 min to be observed under CLSM (LSM700, Carl Zeiss Meditec, Jena,
Germany). Based on the images, the area fraction of the fluorescent cells was calculated
with computer software (ImageJ, NIH, Bethesda, MD, USA).

2.4. Calculation of Translucency

The translucency was measured using the translucency parameter (TP) [31] with three
specimens of each group. The CIE L*a*b* values (L* referred to brightness, a* to redness-
greenness, and b* to yellowness–blueness) were measured at the center of each specimen
over a black (B) and white (W) background using a spectrophotometer (Ci7600, X-rite,
Grand Rapids, IL, USA). Then the TP values were calculated by the following equation:

TP =
[
(L∗

W − L∗
B)

2 + (a∗W − a∗B)
2 + (b∗W − b∗B)

2
]1/2

(1)
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2.5. Statistical Analysis

Surface roughness, contact angle, and translucency parameters were analyzed by a
nonparametric Kruskal–Wallis test and Mann–Whitney test with Bonferroni correction as
they failed the normality test. All statistical analyses were performed with a significance
level of 0.05 using SPSS statistics for Windows (version 26.0, IBM, Armonk, NY, USA).

3. Results
3.1. Surface Characteristics

The surface roughness measured as mean height (Sa) was the highest (0.17 (0.15, 0.18)
µm) immediately after sintering (F0; control), and the roughness decreased to 0.07 (0.06,
0.07) µm after the first firing (F1). Second firing (F2) (0.06 (0.06, 0.06) µm), third firing (F3)
(0.06 (0.06, 0.06) µm), fourth firing (F4) (0.06 (0.06, 0.07) µm), fifth firing (F5) (0.06 (0.06,
0.06) µm), and sixth firing (F6) (0.06 (0.06, 0.07) µm) also decreased the surface roughness
compared to F0. For the arithmetic mean roughness of profile (Ra), maximum height of
surface (Sz), and maximum pit height of surface (Sv), the same trend as in mean height (Sa)
was observed (Table 1). Moreover, representative surface profiles were obtained (Figure 2).
It was consistent with the roughness values in that F1–F6, in contrast to F0, had decreased
roughness and showed no identifiable surface structures.

Figure 2. Representative surface profiles with enlarged pictures for the experimental groups (F0–F6);
red lines indicate surface profile.
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Table 1. Surface roughness parameters of the experimental groups (F0–F6).

Groups
F0 F1 F2 F3 F4 F5 F6

Ra
(µm)

0.16 A

(0.15, 0.16)
0.06 B

(0.06, 0.06)
0.04 C

(0.04, 0.04)
0.05 CD

(0.05, 0.05)
0.06 BE

(0.06, 0.06)
0.05 BDF

(0.05, 0.06)
0.05 BDG

(0.05, 0.06)
Sa

(µm)
0.17 A

(0.15, 0.18)
0.07 B

(0.06, 0.07)
0.06 C

(0.06, 0.06)
0.06 BCD

(0.06, 0.06)
0.06 BCE

(0.06, 0.07)
0.06 BCF

(0.06, 0.06)
0.06 BCG

(0.06, 0.07)
Sz

(µm)
2.25 A

(1.95, 2.32)
0.48 B

(0.45, 0.49)
0.45 BC

(0.43, 0.46)
0.47 BD

(0.45, 0.49)
0.48 BE

(0.44, 0.48)
0.55 F

(0.55, 0.57)
0.54 BFG

(0.50, 0.59)
Sv

(µm)
2.09 A

(2.05, 2.40)
0.75 B

(0.59, 0.75)
0.98 BC

(0.63, 1.30)
0.51 BD

(0.43, 0.63)
0.28 BE

(0.28, 0.63)
0.83 CEF

(0.83, 1.02)
0.83 BEG

(0.63, 0.87)
1. Values with the different uppercase superscripts within the rows are significantly different (p < 0.05). 2. In-
terquartile ranges (first quartile, third quartile) are in parentheses.

The contact angle was 53.13 ± 0.82◦ in F0, and it decreased to 21.83 ± 0.97◦ in F1
and to 14.75 ± 0.84◦ in F2. In F3–F6, the contact angle was less than 10◦, indicating their
hydrophilic properties (Figure 3). There was a significant difference between every pair of
the groups (p < 0.05).

Figure 3. Measurement of contact angles of the experimental groups (F0–F6) (*: The values were less
than 10◦, indicating their hydrophilic properties).

3.2. Streptococcus Mutans Viability

The area fraction of fluorescence, which represented the viability of S. mutans, observed
with CLSM was the highest in F0 (7.66%), and it decreased to 1.47% (F1), 1.02% (F2), 0.88%
(F3), 0.66% (F4), 0.92% (F5), and 0.85% (F6). Its decrease was visualized as a series of
fluorescence images (Figure 4).

3.3. Optical Property

Median translucency parameters decreased after firing (F1–F6) compared to F0. It was
5.05 in F0 and decreased to 4.39 (F1), 4.21 (F2), 4.43 (F3), 4.66 (F4), 4.53 (F5), and 4.79 (F6)
(Table 2).
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Figure 4. S. mutans cultured over zirconia specimens (F0–F6) for 24 h; fluorescence images and the area fraction of
fluorescence in F0–F6.

Table 2. Median translucency parameters of the experimental groups (F0–F6).

Groups
F0 F1 F2 F3 F4 F5 F6

TP 5.05 A

(5.05, 5.20)
4.39 BCDEFG

(4.34, 4.50)
4.21 C

(4.20, 4,25)
4.43 D

(4.38, 4.44)
4.66 E

(4.58, 4.68)
4.53 EF

(4.51, 4.57)
4.79 DEG

(4.57, 4.80)
1. TP: Translucency parameter. 2. Values with the different uppercase superscripts are significantly different
(p < 0.05). 3. Interquartile ranges (first quartile, third quartile) are in parentheses.

4. Discussion

Dental zirconia undergoes additive firing during the veneering process for esthetic
purposes, and their physical properties may change during the process. It was reported
that the veneering process reduced mechanical properties such as flexural strength, mi-
crohardness [5], and bond strength of ceramic [32]. In this study, surface characteristics,
microbial viability, and translucency were newly tested, and firing conditions were more
specifically divided (F0–F6). The surface roughness was the highest in F0 and decreased
rapidly after the first firing (F1). After that, the roughness did not show radical change
according to the number of firing times from the second to sixth firing. To the best of the
authors’ knowledge, there have been no previous reports on the decrease of roughness after
firing. The possible explanation for the phenomenon was that the microstructure or debris
on the surface could have been destroyed and removed due to high energy transmitted
by firing processes which were conducted at a maximum of 750–900 ◦C. This might also
explain that there was only a small change in surface topography after the first firing.
Decreased roughness in dental zirconia has been known to be more favorable to initial
fibroblast adhesion [33]. Fibroblast adhesion has been typically used for testing cytotoxicity
of dental materials [34]. Considering its high possibility of contact with surrounding soft
tissue, dental zirconia’s lowered roughness might provide higher biocompatibility.

For the bacteria, on the other hand, increased roughness induces their adhesion due
to irregularities and increased surface area [35]. This phenomenon was well presented in
various biomaterials [36,37]. In this study, higher roughness in F0 led to higher S. mutans
viability, so it was consistent with the previous studies. The significance of this study
was that such phenomenon was reproduced by repeated firings. Increased roughness
and the following hydrophobicity are also well-known [38]. Typically, roughness-based
hydrophilicity was obtained after polishing by reducing roughness [39], but the firing,
which was a part of zirconia veneering, showed that it could reduce roughness to induce
hydrophilicity more efficiently.
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To analyze the surface roughness both on a profile and surface, profile roughness
parameter (Ra) and areal roughness parameters (Sa, Sz, and Sv) were taken. Although
Ra could provide the arithmetic mean of the roughness on a profile, it only measures 2D
roughness. To include 3D information about the roughness, the areal parameters were
additionally used in the study [40]. First, Sa was measured to give an overall picture
of the surface. As a result, the specimens in the study were found to be full of peaks
and valleys, so the parameters which were sensitive to peaks and valleys were measured
to capture them. Sz values which represented the sum of maximum peak heights and
maximum pit heights and Sv values which represented the maximum pit heights, were
used to supplement Sa values. If additional feature parameters such as Spd, Spc, etc. can
be provided in future studies, it would suggest more information about the surfaces.

The contact angle was significantly reduced after the first and second firing (F1
and F2), and it was consistently smaller than 10◦ in the following firing. This might
be explained in relation to the physicochemistry alteration of the surface. Although there
have been no explicit results about the effect of firing, numerous approaches, including
oxygen plasma and ultraviolet treatment, were known to induce hydrophilicity by removal
of hydrocarbons and insertion of polar groups on the surface [41]. As the firing also
conveys heat energy, hydrophilicity might have been obtained by similar mechanisms.
Since hydrophilicity of dental zirconia as restorative material may improve its surface
adaptation of adhesives, primers, or resin cement [42], firing-induced hydrophilicity may
have advantages in the bonding process. However, to utilize the increased hydrophilicity
after firing, further studies should be performed to test whether such property is maintained
for the intended period of time.

Among the various types of bacteria residing in the oral cavity, S. mutans forms a
biofilm on the tooth surface and demineralizes it, causing dental caries [43]. Reducing S.
mutans viability to inhibit biofilm formation is important in preventing dental caries. After
firing zirconia in this study, the viability of S. mutans was reduced in all stages (F1–F6),
which can be said to be a clinical advantage. However, although S. mutans is one of the
major players in biofilm formation, it is not the only one. Other microorganisms such as F.
nucleatum, P. gingivalis, and S. sanguinis are also involved in biofilm formation [44]. Thus,
more studies on various microorganisms should be conducted to further discuss biofilm.

Multiple firings bring changes in color and translucency due to alterations in crys-
talline structure and surface specifications [45,46]. The decrease in translucency after firing
could be an obstacle in obtaining the desired appearance since additive firing is basically
to suffice esthetic purposes by veneering. In this study, the decrease in translucency param-
eter after firing was between 0.5 and 0.92. According to the previous study, a decrease in
translucency parameter as much as 1.24 was translated to an increase of 0.02 in contrast
ratio [47]. If the contrast ratio, which is another parameter to determine translucency, is
smaller than 0.07, it is known that the difference in translucency is not detectable by human
eyes [48]. The decrease in translucency parameter in this study was smaller than 1.24, so
the increase in contrast ratio would be even smaller, leading to an undetectable change of
translucency. Therefore, despite the decrease in translucency parameter after firing, it was
not large enough to be detected. This can be an important advantage since potentially ben-
eficial changes in roughness, contact angle, and S. mutans viability, as previously discussed,
are achieved not affecting translucency.

The physical changes by multiple firing of zirconia and their potential advantages
were discussed in this study. However, it may be necessary to investigate whether multiple
firing could affect other factors such as longevity, structural stability, color, and marginal
integrity that might influence the function of dental restorations. If there is a negative effect
on those factors, the clinical importance of the presented results might be questioned. Thus,
additional research that confirms the original function as dental restoration is needed. In
addition, the effect of multiple firings without the presence of additives (liner, stain, etc.)
might also be investigated to observe possible interfacial interaction. By doing so, it would
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allow more sophisticated control of the experimental conditions and improve the clinical
significance of the current study.

In a dental prosthesis, the veneering material covers most of the outer surface and
core material, so two different materials can affect each other. Veneering ceramic increases
the bulk thickness and may cause a change in the mechanical strength. According to one
study, the cause of failure of the zirconia-based all-ceramic restorations occurred between
the two interfaces or inside the veneer ceramic [49]. Thus, the result of firing after applying
veneering porcelain may appear different from this study. Also, thermal behavior in the
veneered zirconia is also a significant factor since many failures occur due to thermal
incompatibility [50,51]. To evaluate thermal behavior in porcelain-zirconia restorations,
variations on firing and cooling rate were studied [52]. Rather than constant firing and
cooling rate presented in this study, different conditions may be applied to adjust thermal
compatibility between zirconia and veneered porcelain. Optimization of the sintering and
firing conditions is also important for the other properties discussed in this study. The
effect of various sintering and firing conditions on roughness, contact angle, microbial
viability, and translucency is still unknown. Though the current conditions are based on
the manufacturer’s instructions, further studies may discover better conditions to achieve
superior properties.

This study focused on the phenomenon that took place on the surface. However,
zirconia goes through phase transformation from tetragonal to monoclinic under stress [53],
so structural changes can also be related to surface characteristics and optical properties.
Previous studies of zirconia phase transformation were mostly about changes in mechanical
properties such as flexural strength [54,55]. Other than phase transformation, but still in the
context of structural analysis, the grain size was also known to affect zirconia properties [56].
Therefore, establishing correlation between structural changes and surface characteristics,
more specifically in the additive firing process, may add insights to this study.

The reported characteristics of zirconia in the present study, if reinforced by further
studies, might be applied to various clinical situations. For example, zirconia implants can
go through firings for better hydrophilicity and less S. mutans viability to be used with
grafting biomaterials to induce bone growth more efficiently [57–59] or for immunodeficient
patients [60–62]. Also, zirconia after firings might have the potential to be used as the tissue
engineering scaffold for stem cells in the field of regenerative dentistry [63].

5. Conclusions

The additive firing of zirconia after sintering decreased surface roughness, contact
angle, S. mutans viability, and translucency. The number of firings after the first firing was
not found to be critical in surface characteristics, S. mutans viability, and optical property.
Changes in surface characteristics might have led to decrease in S. mutans viability, while
the change of translucency was not clinically significant. This study, if reinforced by further
research on microbial viability, implies that additive firing may prevent secondary caries
under zirconia restorations, not compromising esthetic appearance.
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