a Open Access Full Text Article

REVIEW

Current perspectives in Bietti crystalline dystrophy

This article was published in the following Dove Press journal: *Clinical Ophthalmology*

GP García-García¹ M Martínez-Rubio¹ MA Moya-Moya¹ JJ Pérez-Santonja¹ J Escribano^{2,3}

¹Department of Ophthalmology, General University Hospital of Alicante, Alicante 03010, Spain; ²Cooperative Research Network on Ophthalmology (OftaRed), Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain; ³Laboratory of Human Molecular Genetics, Medicine Faculty/Research Institute on Neurological Disabilities (IDINE), University of Castilla La-Mancha, Albacete 02006, Spain

Correspondence: GP García-García Department of Ophthalmology, General University Hospital of Alicante, Maestro Alonso Street 109, Alicante 03010, Spain Tel +34 68 707 8505 Fax +34 96 524 5971 Email zemfira36@hotmail.com

J Escribano

Medicine Faculty/Research Institute on Neurological Disabilities (IDINE), University of Castilla La-Mancha, Almansa Street, 14, Albacete 02006, Spain Tel +34 96 759 9200; Ext. 2928 Fax +34 92 629 5301 Email julio.escribano@uclm.es

Abstract: Bietti crystalline dystrophy (BCD) is a rare-inherited disease caused by mutations in the *CYP4V2* gene and characterized by the presence of multiple shimmering yellow-white deposits in the posterior pole of the retina in association with atrophy of the retinal pigment epithelium (RPE) and chorioretinal atrophy. The additional presence of glittering dots located at the corneal limbus is also a frequent finding. The CYP4V2 protein belongs to the cytochrome P450 subfamily 4 and is mainly expressed in the retina and the RPE and less expressed in the cornea. The disease has its metabolic origin in the diminished transformation of fatty acid substrates into n-3 polyunsaturated fatty acids due to a dysregulation of the lipid metabolism. In this review, we provide updated insights on clinical and molecular characteristics of BCD including underlying mechanisms of BCD, genetic diagnosis, progress in the identification of novel therapies. This information will help clinicians to improve accuracy of BCD diagnosis, providing the patient reliable information regarding prognosis and clinical prediction of the disease course.

Keywords: Bietti crystalline dystrophy, CYP4V2 gene, corneal deposits, retinal deposits

Introduction

Bietti crystalline dystrophy ((BCD), *Online Mendelian Inheritance in Man (OMIM) OMIM210370*) is an inherited autosomal recessive disease linked to biallelic mutations affecting the *CYP4V2* gene. Professor Gian Battista Bietti first described the disorder in 1937,¹ reporting three patients – including two brothers – with a pattern of retinal crystalline spots in the posterior pole, scattered conglomerations of retinal pigment, chorioretinal atrophy and corneal superficial deposits at the limbus. In addition, the author suggested the inherited and familial nature of the disease and differentiated it from other dystrophies like retinitis punctata albescens and fundus albipunctatus.

Bagolini and Ioli-Spada² designated this pathology "Bietti's tapetoretinal degeneration with marginal corneal dystrophy" and studied the evolution of these brothers and six additional patients in 1968, confirming the progressive and degenerative nature of their condition. Welch³ introduced the term "crystalline retinopathy" in 1977 to complete the original description, and identified the presence of lipid inclusions in fibroblasts and corneal epithelium by analyzing a corneal limbus biopsy obtained from a patient with BCD, pointing to a metabolic involvement in the genesis of the disease.

In 2000, Jiao et al⁴ performed genetic linkage analysis to 49 members of 10 Chinese, Japanese and European families with BCD, and identified the locus of the gene responsible on human chromosome 4q35-qter. In 2004, at a later stage,

Clinical Ophthalmology 2019:13 1379-1399

© 2019 Garcia-Garcia et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/ the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Li et al⁵ identified the *CYP4V2* gene to be the causative for BCD, encoding a novel 525 amino acid protein member of the cytochrome P450 (family 4, subfamily IV, polypeptide 2), involved in fatty acid metabolism. The first generation and characterization of a murine model of BCD was performed by Lockhart et al⁶ in 2013, reproducing the presence of retinal crystalline deposits and metabolic lipid disturbances in $Cyp4v3^{-/-}$ knockout mice, corresponding well to BCD findings in humans.

These and other relevant studies along the years have increased our understanding of BCD disease and generated fresh perspectives and hope to patients and ophthalmologists. The aims of this report are to review relevant information about BDC and to provide current approaches on this disorder.

Epidemiology and distribution

Estimating true prevalence rates of BCD is difficult as methods of data collection vary between countries, authors and surveys. Hu⁷ estimated a gene frequency of 0.005 by studying the first cousin parents of an epidemiologic survey in China in 1983. In accordance with the works of Hartong et al⁸, Okialda et al⁹ and Ng et al,¹⁰ the estimated a prevalence of BCD is 1 in 67,000 individuals, affecting 21,000 patients in China and about 5000 in USA. According to our estimations, the actual prevalence of BCD in Spain may be extremely low, affecting approximately 1 in 4,500,000 subjects, ie, 10-12 cases in the whole country, based on a survey carried out in 2013 in more than 650 medical centers of Spain.¹¹ At the same time, the disease presents worldwide distribution, and tends to be common in the east of Asia, being more prevalent in Chinese, Japanese and Korean populations. Most of the reported cases diagnosed in Europe correspond to Italian, Lebanese and Spanish patients suggesting a possible Mediterranean distribution of the disease.

Onset, staging and clinical manifestations

BCD is a progressive chorioretinal dystrophy with corneal involvement characterized by profuse yellowish sparkling deposits at the retina (Figure 1), geographical areas of atrophy of the retinal pigment epithelium (RPE) and loss of choriocapillaris, chorioretinal atrophy and crystalline deposits in peripheral cornea.

According to Yuzawa et al¹², the illness can be classified into three stages (Figure 2):

Figure I Infrared images showing a typical pattern of "starry sky" fundus with numerous tiny glittering crystal deposits throughout the entire posterior pole of a patient with BCD (both eyes).

Stage 1: RPE atrophy with crystalline deposits in the macular area.

Stage 2: RPE atrophy extends beyond the posterior pole. Choriocapillaris atrophy at the posterior pole. Crystalline confluent deposits in the damaged area, less in number at the advanced atrophic areas of the RPEchoriocapillaris complex.

Stage 3: RPE-choriocapillaris complex extensive atrophy and a small number of residual crystalline deposits throughout the fundus.

The first clinical manifestations most commonly appear between the second and third decade of life, but can develop from teenagers to over fourth decade, remaining the determinants of age at onset unclear. In addition, the severity of the retinal damage does not seem to correlate well with the age of debut.

During the earliest stages, patients with BCD are often asymptomatic, which difficult its diagnosis. Therefore, most early BCD cases are often diagnosed as casual findings. As BCD progresses symptoms appear slowly and painlessly, involving nyctalopia, limited peripheral vision and visual field constriction, color vision impairment, floaters, photopsias and monocular diplopia. In the late stages of BCD, severe visual damage and legal blindness are common findings. It should be kept in mind that disease evolution may be asymmetric in the two eyes, that a good visual acuity outcome may not correspond to the measure of damage in the retina and that high variability in disease presentation and evolution has been reported.^{11,13}

Diagnosis

Corneal involvement: medical imaging techniques and clinical application

The presence of crystalline deposits in the peripheral paralimbal cornea is the main BCD clinical manifestation regarding the ocular surface, which might be

Figure 2 Color retinography of the fundus of both eyes of different patients showing different degrees of evolution of BCD disease, according to Yuzawa classification. (A) Numerous glistening crystalline dots and minimal chorioretinal damage restricted to the posterior pole of the retina, corresponding with stage 1 of Yuzawa. (B) Epithelial confluent atrophy of the posterior pole and few crystalline deposits, corresponding with stage 2 of Yuzawa. (C) Advanced choroidal sclerosis with marked chorioretinal atrophy and absence of deposits, corresponding with stage 2 of Yuzawa. Misdiagnosing with severe forms of choroideremia or retinitis pigmentosa is possible.

explained by the moderate *CYP4V2* expression in the corneal epithelium and subepithelium.¹⁴ Functional deterioration of this gene carries an increased accumulation of intracellular deposits of fatty acids in peripheral corneal and conjunctival fibroblasts and keratinocytes,^{15–17} involving the development of the marginal keratopathy. These subclinical alterations course with normal vision and are not essential requirements for BCD diagnosis. They are more commonly described in European than in Asian patients, although

the reported frequency of marginal keratopathy is highly variable, ranging from a 75% rate of incidence in Spanish patients¹¹ to the complete absence of keratopathy in a sample of 15 Italian patients.¹⁸ The presence of corneal crystalline deposits in the clinical reports and the identified mutations associated with them are summarized in Table 1.

The high quality of modern slit lamps allows the easy and quick identification of crystalline deposits throughout the entire peripheral cornea (Figure 3). Nevertheless, very

Table I Presence o	of corneal cryst	alline deposits in patients with c	linical and genetic diagnosis of BCD:	confirmed by CYP4V2 gene analysis, according to	o the medical literature.
Report	Year of publication	Patients with CYP4V2 mutations (number)	Patients with corneal crystalline deposits (number)	Involved CYP4V2 gene mutations (number of patients).	Ethnic origin (number of patients)
Wada et al ²¹	2005	6	E	c.802-8_810delinsGC/ c.802-8_810delinsGC (3)	JAPANESE (3)
Gekka et al ⁷⁰	2005	2	0	×	×
Shan et al ⁶¹	2005	24	0	×	×
Lin et al ⁷⁷	2005	=	ω	c.802-8_810delinsGC/ c.802-8_810delinsGC (4) c.1348C>T/c.1348C>T (2) c.518T>G/c.518T>G (1) c.802-8_810delinsGC/c.992A>C (1)	CHINESE (5) JAPANESE (2) MIDDLE EAST (2)
Lee et al ⁷⁵	2005	6	0	×	×
Jin et al ⁷²	2006	e	2	c.802-8_810delinsGC/c.802-8_810delinsGC c.1526C>T/¿	JAPANESE (2)
Nakamura et al ⁷⁶	2006	8	5	c.802-8_810delinsGC/ c.802-8_810delinsGC (4) c.802-8_810delinsGC/c.518T>G (1)	JAPANESE (5)
Lai et al ³⁹	2007	14	_	c.802-8_810delinsGC/ c.802-8_810delinsGC	CHINESE
Zenteno et al ⁵⁹	2008	_	_	c.974C>T/c.974C>T	MEXICAN
Yokoi et al ⁸⁶	2010	_	_	c.802-8_810delinsGC/ c.802-8_810delinsGC	JAPANESE
Xiao et al ⁵⁴	2011	21	0	×	×
Mamatha et al ³⁵	2011	3	2	c.1062dupA/¿? ¿ł/¿	INDIAN (2)
Yokoi et al ⁶⁷	2011	_	_	c.802-8_810delinsGC/c.1168C>T	JAPANESE
Parravano et al ⁷⁸	2012	_	_	c.772C>T/c.772C>T	ITALIAN
Haddad et al ¹³	2012	6	0	×	×
					(Continued)

1382

Table I (Continue	ed).				
Report	Year of publication	Patients with CYP4V2 mutations (number)	Patients with corneal crystalline deposits (number)	Involved CYP4V2 gene mutations (number of patients).	Ethnic origin (number of patients)
Rossi et al ¹⁸	2012	15	0	×	×
Song et al ⁸¹	2013	3	0	×	×
Chung et al ⁷⁴	2013	_	_	c.802-8_810delinsGC/ c.802-8_810delinsGC	KOREAN
Yin et al ³³	2014	14	0	×	×
Meng et al ⁶⁸	2014	92	39	5	CHINESE (39)
Astuti et al ⁵⁸	2014	61	ε	c.802-8_810delinsGC/c.1198 C>T c.802-8_810delinsGC/ <i>i</i> ? p.Thr417Asnfs*2/Genomic delection	CAUCASIAN (3)
Halford et al ²⁵	2014	20	ъ	c.802-8_810delinsGC/c.1503G>A c.197T>G/c.197T>G c.802-8_810delinsGC/c.802-8_810delinsGC c.677T>A/c.677T>A c.77G>A/c.987+3A>G	ASIAN (4) EUROPEAN (1)
Gocho et al ⁴⁵	2014	ε	0	×	×
Li et al ²⁶	2015	16	_	c.802-8_810delinsGC/c.802-8_810delinsGC	CHINESE
Tian et al ⁶⁹	2015	5	0	×	×
Park et al ⁸⁷	2016	_	_	c.802-8_810delinsGC/ c.802-8_810delinsGC	KOREAN
Fuerst et al ³⁴	2016	_		c.802-8_810delinsGC/c.992A>C	CHINESE
Raoof et al ⁸²	2016	-	0	×	×
Lockart et al ⁶⁶	2017	_	_	p.R400C/p.R400C	GERMAN
Zhang et al ⁵⁶	2018	128	S	c.802-8_810delinsGC/c.802-8_810delinsGC (2) c.802-8_810delinsGC/c.219T>A	CHINESE (3)
García-García et al ¹¹	2018	4	m	p.III1T/p.III1T p.Trp244Cysfs*33/p.G95R p.G95R/p.A204T-pR443W	SPANISH (3)
Note: ¿: Unknown.					

Figure 3 Slit-lamp biomicroscopic findings in several patients with BCD with corneal involvement. Crystalline-like corneal deposits (arrows) can be present in 360° degrees of the limbus area of both eyes.

subtle crystals (smaller than 15 μ m) can remain undetected if a careful examination is not performed.³

In vivo corneal confocal microscopy has corroborated the location of crystalline deposits in several patients with a previous slit-lamp diagnosis of BCD marginal keratopathy.^{11,19,20} Corneal dots were detected in the 360° of the peripheral and paracentral cornea, near the limbus, involving subepithelial and anterior stromal layers (approximately 20–40 µm long and 4–8 µm wide), with variable forms (needle, rod, pin, globular, chromosome shaped), irregular dissemination and possible centrifugal distribution (Figure 4). Specular microscopy is an accessory imaging technique that may help to identify subclinical corneal crystalline dots.²¹

Figure 4 In vivo confocal microscopy image (400×400 μ m) of a BCD patient (subepithelium area). The crystals (yellow arrows) were up to 24 μ m in length and 16 μ m in width and barely distinguishable from keratocytes nuclei (blue arrows).

Retina involvement: medical imaging techniques and clinical application

Our understanding of structural changes and underlying retinal lesions in BCD has been highly improved by the advent of new imaging techniques. Fluorescein angiography (FA) has been traditionally considered the gold standard in the evaluation of retinal damage and clinical progression of BCD because the findings obtained with this technique clearly correlate with the severity and stage of BCD.^{15,16,22} In the initial phases of the disease, FA reveals marked hyperfluorescence in the posterior pole because the atrophy of the RPE generates a window defect, with a relatively intact choriocapillaris. The crystalline dots located in the central and paracentral retina accounts for the blocked choroidal fluorescence. In the middle phases of the disease, FA discloses irregular geographic hypofluorescent areas of RPE and island-like choriocapillaris, in correspondence to areas of non-perfused choriocapillaris, with generalized disturbance and atrophy of the RPE in the posterior pole and enhanced image of the choroidal vasculature. In the later stages, choroidal atrophy and deep damage of the choriocapillaris and RPE complex are present, the volume of choroidal vessels is highly diminished and the blood vasculature is mainly sclerosed^{15,16,22} (Figure 5). Indocyanine green angiography (ICGA) remains considered as a valuable supplement diagnosis technique of BCD, better than FA in outlining the atrophy areas and in evidencing the real level and magnitude of the choroidal circulatory damage.^{23,24}

Early-phase ICGA shows a significant delay in the filling of the choroidal vessels in every stage of the disease. This delay increases and correlates with BCD severity. An initial damage of the parapapillary area appeared to be constant by ICGA, showing a later centrifugal pattern of involvement as BCD progresses. In the middle stages, damage of the inner choroid increases and lobular hypofluorescent lesions become evident.^{23,24} Late-phase ICGA also reveals a more variable pattern of hyperfluorescence in clearly delimitated choroidal areas in all stages of BCD.

However, these two procedures are invasive and timeconsuming, requiring venipuncture, and are not free of risks and threats like anaphylaxis or even death related to FA and ICGA injections. In fact, its use has diminished considerably in the last years due to the development of new non-invasive high-resolution imaging techniques like

Figure 5 Fluorescein angiography in later stage on both eyes of different patients with genetic diagnosis of BCD. (A) Small-patched areas of atrophy of the choriocapillaris and RPE, the macular area remain relatively intact in an early stage of BCD. (B) Marked atrophy of the RPE with focal confluent areas of disappearance of the choriocapillaris. (C) Severe atrophy of the RPE with complete disappearance of the choriocapillaris.

spectral-domain optical coherence tomography angiography (SD-OCT-A).

Fundus auto fluorescence (FAF) is not helpful to assess and control the evolution of crystalline deposits, because these dots present neither hypo-AF nor hyper-AF nature. The peripheral retina presents a normal FAF as long as there is no damage, but in BCD the posterior pole and the paracentral retina develops hypo-AF and clearly defined confluent-patched areas corresponding to local RPE loss sections. These alterations correlate well with funduscopic and FA changes throughout the progressive evolution of BCD. 25,26

SD-OCT has proven to be an effective noninvasive retinal imaging method for evaluating the morphological and functional changes in BCD. Outer retinal tubulations (ORTs) and glistening hyperreflective deposits seem to be the main SD-OCT manifestations in BCD^{25,27} (Figure 6). ORTs are spherical hyporeflective lesions surrounded by a halo of high reflectivity, mainly situated in the retina outer nuclear layer and more frequent in advanced stages 2 and

Figure 6 Spectral domain-optical coherence tomography (SD-OCT) image revealing both outer retinal tabulation (blue arrow) and crystalline macular deposits (yellow arrow) of a BCD individual.

3 of Yuzawa.¹² The mechanisms underlying ORTs remain unclear, but it has been suggested the existence of a diminished adherence of the photoreceptors outer segments to the RPE in its junction layer.^{26,29} This alteration can be due to a potential rearrangement and subsequent invagination of damaged photoreceptors that partially retain their function as a protection mechanism.

The presence of crystalline glistening deposits has been confirmed in all retinal layers by SD-OCT, mainly in the outer retina, being more numerous at the RPE-choriocapillaris level, including the Bruch membrane.^{20,25} According to Saatci et al²⁸, there are three categories of glistening deposits in SD-OCT sections: 1) highly reflective spots in the inner retina, 2) reflective plaques on the top of the Bruch membrane and 3) partially encapsulated reflective plaques. There seems to be a clear correlation between funduscopy crystalline deposits and hyperreflective dots located in or on REP-Bruch membrane complex.²⁵⁻³⁰ The origin and clinical significance of the plaques, encapsulated lesions and other hyperreflective dots, including those located in the choroid, remains unclear. Accumulation of protein deposits or inflammatory cells, glial response due to retinal destruction or even artifacts, has been postulated to explain the origin of these lesions.^{25,28} There are three potential phases in the evolution of BCD, according to SD-OCT imaging modality as defined by Li et al.26 Structures with the appearance of druses, decrease of the interdigitating area and local disruption of the ellipsoid area are present in stage 1. Stage 2 involves the presence of isolated islands of remaining RPE in the context of a high loss of this retinal layer and damage of the outer retina. Severe macular disturbance is the main finding in stage 3. According to a recent study,³¹ near-infrared imaging (NIR) – a commonly performed capture modality while acquiring simultaneous OCT scans – should be a useful tool in identifying BCD crystalline retinal deposits and in differentiating them from other presents in chorioretinal dystrophies with similar phenotypes, facilitating a more efficient posterior genetic diagnosis.

The knowledge of choroidal vasculature changes in retinal dystrophies has been especially improved by the use of OCT-A, a recent tool based on motion contrast imaging. The dynamic of the retinal and choroid microvasculature in BCD can be evaluated throughout the association of the advantages of the OCT-A and the split spectrum amplitude-decorrelation angiography.

A diminished choriocapillaris blood flow appears to be present in the vast majority of the BCD patients, and the visibility of the choriocapillaris layer at the subfoveal area correlates well with the degree of function of the visual system in BCD individuals according to Miyata et al.³² These features make OCT-A a non-invasive and accessible alternative to assess the patient's evolution. Choroidal neovascularization has occasionally been reported in patients with clinical and molecular diagnosis of BCD.^{26,33-35} The nature and mechanisms of this relationship remain unclear, but RPE defects and long-term friction of the Bruch's membrane by the crystalline dots should play a reasonable role.³⁵ There is proven efficacy of anti-Vascular Endothelial Growth Factor (VEGF) therapy in the management of this complication.³⁴ Macular hole may also be detected in BCD and can be successfully managed by routine surgery.³⁶

In summary, the current available imaging techniques open up many possibilities to assess retinal dystrophies, and multimodal evaluation of BCD patients is strongly recommended in the management of the disease. These combined techniques should allow us to make the diagnosis as early as possible, staging the severity and the progression of the disease and monitoring the response to potential future treatments.

Electrophysiological findings

Electrophysiological techniques are objective complementary explorations in BCD that include full-field electroretinography (ffERG) and multifocal electroretinography (mfERG) recorded according to the ISCEV protocols.³⁷

Regarding the electrooculogram, we consider it provides no additional information if ffERG and mfERG are performed. Actually, electrophysiology provides supplementary data in the early diagnosis, allows disease severity assessment, facilitates control of progression and determines how much retinal damage has been caused. The progression of the disease may follow a similar rod cone dystrophy pattern according to ffERG findings.37-40 Full-field ERG records range from normal in early stages to undetectable signals in the last phases of BCD. In the middle stages, the malfunction of both rod and cone mechanism involves multiple disturbances, and delayed amplitude of photopic and more evident scotopic responses should be present. The measurement of the implicit time of both responses, especially scotopic time, can be mildly delayed or even normal.40,41 mfERG assesses cone function from the central 30-40 degree field of the retina and provides additional spatial resolution and topographical evaluation not available in ffERG. This technique has become very helpful to expound the degree of responses acquired from ffERG especially in early stages of BCD, as well as to monitor the progression of the retinal central damage.^{42–44} The amplitudes of the mfERG are markedly attenuated compared to normal individuals in the fovea and central retina, remaining more affected than the implicit times like in ffERG. Peripheral responses may be preserved. P1 amplitudes and implicit times are markedly disturbed and N1 responses should be conserved.10,45,46

Genetic diagnosis

The classical diagnosis of BCD based on the clinical findings of typical crystalline deposits in the retina and the cornea detected by an experienced physician is, in general, useful but did not provide assurance. However, the only way to confirm a diagnosis of BCD disease is the identification of CYP4V2 gene (OMIM, *608614) mutations by genetic analysis. The DNA samples can be simply obtained from peripheral leukocytes by venipuncture or by collection of a small amount of saliva into a sterile tube. Amplification of the 11 CYP4V2 exons, including intronexon junctions and flanking sequences, using PCR and followed by automated Sanger DNA sequencing can be performed as described by Li et al.⁵ The complete genetic sequence can be also obtained by next-generation techniques, although the presence of a pathogenic variant needs confirmation by Sanger sequencing, which is considered the gold standard procedure in mutation detection. The primary aims of genetic testing are to establish, confirm or exclude a clinical diagnosis of BCD. Identification and functional evaluation of the causative gene mutation, as well as confirmation or exclusion of the presence of heterozygous *CYP4V2* carriers among relatives of BCD patients, are required for genetic counseling. The clinical sensitivity (proportion of positive studies if BCD is present) of the test is estimated higher than 93% and the clinical specificity (proportion of negative tests if BCD is not present) rounds 99.99%.^{9,47}

Genetic linkage of BCD

Bietti crystalline corneoretinal dystrophy (OMIM #210370) is inherited in an autosomal recessive manner. Jiao et al⁴ first showed the linkage of BCD to chromosome 4q35-qter, and subsequently Li et al⁵ refined critical interval of the disease (4q35.1-q35.2) and identified *CYP4V2* as the disease-causing gene. The *CYP4V2* gene is composed of 11 exons spanning 21 kb, and encodes a 525 amino acid protein, which is the second member of the cytochrome p450, family 4 (CYP4), subfamily V and plays an important role in lipid metabolism.⁴⁸

CYP4V2 protein and fatty acid metabolism

CYP4V2 is a microsomal enzyme with ω -hydroxylase activity on both saturated and polyunsaturated fatty acids (PUFAs) of medium and long-chain^{6,14,49} and is expressed in the vast majority of the body tissues, especially in RPE and retina, reaching a lesser degree of expression in the cornea.^{5,48,49} These facts supported the theory postulated by several authors which proposed lipid metabolism alteration as a major cause of BCD.^{3,16,49,50} Functional impairment of CYP4V2 leads to a global malfunction of the lipid metabolism system in the homozygous individuals. Lee et al⁴⁸ first reported the absence of two fatty acid-binding proteins of 32 and 45 kDa in cultured lymphocytes of BCD patients. Further studies revealed that cultured lymphocytes and fibroblasts showed additional alterations in the fatty acid metabolism, including marked reduction in the transformation of fatty acid precursors into ω-3 PUFAs, decreased synthesis of eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (DHA), increased conversion of alpha-linolenic acid (ALA) into triglycerides and abnormalities in the storage of these lipids.^{14,17,48–50} The ω -6 biosynthesis pathway apparently was not affected.¹⁵ In serum, a reduced activity of the Δ -9desaturase enzyme and abnormally low concentration of total monounsaturated fatty acids have been reported.^{16,50}

The CYP4V2 enzyme is present predominantly in the endoplasmic reticulum of the human RPE cell line ARPE-19. Immunohistochemistry analyses revealed that CYP4V2 is also present in retinal outer and inner nuclear layers, retinal ganglion cells and corneal epithelial cells, in accordance with the BCD phenotype.¹⁴ In addition, the gene is expressed in different non-ocular organs such as heart, lung, liver, pancreas, kidney, brain, skeletal muscle and placenta. Interestingly, BCD patients do not show any pathological condition in these organs, suggesting the presence of compensatory enzymes which are absent in the RPE. Moreover, the exact pathogenic mechanism involved in RPE malfunction and in the subsequent damage remains unknown. Particularly interesting is the function of the CYP4V2 protein in DHA reactions. DHA is an essential constituent of the rod outer segment and plays an important role in the maturation and survival of the photoreceptors cells required for normal visual function.⁵¹ Functional CYP4V2 alteration generates a disruption of the membrane processing of lipids in RPE layer, which result in a significant focal dyslipidemia and degeneration of the photoreceptors. The endogenous conversion of DHA to resolvins, protectins and maresins 5^{2} – mediators involved in the innate anti-inflammatory modulation - suggests that defective CYP4V2 activity may also impair the resolution phase of the inflammatory process.6,53

Recently, Hata et al⁵³ performed the induction of pluripotent stem cells from individuals who carried specific *CYP4V2* mutations to generate RPE cells, in order to develop an innovative in vitro model of BCD. These cells showed vacuolated cytoplasm similar to those degenerative changes observed in individuals with BCD. In addition, the cells accumulated glucosylceramide and free cholesterol in association with lysosomal malfunction and decay of autophagy flux, involving severe impairment and cellular apoptosis. The reduction of intracellular free cholesterol might mitigate the damage caused by BCD in RPE cells, and is postulated by the authors as a potential preventive or therapeutically measure.

BCD-associated gene variants

To date, over 100 disease-causing mutations in *CYP4V2* gene have been reported according to previous clinical studies (Table 2). The vast majority of the mutations are missense, followed by large deletions, nonsense mutations,

small insertions or deletions and splicing site variants, which are more unusual. The most frequent mutation identified is the insertion-deletion IVS6-8del17bp/insGC or c.802-8del17bp/insGC, at the junction between intron 6-exon 7 of CYP4V2 gene,⁵⁴ an ancient founder mutation present in Chinese, Korean, and Japanese patients, with an allele frequency of 17.2-83.3%^{55,56} and undetected in European or Middle-East communities. The second most common mutations reported only in BCD East Asian patients are c.1091-2A>G [p.(Gly364_Val408del)] mostly identified in the Chinese community⁵⁶ - and c.992A>C [p.(H331P)] which is prevalent in Chinese and Korean population (Table 1). According to the literature, mutation c.518T>G [(p.L173W)] has been reported by several authors mostly in Japanese patients^{31,54,57} (Table 1).

Prevalent mutations in Caucasian individuals are the missense changes c.1393A>G [p.(R465G)] and c.332T>C [p.(I111T)], widely reported in European,^{5,25,55} Spanish,¹¹ Italian¹⁸ and Lebanese^{13,58} patients. Both of them might follow a pattern of Mediterranean distribution of the cases. This context suggests the presence of a founder effect and the potential arising of these variants in a geographically delimited Mediterranean region.¹¹

The missense mutation c.974C>T [p.(T325I)] detected by Zenteno et al⁵⁹ is to the best of our knowledge the only *CYP4V2* disease-causing variant reported in Latin-American individuals.

The CYP4V2 protein structure presents a transmembrane region at the amino terminal end, followed by a globular structural domain composed of 18 a-helices connected by B-sheet and random coil structures.⁵ The heme group resides near the protein surface, between helices I (toward the central core) and L (toward the surface), similarly to other members of the CYP450 superfamily.⁵ CYP4V2 pathogenic mutations including frameshift, splicing site and nonsense changes impair this highly conserved protein folding. Missense mutations generally affect the transmembrane segment, interfering with the integration of the CYP4V2 protein into the membrane, and in the active site of the enzyme disrupting the coordination of the porphyrin ring needed for its catalytic function. The α -helix supporting the porphyrin ring may also be affected by missense changes.⁵⁵ Therefore, all mutations identified in BCD patients likely lead to the loss-offunction of the enzyme.

Recently, *CYP4V2* has been also detected in human hepatocellular carcinoma – being its expression

Table 2 Su	immary (of the mutations ident	tified in CYP4V2 gene	in patients w	ith molecular diagnosis of BCD, accorc	ling to the medical literature.
Number	Exon	CYP4V2 mutation	Protein mutation	Change	Origin	References
_	_	c.3IC>T	p.QIIX	Nonsense	Asian (Chinese) ⁶⁸	Meng et al ⁶⁸
2	_	c.64C>G	p.L22V	Missense	European ^{25,55} Asian (Chinese) ^{26,61,68,81}	Halford et al ²⁵ , Li et al ²⁶ , Jiao et al ⁵⁵ , Shan et al ⁶¹ , Meng et al ⁶⁸ , Song et a ¹⁸¹
٣	_	c.65T>A	p.L22H	Missense	Asian (Chinese) ^{56,71,82}	Zhang et al ⁵⁶ , Yin et al ⁷¹ , Raoof et al ⁸²
4	_	c.71T>C	p.L24P	Missense	Unknown ⁵⁵	Jiao et al ⁵⁵
ß	_	c.76G>A	p.G26S	Missense	European (Italian) ¹⁸	Rossi et al ¹⁸
9	_	c.77G>A	p.G26D	Missense	European ²⁵ Asian (Chinese) ⁷¹	Halford et al ²⁵ , Yin et al ⁷¹
7	_	c.130T>A	p.W44R	Missense	European ^{5,55}	Li et al ⁵ , jiao et al ⁵⁵
8	_	c.134A>C	p.G45P	Missense	European ⁵⁵	Jiao et al ⁵⁵
6	_	c.181G>A	p.G61S	Missense	Asian (Chinese) ^{5,55}	Li et al ⁵ , jiao et al ⁵⁵
01	_	c.197T>G	p.M66R	Missense	South Asian ²⁵ unknown ⁵⁵	Halford et al ²⁵ , Jiao et al ⁵⁵
Ξ	_	c.214+1G>A	Exon I del	Splice site	Asian (Japanese) ⁵	Li et al ⁵
12	:-	c.214+25delT	Exon I del	Splice site	European ⁵	Li et al ⁵
13	2	c.215-2A>G	Exon2del	Splice site	Asian (Chinese) ^{54,68,71}	Xiao et al ⁵⁴ , Meng et al ⁶⁸ , Yin et al ⁷¹
14	2	c.215-1G>A	Exon2del	Splice site	Asian (Chinese) ^{56,68}	Zhang et al ^{s6} , Meng et al ⁶⁸
15	2	c.219T>A	p.F73L	Missense	Asian (Chinese) ^{33,56,68,69,71}	Yin et al ^{33,71} , Zhang et al ⁵⁶ , Meng et al ⁶⁸ , Tian et al ⁶⁹
16	2	c.237G>T	p.E79D	Missense	Asian (Chinese) ^{5.55} Asian (Thailandese) ⁶⁴	Li et al ⁵ , jiao et al ⁵⁵ , jinda et al ⁶⁴
17	2	c.242C>G	p.T8IR	Missense	Caucasian ⁵⁸	Astuti et al ^{se}
18	2	c.253C>T	p.R85C	Missense	Asian (Chinese) ^{56,61}	Zhang et al ⁵⁶ , Shan et al ⁶¹
19	2	c.254G>A	p.R85H	Missense	Asian (Chinese) ⁵⁶	Zhang et al ⁵⁶
20	2	c.277T>C	p.W93R	Missense	European (Italian) ^{I8}	Rossi et al ¹⁸
						(Continued)

Г

ed).	
ntinu	
Ů	
ble 2	
Та	

Number	Exon	CYP4V2 mutation	Protein mutation	Change	Origin	References
21	2	c.283G>A	p.G95R	Missense	European ²⁵ (Spanish) ¹¹ Asian (Chinese) ^{33,56,61,68,71} unknown ^{55,79}	García-García et al'I, Halford et al ²⁵ , Yin et al ^{33,7I} , Jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Shan et al ⁶¹ , Meng et al ⁶⁸ , Manzouri et al ⁷⁹
22	2i	c.327+IG>A	p.(Glu72Glyfs*5)	Splice donor variant	Asian (Japanese) ^{5,32,55,57}	Li et al ⁵ , Miyata et al $^{32.57}$, Jiao et al 55
23	2i	c.327+11G > C	2?	Splice site	European ²⁵	Halford et al ²⁵
24	3i	c.328-1G>A	p. (Glul 09Tyrfs*30) Exon3del	Splice site	European ^{5,55} Asian (Chinese) ⁵⁶	Li et al ⁵ , jiao et al ⁵⁵ , Zhang et al ⁵⁶
25	m	c.332T>C	PILLIT	Missense	European ^{5,55} (Spanish) ^{I I} European (Italian) ^{I8} lebanese ^{I 3,58}	Li et al ⁵ , García-García et al ¹¹ , Haddad et al ¹³ , Rossi et al ¹⁸ , Jiao et al ⁵⁵ , Astuti et al ⁵⁸
26	ĸ	c.335T>G	p.L112X	Nonsense	Asian (Chinese) ^{56,61}	Zhang et al ⁵⁶ , Shan et al ⁶¹
27	ĸ	362C>A	p.S121Y	Missense	Asian (Japanese) ⁸³	Katagiri et al ⁸³
28	ĸ	c.364T>C	p.S122P	Missense	European (Italian) ¹⁸	Rossi et al ¹⁸
29	3	c.367A>G	p.M123V	Missense	Asian (Chinese) ^{5,55} European ⁵⁵ Asian (Thailandese) ⁶⁴	Li et al ⁵ , jiao et al,55 jinda et al ⁶⁴
30	°.	c.368T>G	p.M123R	Missense	Asian (Chinese) ⁵⁶	Zhang et al ⁵⁶
31	3	с.400G>Т	p.G134X	Nonsense	European ^{5,55}	Li et al ⁵ , Jiao et al ⁵⁵
32	3	c.413+2T>G	Exon3del	Splice site	Asian (Chinese) ⁶⁸	Meng et al ⁶⁸
33	4	c.518T>G	p.LI73W	Missense	Asian (Japanese) ^{32,57,76,77} Asian (Chinese) ^{54,71}	Miyata et al $^{32.57}$, Xiao et al 54 , Yin et al 71 , Nakamura et al 76 , Lin et al 77
34	5	c.604+4A>G	Exon4del	Splice site	Caucasian ⁵⁸	Astuti et al ⁵⁸
35	5	c.604G>A	p.G202L	Missense	Caucasian ⁵⁸	Astuti et al ⁵⁸
36	5	c.636_640delAAGTA	p.S213X	Nonsense	European ²⁵ unknown ⁷⁹	Halford et al ²⁵ , Manzouri et al ⁷⁹
						(Continued)

Number	Exon	CYP4V2 mutation	Protein mutation	Change	Origin	References
37	5	c.610G>A	p.A204T	Missense	European (Spanish) ¹¹	García-García et al ¹¹
38	5	c.655T>C	р.Ү219Н	Missense	Asian (Chinese) ^{39,50}	Lai et al ^{39,50}
39	6	c.677T>A	p.M226L	Missense	Middle East ²⁵ European ⁵⁵ unknown ⁵⁵	Halford et al ²⁵ , jiao et al ⁵⁵
40	6	c.681_4deITGAG	p.S227Rfs*I	Frameshift	Asian (Chinese) ⁷¹	Yin et al ⁷¹
41	6	c.694C>T	p.R232X	Nonsense	European ⁵⁵ (Italian) ¹⁸ Asian (Chinese) ⁵⁵	Rossi et al ¹⁸ , Jiao et al ⁵⁵
42	10	c.710C>A*	5?	<i>i</i> ?	Asian (Japanese) ^{32,57}	Miyata et al ^{32,57}
43	6	c.724delG	p.D242lfs35X	Frameshift	European (Italian) ¹⁸	Rossi et al ¹⁸
44	6	c.732delG	p.(Trp244Cysfs*33)	Missense	European (Spanish) ¹¹	García-García et al ^{l I}
45	6	c.732G>A	p.W244X	Nonsense	Asian (Chinese) ^{39,50,56,68}	Lai et al ^{39,50} , Zhang et al ⁵⁶ , Meng et al ⁶⁸
46	6	c.761A>G	p.H254R	Missense	Asian (Chinese) ⁵⁴	Xiao et al ⁵⁴
47	6	c.772C>T	p.L258F	Missense	European (Italian) ⁷⁸	Parravano et al ⁷⁸
48	6	c.775A>C	p.K259Q	Missense	European ^{25,55} (Italian) ¹⁸ Asian (Japanese) ⁷⁰ Asian (Chinese) ^{73,81}	Rossi et al ¹⁸ , Halford et al ²⁵ , jiao et al ⁵⁵ , Gekka et al ⁷⁰ , Liu et al ⁷³ , Song et al ⁸¹
49	6	c.791delT	Exon6del	Splice site	Asian (Chinese) ⁶⁸	Meng et al ⁶⁸
50	6	c.801+5G>A	Exon6del	Splice site	Asian (Chinese) ⁵⁶	Zhang et al ⁵⁶
51	6i	c.802-8806del13	Exon7del	Frameshift delection	Asian (Chinese) ⁵ Asian (Japanese) ⁵	Li et al ⁵
52	6i_7	c.802-8807del	p. (Val268_Glu329del)	Frameshift delection	Asian (Japanese) ⁵ Asian (Chinese) ⁵⁰	Li et al ⁵ , Lai et al ⁵⁰
53	7	c.802-9A>G	Altered splicing	Splice site	Asian (Chinese) ⁵⁶	Zhang et al ⁵⁶
						(Continued)

Nimher	Fvon	CVP4V7 multation	Protein	Change	D riain	References
			mutation	0		
54	2	c.802-8_810 del17insGC	Exon7del	Splice site 26	Asian (Japanese) ^{5,21,31,32,45,55,57,61,67,70,72,76,77,86} Asian (Chinese) ^{5,25,26,33,34,39,50,54–} 56,61,68,69,71,73,75,77,80,82,84 Asian (Korean) ^{55,74,87} European ^{25,58} Unknown ⁵⁵	Li et al ^{5,26} , Wada et al ²¹ , Halford et al ²⁵ , Oishi et al ³¹ , Miyata et al ^{32,57} , Yin et al ^{33,71} , Fuerst et al ³⁴ , Lai et al ^{39,50} , Gocho et al ⁴⁵ , Xiao et al ⁵⁴ , Jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Astuti et al ⁵⁸ , Shan et al ⁶¹ , Yokoi et al ^{67,86} , Meng et al ⁶⁸ , Tian et al ⁶⁹ , Gekka et al ⁷⁰ , Jin et al ⁷² , Liu et al ⁷³ , Chung et al ⁷⁴ , Lee et al ⁷⁵ , Nakamura et al ⁷⁶ , Lin et al ⁷⁷ , Demile et al ⁸⁰ , Raoof et al ⁸² , Fu et al ⁸⁴ , Park et al ⁸⁷
55	7	c.802-8_810 dell 7insGT	Exon7del	Splice site 6	Asian (Chinese) ⁷¹	Yin et al ⁷¹
56	7	c.810delT	Glu271Asnfs*6	Nonsense	Asian (Chinese) ⁵⁵	Jiao et al ⁵⁵
57	7	c.810T>G	p.Ala27	Synonymous	European ²⁵ Asian (Chinese) ⁸¹	Halford et al ²⁵ , Song et al ⁸¹
58	7	c.823G>A	p.Glu275Lys	Missense	European ²⁵	Halford et al ²⁵
59	7	c.838G>T	p.Glu280*	Nonsense	European ⁵⁵	Jiao et al ⁵⁵
60	7	с.928G>Т	p.Glu310*	Nonsense	European ⁵⁵	Jiao et al ⁵⁵
61	7	c.958C>T	p.R320X	Nonsense	Asian (Chinese) ^{54-56,68}	Xiao et al ⁵⁴ , Jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Meng et al ⁶⁸
62	7	c.965_7delAAG	p.321 delE	Splice site	Asian (Chinese) ⁷¹	Yin et al ⁷¹
63	7	c.987+3A>G	;	<i>;</i> ?	European ²⁵	Halford et al ²⁵
64	7	c.971A>T	p.D324V	Missense	Asian (Chinese) ^{39,50}	Lai et al ^{39,50}
65	7	c.974C>T	p.T325I	Missense	American (Mexican) ⁵⁹	Zenteno et al ⁵⁹
66	ω	c.992A>C	p.H331P	Missense	Asian (Chinese) ^{5,26,34,39,50,54–56,61,68,71,77} Asian (Korean) ⁵⁵ unknown ⁵⁵	Li et al ^{5,2} 6, Fuerst et al ³⁴ , Lai et al ^{39,50} , Xiao et al ⁵⁴ , Jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Shan et al ⁶¹ , Meng et al ⁶⁸ , Yin et al ⁷¹ , Lin et al ⁷⁷
67	8	C.994G>A	p.D332N	Missense	Asian (Chinese) ^{56,71}	Zhang et al ⁵⁶ , Yin et al ⁷¹
68	8	c.998C>A	р.Т333К	Missense	European ²⁵	Halford et al ²⁵
69	8	c.1020G>A	p.W340X	Nonsense	Asian (Japanese) ^{21.70} Asian (Chinese) ^{26,56}	Wada et a 121 , Li et a 126 , Zhang et a 156 , Gekka et a 70
						(Continued)

1392

submit your manuscript | www.dovepress.com

DovePress

Table 2 ((Continue	.(be			-		
Number	Exon	CYP4V2 mutation	Protein mutation	Change	Origin	References	
70	8	c.1021T>C	p.S341P	Missense	European ^{5,55}	Li et al ⁵ , jiao et al ⁵⁵	
71	8	c. I I 23delC	p.L375*	;	Jew (Yemen) ⁸⁵	Beriozhkin et al ⁸⁵	
72	8	c.1027T>G	p.Y343D	Missense	Asian (Chinese) ^{55,68}	Jiao et al ⁵⁵ , Meng et al ⁶⁸	
73	ω	c.1062insA	p.V355Sfs*4	Frameshift	Asian (Chinese) ^{33,56,68,71,80} Asian ³⁵ (Indian)	Yin et $a^{133,71}$, Mamatha et a^{135} , Zhang et a^{156} , Meng et a^{168} , Demile et a^{180}	
74	8	c.1072G>T	p.E358X	Missense	Asian (Chinese) ⁵⁶	Zhang et a ^{l56}	
75	iā	c.1091-2A>G	p. (Gly364_Val408del) Exon9del	Splice site large delection	Asian (Chinese) ^{5,26,33,39,50,54–} 56,61,68,69,71,80,81,84	Li et al ^{5,26} , Yin et al ^{33,71} , Lai et al ^{39,50} , Xiao et al ⁵⁴ , Jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Shan et al ⁶¹ , Meng et al ⁶⁸ , Tian et al ⁶⁹ , Demile et al ⁸⁰ , Song et al ⁸¹ , Fu et al ⁸⁴	
76	6	c.1157A>C	р.К386Т	Missense	Asian (Chinese) ⁷⁵	Lee et al ⁷⁵	
4	6	c.1168C>T	p.R390C	Missense	Asian (Chinese) ^{26,56,71} Asian (Japanese) ⁶⁷ unknown ⁵⁵	Li et al ²⁶ , Jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Yokoi et al ⁶⁷ , Yin et al ⁷¹	
78	6	c.1169G>A	р.К390Н	Missense	European (Italian) ¹⁸ Asian (Chinese) ^{54,56,71} unknown ⁵⁵	Rossi et al ¹⁸ , Xiao et al ⁵⁴ , Jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Yin et al ⁷¹	
79	6	c.1178C>T	p.P393L	Missense	Unknown ⁵⁵	jiao et al ⁵⁵	
80	6	c.1187C>T	p.P396L	Missense	Asian (Chinese) ^{39,50,68} Unknown ⁵⁵	Lai et al ^{39,50} , Jiao et al ⁵⁵ , Meng et al ⁶⁸	
	6	c.1198C>T	p.R400C	Transversion	Asian (Chinese) ^{39,50,56} European ⁵⁵ (German ⁶⁶) Caucasian ⁵⁸	Lai et al ^{39,50} , jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Astuti et al ⁵⁸ , Lockhart et al ⁶⁶	
82	6	c.1199G>A	P.R.400H	Missense	Asian (Chinese) ^{39,50,54–56,61,69} Asian (Japanese) ³² European ^{25,55}	Halford et al ²⁵ , Miyata et al ³² , Lai et al ^{39,50} , Xiao et al ⁵⁴ , Jiao et al ⁵⁵ , Zhang et al ⁵⁶ , Shan et al ⁶¹ , Tian et al ⁶⁹	
83	6	c.1216T>C	p.C406R	Missense	Asian (Chinese) ⁵⁶	Zhang et al ⁵⁶	
84	6	c.1219G>T	p.Glu407*	Nonsense	Unknown ⁵⁵	Jiao et al ⁵⁵	
						(Continued)	

1393

Table 2 ((Continue	.(þe				
Number	Exon	CYP4V2 mutation	Protein mutation	Change	Origin	References
85	9i	c.1225+1G>A	P. (Gly364_V408del)	Nonsense skip exon 9	ARABIC ⁵⁵	Jiao et al ⁵⁵
86	01	c.1226-6_1235del16	A409Efs*3	Splice site exon I0del	Asian (Chinese) ^{56,61,71} Asian (Japanese) ^{32,57}	Miyata et al ^{32,57} , Zhang et al ⁵⁶ , Shan et al ⁶¹ , Yin et al ⁷¹
87	01	c.1249dup	p.Thr417Asnfs*2	Frameshift delection	Caucasian ⁵⁸	Asturi et al ⁵⁸
88	0	c.1278G>T	p.L426F	Missense	Asian (Chinese) ⁵⁶	Zhang et al ⁵⁶
89	01	1327C>T	p.R443W	Missense	European (Spanish) ^{II}	García-García et al ¹¹
60	01	c.1328G>A	p.R443Q	Missense	Asian (Korean) ⁵⁵ European ^{25,55} (Italian) ¹⁸	Rossi et al ¹⁸ , Halford et al ²⁵ , Jiao et al ⁵⁵
16	10	c.1348C>T	p.Q450X	Nonsense	Middle East ⁷⁷	Lin et al ⁷⁷
92	10	c.1355G>A	p.R452H	Missense	Asian (Korean) ⁵⁵	Jiao et al ⁵⁵
93	01	c.1372G>A	p.V458M	Missense	Lebanese ¹³ European ⁵⁵	Haddad et al ¹³ , Jiao et al ⁵⁵
94	10	c.1378T>C	;	<i>;</i> ?	Asian (Japanese) ^{32,57}	Miyata et al ^{32,57}
95	01	c.1393A>G	p.R465G	Missense	EUROPEAN ^{25,55} (Spanish) ¹¹ European (Italian) ¹⁸ Caucasian ⁵⁸ Unknown ⁵⁵	García-García et al ¹¹ , Rossi et al ¹⁸ , Halford et al ²⁵ , Jiao et al ⁵⁵ , Astuti et al ⁵⁸
96	10	c.1396A>G	p.N466D	Missense	Asian (Chinese) ⁸⁴	Fu et al ⁸⁴
97	10	c.1399T>C	p.C467R	Missense	Asian (Chinese) ⁸¹	Song et al ⁸¹
98	10	c.1400G>A	p.C467Y	Missense	Asian (Chinese) ⁵⁶	Zhang et al ⁵⁶
66	01	c. 1437delC	р.Т479ТfsX7	Frameshift delection	Asian (Chinese) ⁶⁹	Tian et al ⁶⁹
001	Ξ	c.1442deIT	p.Ser482Argfs*4	;	Asian (Chinese) ⁵⁵	Jiao et al ⁵⁵
101	Ξ	c.1445C>A	p.S482X	Nonsense	Asian (Chinese) ⁷⁵	Lee et al ⁷⁵
						(Continued)

Г

Number	Exon	CYP4V2 mutation	Protein mutation	Change	Origin	References
102	=	c. I508G>A	p.G503E	Missense	Asian (Chinese) ⁵⁶ Arab (Israel) ⁸⁵	Zhang et al ⁵⁶ , Beriozkin et al ⁸⁵
103	=	c.1526C>T	p.P509L	Missense	Asian (Japanese) ⁷²	Jin et al ⁷²
104	=	c.1573C>A	p.R508H	Missense	European ^{5,55}	Li et al ⁵ , Jiao et al ⁵⁵
Note: /: Unki	nown.					

García-García et al

significantly associated with a better disease prognosis – and in breast cancer showing a less aggressive degree of neoplasia.⁶⁰ Genome-wide association research have detected the CYP4V2 c.775A>C [p. (K259Q)] variant linked with deep vein thrombosis.^{55,61}

Both CYP4V2 intronic F11 variant CYP4V2-KLKB1-F11 secondary to rs2289252 and the rs2036914 polymorphism (rs13146272) have been also considered as risk factors associated with venous thromboembolism.⁶²

Genotype – phenotype findings and epigenetic factors

The existence of elevated clinical variability in unrelated BCD individuals harboring the same homozygous mutation or combination of them, and the additional intra- and interfamilial variability in clinical severity suggests the presence of other factors that modulate the disease.^{11,18} Due to the fact that fatty acid metabolism is clearly implicated in the genesis of the disease, healthy diet and good patterns of alimentation, lipid restriction and other environmental factors are suggested to play an additional role in the final phenotypic characterization.^{11,18,53,63.}

Regarding the most common mutations in occidental patients, c.1393A>G [p.(R465G)] is predicted to generate an aggressive phenotype of BCD, according to the bioinformatics tools that evaluate the impact of the amino acid substitutions on the architecture and functioning of CYP4V2 protein. Mutation c.332T>C [p.(I111T)] is also considered to be deleterious.¹⁸ The prediction correlates well with the clinical findings of extensive damage, rapid progression and severe course of BCD phenotype detected in a homozygous p.(Arg465Gly) Spanish patient.¹¹ Nevertheless, there are reports of several homozygous p. (Ile111Thr) patients presenting different patterns of clinical disease ranging from slow progression, less aggressive damage and mild symptoms^{11,13,18} to aggressive clinical phenotype and fast rate of progression.^{13,58} These data suggest the potential role of environmental, epigenetic and/or additional unknown factors in the phenotypic variability observed.

Epigenetic processes including DNA methylation and chemical posttranslational alterations of the histones act coordinately to regulate gene expression and adjust physiology of healthy cells.⁶³ Defective or absent epigenetic regulation could contribute to the presence of different patterns of phenotypic expression of BCD and the fast or slow rate progression of the disease. Identifying and

Table 2 (Continued)

targeting the defective epigenetic modulation to correct the altered mechanisms, especially in the early phases of BCD, should be the basis to develop future diagnosis tools and new clinical treatments in order to improve the quality of life of the patients.

Future perspectives in BCD

Genetic counseling for BCD patients and their heterozygous asymptomatic relatives requires detailed record of the family history, disclosing relevant information about the disease and the pattern of inheritance. Genetic testing contributes to clarify the carrier condition of different family members, and is useful to predict the degree of damage and progression rate associated with specific mutations. In addition, genetic counseling allows assessment of a person or couple's BCD risk and the chances that their offspring will inherit *CYP4V2* mutations and manifest the disease. Correct family planning requires *CYP4V2* genetic testing in partners of heterozygous carriers.

The discovery of accompanying *CYP4V2* mutations in patients affected by retinitis pigmentosa, Leber congenital amaurosis (LCA) and other retinal dystrophies^{64,65} reveals the genetic complexity of some genotypes and shows that gene panel-based genetic testing is necessary for reliable retinal dystrophy diagnosis and correct clinical diagnosis of the individuals. Interpretation of possible combinatorial phenotypic effects among different mutations coinherited in these patients is difficult and, therefore, further research is required to clarify this issue.

The creation of national and international patient registries and databases in different countries for retinal dystrophies, containing both clinical and genetic information, is key instruments to advance clinical research as well as to improve patient care and health care planning. They allow collecting enough data to achieve sufficient sample sizes for epidemiological and/or clinical research. They also allow assessment of clinical trials feasibility and facilitate the planning of appropriate clinical trials and patient enrolment. Epigenetic alterations are increasingly recognized as important players in the pathogenesis of a growing number of diseases. In this line, CYP4V2 gene activity in BCD patients has historically been thought to be influenced by these mechanisms. To the best of our knowledge, the role of epigenetic factors in BCD has not been investigated, and the reversibility of these alterations provides an excellent opportunity for research and innovation of new therapeutic options for BCD patients. Therefore, the analysis of epigenetic modifications in BCD patients and the study of dietary components, especially lipids, and traditional medicines could contribute to determine the role of epigenetics in this disease.

The recent investigation of Hata et al⁵³ supports the possible therapeutic effect in BCD patients of intracellular free cholesterol reduction. This type of studies might provide the basis for future medical treatments of BCD. Moreover, further characterization of CYP4V2 catalytic activity and better understanding of the role of this enzyme in BCD pathogenesis may also set the basis to develop novel therapies of this disease.

Relevant advances in the treatment of hereditary dystrophies, in particular, LCA type 2 (LCA2), has revitalized the objective of achieving healing of these previously untreatable diseases. RPE65 related LCA2 was successfully treated by gene augmentation surgery using subretinal injections with voretigene neparvovec,⁶⁵ a gene therapy based on an adeno-associated vector. This clinical trial led to approval by the US Food and Drug Administration of the Voretigene neparvovec-rzyl treatment.⁶³

Currently, there are over 100 clinical trials that utilize gene therapy for treating eye disorders, and BCD is included in the Reflection Bio's RBIO-101 program (AAV.CYP4V2), granted by the FDA, to the research and development of an AAV-based gene therapy product for treating the disease. The next step of these development programs is testing the obtained gene therapy in a human clinical trial with BCD patients.

In conclusion, this review provides insights into the current clinical diagnosis and genetic testing of BCD. Despite important advances in this field, BCD remains poorly understood, requiring further efforts to elucidate its precise molecular and biochemical alterations. The long-term goal of this research is to develop different types of personalized medical treatments based on patients' genetic profiles, which hopefully will be achieved in the near future.

Acknowledgments

This study has been supported by research grants from the Regional Ministry of Science and Technology of the Board of the Communities of 'Castilla-La Mancha' (SBPLY/17/ 180501/000404) and the 'Instituto de Salud Carlos III/ FEDER' (RD16/0008/0019 and PI15/01193).

Disclosure

The authors report no conflicts of interest in this work.

References

- Bietti G. Ueber faxmiliares Vorkommen von "Retinitis punctata albescens" (verbunden mit "dystrophis marginalis cristallinea cornea"), glitzern, des glaskorpers und anderen degenerativen augenveranderungen. *Klin Monbl Augenheilkd*. 1937;99:737–756.
- Bagolini B, Ioli-Spada G. Bietti's tapetoretinal degeneration with marginal corneal dystrophy. *Am J Ophthalmol.* 1968;65:53–60. doi:10.1016/0002-9394(68)91028-3
- Welch RB. Bietti's tapetoretinal degeneration with marginal corneal dystrophy crystalline retinopathy. *Trans Am Ophthalmol Soc.* 1977;75:164–179.
- Jiao X, Munier FL, Iwata F, et al. Genetic linkage of Bietti crystalline corneoretinal dystrophy to chromosome 4q35. *Am J Hum Genet*. 2000;67:1309–1313. doi:10.1016/S0002-9297(07)62960-7
- Li A, Jiao X, Munier FL, et al. Bietti crystalline corneoretinal dystrophy is caused by mutations in the novel gene CYP4V2. *Am J Hum Genet*. 2004;74:817–826. doi:10.1086/382659
- Lockhart CM, Nakano M, Rettie AE, Kelly EJ. Generation and characterization of a murine model of Bietti crystalline dystrophy. *Invest Ophthalmol Vis Sci.* 2014;55:5572–5581. doi:10.1167/iovs.13-13717
- 7. Hu DN. Ophthalmic genetics in China. *Ophthal Paed Genet*. 1983;2:39–45.
- 8. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. *Lancet*. 2006;368:1795–1809. doi:10.1016/S0140-6736(06)69740-7
- Okialda KA, Stover NB, Weleber RG et al. Bietti Crystalline Dystrophy. In: Pagon RA, Bird TD, Dolan CR et al. editors. Gene ReviewsTM. Seattle (WA) University of Washington, Seattle: 1993-2014
- Ng DS, Lai TY, Ng TK, et al. Genetics of Bietti crystalline dystrophy. Asia Pac J Ophthalmol. 2016;4:245–252. doi:10.1097/APO.0000 000000000209
- García-García GP, Martínez-Rubio M, Moya-Moya MA, Pérez-Santonja JJ, Escribano J. Identification of novel *CYP4V2* genotypes associated with Bietti crystalline dystrophy and atypical anterior segment phenotypes in Spanish patients. *Acta Ophthalmol.* 2018;96 (7):e865–e873. doi:10.1111/aos.13768
- Yuzawa M, Mae Y, Matsui M. Bietti's crystalline retinopathy. *Ophthalmic Paediatr Genet.* 1986;7:9–20. doi:10.3109/138168186 09058037
- 13. Haddad NM, Waked N, Bejjani R, et al. Clinical and molecular findings in three Lebanese families with Bietti crystalline dystrophy: report on a novel mutation. *Mol Vis.* 2012;18:1182–1188.
- 14. Nakano M, Kelly EJ, Wiek C, Hanenberg H, Rettie AE. CYP4V2 in Bietti's crystalline dystrophy: ocular localization, metabolism of ω-3polyunsaturated fatty acids, and functional deficit of the p.H331P variant. *Mol Pharmacol.* 2012;82:679–686. doi:10.1124/mol.112.080085
- Wilson DJ, Weleber RG, Klein ML, et al. Bietti's crystalline dystrophy. A clinicopathologic correlative study. *Arch Ophthalmol.* 1989;107:213–221. doi:10.1001/archopht.1989.01070010219026
- Kaiser-Kupfer MI, Chan CC, Markello TC, et al. Clinical biochemical and pathologic correlations in Bietti's crystalline dystrophy. *Am J Ophthalmol.* 1994;118:569–582. doi:10.1016/s0002-9394(14) 72565-6
- Lee J, Jiao X, Hejtmancik JF, et al. The metabolism of fatty acids in human Bietti crystalline dystrophy. *Invest Ophthalmol Vis Sci.* 2001;42:1707–1714.
- Rossi S, Testa F, Li A, et al. Clinical and genetic features in Italian Bietti crystalline dystrophy patients. *Br J Ophthalmol*. 2013;97:174– 179. doi:10.1136/bjophthalmol-2012-302469

- Bozkurt B, Ozturk BT, Kerimoglu H, Irkec M, Pekel H. In vivo confocal microscopic findings of 2 patients with Bietti crystalline corneoretinal dystrophy. *Cornea*. 2010;29:590–593. doi:10.1097/ ICO.0b013e3181be22ee
- 20. Toto L, Carpineto P, Parodi MB, Di Antonio L, Mastropasqua A, Mastropasqua L. Spectral domain optical coherence tomography and in vivo confocal microscopy imaging of a case of Bietti's crystalline dystrophy. *Clin Exp Optom.* 2013;96:39–45. doi:10.1111/ cxo.2013.96.issue-1
- 21. Wada Y, Itabashi T, Sato H, Kawamura M, Tada A, Tamai M. Screening for mutations in CYP4V2 gene in Japanese patients with Bietti's crystalline corneoretinal dystrophy. *Am J Ophthalmol.* 2005;139:894–899. doi:10.1016/j.ajo.2004.11.065
- 22. Mataftsi A, Zografos L, Millá E, Secrétan M, Munier FL. Bietti's crystalline corneoretinal dystrophy: a cross-sectional study. *Retina*. 2004;24:416–426. doi:10.1097/00006982-200406000-00013
- Saatci AO, Yaman A, Öner FH, Ergin MH, Çingil G. Indocyanine green angiography in Biettils crystalline retinopathy. *Can J Ophthalmol.* 2002;37:346–351. doi:10.1016/S0008-4182(02)80005-9
- 24. Fong AM, Koh A, Lee K, Ang CL. Bietti's crystalline dystrophy in Asians: clinical, angiographic and electrophysiological characteristics. *Int Ophthalmol.* 2009;29:459–470. doi:10.1007/s10792-008-9266-7
- Halford S, Liew G, Mackay DS, et al. Detailed phenotypic and genotypic characterization of Bietti crystalline dystrophy. *Ophthalmology*. 2014;121:1174–1184. doi:10.1016/j.ophtha.2013.11.042
- 26. Li Q, Li Y, Zhang X, et al. Utilization of fundus autofluorescence, spectral domain optical coherence tomography, and enhanced depth imaging in the characterization of Bietti crystalline dystrophy in different stages. *Retina*. 2015;35:2074–2084. doi:10.1097/IAE.00 00000000000592
- Kojima H, Otani A, Ogino K, et al. Outer retinal circular structures in patients with Bietti crystalline retinopathy. Br J Ophthalmol. 2011;96:390–393. doi:10.1136/bjo.2010.199356
- Saatci AO, Doruk HC, Yaman A, Öner FH. Spectral domain optical coherence tomographic findings of Bietti crystalline dystrophy. J Ophthalmol. 2014;2014:1–5. doi:10.1155/2014/739271
- Goldberg NR, Greenberg JP, Laud K, Tsang S, Freund KB. Outer retinal tubulation in degenerative retinal disorders. *Retina*. 2013;33:1871–1876. doi:10.1097/IAE.0b013e318296b12f
- Pennesi ME, Weleber RG. High-resolution optical coherence tomography shows new aspects of Bietti crystalline retinopathy. *Retina*. 2010;30:531–532. doi:10.1097/IAE.0b013e3181c96a15
- Oishi A, Oishi M, Miyata M, et al. Multimodal imaging for differential diagnosis of Bietti crystalline dystrophy. *Ophthalmol Retina*. 2018;2(10):1071–1077. doi:10.1016/j.oret.2018.02.012
- 32. Miyata M, Oishi A, Hasegawa T, et al. Choriocapillaris flow deficit in Bietti crystalline dystrophy detected using optical coherence tomography angiography. Br J Ophthalmol. 2018;102(9):1208–1812. doi:10.1136/bjophthalmol-2017-311313
- 33. Yin H, Jin C, Fang X, et al. Molecular analysis and phenotypic study in 14 Chinese families with Bietti crystalline dystrophy. *PLoS One*. 2014;16(9):e94960. doi:10.1371/journal.pone.0094960
- 34. Fuerst NM, Serrano L, Han G, et al. Detailed functional and structural phenotype of Bietti crystalline dystrophy associated with mutations in *CYP4V2* complicated by choroidal neovascularization. *Ophthalmic Genet*. 2016;30:1–8.
- 35. Mamatha G, Umashankar V, Kasinathan N, et al. Molecular screening of the *CYP4V2* gene in Bietti crystalline dystrophy that is associated with choroidal neovascularization. *Mol Vis.* 2011;17:1970–1977.
- 36. Nourinia R, Dehghan MH, Fekri S. Outcome of macular hole surgery in Bietti crystalline dystrophy. J Ophthalmic Vis Res. 2017;12 (3):338–341. doi:10.4103/jovr.jovr_154_15

- Marmor MF, Zrenner E. Standard for clinical electroretinography (1999 update). International society for clinical electrophysiology of vision. *Doc Ophthalmol.* 1998;97:143–156.
- Usui T, Tanimoto N, Takagi M, Hasegawa S, Abe H. Rod and cone awaves in three cases of Bietti crystalline chorioretinal dystrophy. *Am J Ophthalmol.* 2001;132:395–402. doi:10.1016/S0002-9394(01) 00963-1
- 39. Lai TY, Ng TK, Tam PO, et al. Genotype phenotype analysis of Bietti's crystalline dystrophy in patients with CYP4V2 mutations. *Invest Ophthalmol Vis Sci.* 2007;48:5212–5220. doi:10.1167/ iovs.07-0660
- 40. Sen P, Ray R, Ravi P. Electrophysiological findings in Bietti's crystalline dystrophy. *Clin Exp Optom.* 2011;94:302–308. doi:10.1111/ j.1444-0938.2011.00602.x
- 41. García-García GP, López-Garrido MP, Martínez-Rubio M, et al. Genotype-phenotype analysis of Bietti crystalline dystrophy in a family with the *CYP4V2* Ile111Thr mutation. *Cornea*. 2013;32:1002–1008. doi:10.1097/ICO.0b013e31828a27bc
- 42. Hood DC. Assessing retinal function with the multifocal technique. Prog Retin Eye Res. 2000;19:607–646. doi:10.1016/S1350-9462(00) 00013-6
- Ilhan A, Yolcu U. Re: Halford et al. Detailed phenotypic and genotypic characterization of Bietti crystalline dystrophy. *Ophthalmology*. 2014;121:1174–1184.
- 44. Akıncıoğlu D, Yolcu Ü, İlhan A, Gündoğan FÇ. Objective determination of retinal function in Bietti crystalline retinopathy. *Turk J Ophthalmol.* 2016;46(3):144–147. doi:10.4274/tjo.02693
- 45. Gocho K, Kameya S, Akeo K et al. High-resolution imaging of patients with Bietti crystalline dystrophy with CYP4V2 mutation. J Ophthalmol. 2014;(1):1–11. doi:10.1155/2014/283603.
- 46. Lai TY, Chan WM, Lai RY, Ngai JWS, Li H, Lam DSC. The clinical applications of multifocal electroretinography: a systematic review. *Surv Ophthalmol.* 2007;52:61–96. doi:10.1016/j.survophthal.2006. 10.005
- 47. Abeshi A, Bruson A, Beccari T, et al. Genetic testing for Bietti crystalline dystrophy. *Eurobiotech J.* 2017;1:564–615.
- 48. Lee J, Jiao X, Hejtmancik JF, Kaiser-Kupfer M, Chader GJ. Identification, isolation, and characterization of a 32-kDa fatty acidbinding protein missing from lymphocytes in humans with Bietti crystalline dystrophy (BCD). *Mol Genet Metab.* 1998;65:143–154. doi:10.1006/mgme.1998.2723
- Nakano M, Kelly EJ, Rettie AE. Expression and characterization of CYP4V2 as a fatty acid ω-hydroxylase. *Drug Metab Dispos*. 2009;37:2119–2122. doi:10.1124/dmd.109.028530
- 50. Lai T, Chu KO, Chan KP, et al. Alterations in serum fatty acid concentrations and desaturase activities in Bietti crystalline dystrophy unaffected by CYP4V2 genotypes. *Invest Ophthalmol Vis Sci.* 2010;51:1092–1097. doi:10.1167/iovs.09-3665
- 51. Shindou H, Koso H, Sasaki J, et al. Docosahexaenoic acid preserves visual function by maintaining correct disc morphology in retinal photoreceptor cells. *J Biol Chem.* 2017;292:12054–12064. doi:10.1074/jbc.M117.790568
- Spite M, Claria J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. *Cell Metab.* 2014;19:21–36. doi:10.1016/j.cmet.2013.10.006
- Hata M, Ikeda HO, Iwai S, et al. Reduction of lipid accumulation rescues Bietti's crystalline dystrophy phenotypes. *Proc Natl Acad Sci* USA. 2018;115:3936–3941. doi:10.1073/pnas.1717338115
- 54. Xiao X, Mai G, Li S, Guo X, Zhang Q. Identification of CYP4V2 mutation in 21 families and overview of mutation spectrum in Bietti crystalline corneoretinal dystrophy. *Biochem Biophys Res Commun.* 2011;409:181–186. doi:10.1016/j.bbrc.2011.04.112
- 55. Jiao X, Li A, Jin ZB, et al. Identification and population history of CYP4V2 mutations in patients with Bietti crystalline corneoretinal dystrophy. *Eur J Human Genet*. 2017;25:461–471. doi:10.1038/ ejhg.2016.184

- 56. Zhang X, Xu K, Dong B, et al. Comprehensive screening of CYP4V2 in a cohort of Chinese patients with Bietti crystalline dystrophy. *Mol Vis.* 2018;24:700–711.
- 57. Miyata M, Hata M, Ooto S, et al. Choroidal and retinal atrophy of bietti crystalline dystrophy patients with CYP4V2 mutations compared to retinitis pigmentosa patients with EYS mutations. *Retina*. 2017;37(6):1193–1202. doi:10.1097/IAE.000000000001323
- Astuti GD, Sun V, Bauwens M, et al. Novel insights into the molecular pathogenesis of CYP4V2-associated Bietti's retinal dystrophy. *Mol Genet Genomic Med.* 2015;3:14–29. doi:10.1002/ mgg3.109
- 59. Zenteno JC, Ayala-Ramirez R, Graue-Wiechers F. Novel CYP4V2 gene mutation in a Mexican patient with Bietti's crystalline corneoretinal dystrophy. *Curr Eye Res.* 2008;33(4):313–318. doi:10.1080/ 02713680801983217
- 60. Eun HS, Cho SY, Lee BS, Seong I-O, Kim K-H. Profiling cytochrome P450 family 4 gene expression in human hepatocellular carcinoma. *Mol Med Rep.* 2018;18(6):4865–4876. doi:10.3892/ mmr.2018.9526
- Shan M, Dong B, Zhao X, et al. Novel mutations in the CYP4V2 gene associated with Bietti crystalline corneoretinal dystrophy. *Mol Vis.* 2005;11:738–743.
- 62. de Haan HG, van Hylckama Vlieg A, Lotta LA, et al. Targeted sequencing to identify novel genetic risk factors for deep vein thrombosis: a study of 734 genes. *J Thromb Haemost*. 2018;16(12):2432– 2441. doi:10.1111/jth.14279
- Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. *Mol Oncol.* 2007;1(1):26–41. doi:10.1016/j.molonc.2007.01.004
- 64. Jinda W, Taylor TD, Suzuki Y, et al. Whole exome sequencing in eight thai patients with leber congenital amaurosis reveals mutations in the CTNNA1 and CYP4V2 genes. *Invest Ophthalmol Vis Sci.* 2017;58(4):2413–2420. doi:10.1167/iovs.16-21322
- Miraldi Utz V, Coussa RG, Antaki F, Traboulsi EI. Gene therapy for RPE65-related retinal disease. *Ophthalmic Genet*. 2018;39(6):671– 677. doi:10.1080/13816810.2018.1533027
- Lockhart CM, Smith TB, Yang P, et al. Longitudinal characterization of function and structure of Bietti crystalline dystrophy: report on a novel homozygous mutation in CYP4V2. *Br J Ophthalmol*. 2018;102 (2):187–194. doi:10.1136/bjophthalmol-2016-309696
- 67. Yokoi Y, Sato K, Aoyagi H, Takahashi Y, Yamagami M, Nakazawa M. A novel compound heterozygous mutation in the *CYP4V2* gene in a japanese patient with Bietti's crystalline corneoretinal dystrophy. *Case Rep Ophthalmol.* 2011;2:296–301. doi:10.1159/000331885
- Meng XH, Guo H, Xu HW, et al. Identification of novel *CYP4V2* gene mutations in 92 Chinese families with Bietti's crystalline corneoretinal dystrophy. *Mol Vis.* 2014;20:1806–1814.
- 69. Tian R, Wang SR, Wang J, et al. Novel *CYP4V2* mutations associated with Bietti crystalline corneoretinal dystrophy in Chinese patients. *Int J Ophthalmol.* 2015;8:465–469.
- 70. Gekka T, Hayashi T, Takeuchi T, Goto-Omoto S, Kitahara K. CYP4V2 mutations in two Japanese patients with Bietti's crystalline dystrophy. Ophthalmic Res. 2005;37:262–269. doi:10.1159/000087 214
- 71. Yin X, Yang L, Chen N, et al. Identification of *CYP4V2* mutation in 36 Chinese families with Bietti crystalline corneoretinal dystrophy. *Exp Eye Res.* 2016;146:154–162. doi:10.1016/j. exer.2016.03.007
- 72. Jin ZB, Ito S, Saito Y, Inoue Y, Yanagi Y, Nao-i N. Clinical and molecular findings in three Japanese patients with crystalline retinopathy. *Jpn J Ophthalmol.* 2006;50:426–431. doi:10.1007/s10384-006-0350-0
- 73. Liu DN, Liu Y, Meng XH, Yin ZQ. The characterization of functional disturbances in Chinese patients with Bietti's crystalline dystrophy at different fundus stages. *Graefes Arch Clin Exp Ophthalmol*. 2012;250:191–200. doi:10.1007/s00417-011-1809-3

- 74. Chung JK, Shin JH, Jeon BR, Ki C-S, Park TK. Optical coherence tomographic findings of crystal deposits in the lens and cornea in Bietti crystalline corneoretinopathy associated with mutation in the CYP4V2 gene. Jpn J Ophthalmol. 2013;57:447–450. doi:10.1007/ s10384-013-0256-6
- Lee KY, Koh AH, Aung T, et al. Characterization of Bietti crystalline dystrophy patients with *CYP4V2* mutations. *Invest Ophthalmol Vis Sci.* 2005;46:3812–3816. doi:10.1167/iovs.05-0378
- Nakamura M, Lin J, Nishiguchi K, et al. Bietti crystalline corneoretinal dystrophy associated with CYP4V2 gene mutations. *Adv Exp Med Biol.* 2006;572:49–53.
- 77. Lin J, Nishiguchi KM, Nakamura M, et al. Recessive mutations in the CYP4V2 gene in East Asian and Middle Eastern patients with Bietti crystalline corneoretinal dystrophy. J Med Genet. 2005;42:e38. doi:10.1136/jmg.2004.024489
- Parravano M, Sciamanna M, Giorno P, Boninfante A, Varano M. Bietti crystalline dystrophy: a morpho-functional evaluation. *Doc Ophthalmol.* 2012;124(1):73–77. doi:10.1007/s10633-011-9309-7
- Manzouri B, Sergouniotis PI, Robson AG, Webster AR, Moore A. Bietti crystalline retinopathy: report of retinal crystal deposition in male adolescent siblings. *Arch Ophthalmol.* 2012;130:1470–1473. doi:10.1001/archophthalmol.2012.1567
- Demile B, Guadie A, Cai W, et al. A clinical and genetic feature in Chinese Bietti crystalline dystrophy families with *CYP4V2* mutations. *Int J Adv Res.* 2018;6(4):1022–1027. doi:10.21474/IJAR01/ 6944

- Song Y, Mo G, Yin G. A novel mutation in the *CYP4V2* gene in a Chinese patient with Bietti's crystalline dystrophy. *Int Ophthalmol.* 2013;33(3):269–276. doi:10.1007/s10792-012-9686-2
- Raoof N, Vincent AL. Novel gene mutation in a patient with Bietti crystalline dystrophy without corneal deposits. *Clin Exp Ophthalmol.* 2017;45(4):421–424. doi:10.1111/ceo.12871
- Katagiri S, Hayashi T, Gekka T, Tsuneoka H. A novel homozygous CYP4V2 variant (p.S121Y) associated with a choroideremia-like phenotype. *Ophthalmic Genet*. 2017;38(3):286–287. doi:10.1080/ 13816810.2016.1193880
- 84. Fu Q, Wang F, Wang H, et al. Next-generation sequencing-based molecular diagnosis of a Chinese patient cohort with autosomal recessive retinitis pigmentosa. *Invest Ophthalmol Vis Sci.* 2013;54 (6):4158–4166. doi:10.1167/iovs.13-11672
- 85. Beryozkin A, Shevha E, Kimchii A, et al. Whole exome sequencing reveals mutations in known retinal disease genes in 33 out of 68 Israeli families with inherited retinopathies. *Sci Rep.* 2015;(5):13187. doi:10.1038/srep13187
- 86. Yokoi Y, Nakazawa M, Mizukoshi S, Sato K, Usui T, Takeuchi K. Crystal deposits on the lens capsules in Bietti crystalline corneoretinal dystrophy associated with a mutation in the *CYP4V2* gene. *Acta Ophthalmol.* 2010;88(5):607–609. doi:10.1111/j.1755-3768.2009.01529.x
- Park YJ, Hwang DJ, Seong MW, Park SS, Woo SJ. Bietti crystalline retinopathy confirmed by mutation of CYP4V2 gene in a Korean patient. *Korean J Ophthalmol.* 2016;30(1):81–83. doi:10.3341/kjo. 2016.30.1.81

Clinical Ophthalmology

Dovepress

Publish your work in this journal

Clinical Ophthalmology is an international, peer-reviewed journal covering all subspecialties within ophthalmology. Key topics include: Optometry; Visual science; Pharmacology and drug therapy in eye diseases; Basic Sciences; Primary and Secondary eye care; Patient Safety and Quality of Care Improvements. This journal is indexed on PubMed

Central and CAS, and is the official journal of The Society of Clinical Ophthalmology (SCO). The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/ testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/clinical-ophthalmology-journal