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Abstract

Trace amine-associated receptors (TAARs) are a member of the G-protein-coupled recep-
tor superfamily and are known to be expressed in olfactory sensory neurons. A limited num-
ber of molecular evolutionary studies have been done for TAARSs so far. To elucidate how
lineage-specific evolution contributed to their functional divergence, we examined 30 meta-
zoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes) were iden-
tified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate
genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We
found four therian-specific TAAR subfamilies (one eutherian-specific and three metather-
ian-specific) in addition to previously known nine subfamilies. Many species-specific TAAR
gene duplications and losses contributed to a large variation of TAAR gene numbers
among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two
groups based on binding preferences for primary or tertiary amines as well as their
sequence similarities. Primary amine-detecting TAARs (TAAR1-4) have emerged earlier,
generally have single-copy orthologs (very few duplication or loss), and have evolved under
strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9) have
emerged more recently and the majority of them experienced higher rates of gene duplica-
tions. Protein members that belong to the tertiary amine-detecting TAAR group also showed
the patterns of positive selection especially in the area surrounding the ligand-binding
pocket, which could have affected ligand-binding activities and specificities. Expansions of
the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial
adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to
be governed by a complex, species-specific, interplay between environmental and evolu-
tionary factors.
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Introduction

Biogenic amines, such as histamine, serotonin, adrenaline, and dopamine, are enzymatic decar-
boxylation products of amino acids. They are crucial intercellular signaling molecules that
function widely as neurotransmitters and neuromodulators [1, 2]. In addition to these classical
amines, there is another class of endogenous amines, called “trace amines” (TAs), that are pres-
ent in mammalian tissues at trace amounts (0.1-10 nM) [3-5]. They include 2-phenylethyl-
amine (PEA), m-tyramine, p-tyramine, meta-octopamine, para-octopamine,
3-iodothyronamine, tryptamine, and N,N-dimethyltryptamine. Trace amine-associated recep-
tors (TAARs) were originally identified based on their relatedness to biogenic amine receptors
and discovered in search of the receptors activated by the TAs in the brain [6, 7]. Liberles and
Buck [8] demonstrated later that TAARs also function as chemosensory receptors expressed in
the olfactory epithelium in mouse. TAARA4, for example, is stimulated by PEA, which is a carni-
vore odor that evokes physiological and behavioral responses in two prey species (rat and
mouse) [9]. Deletion of TAAR4 in mice was also shown to specifically eliminate the high-sensi-
tivity responses to PEA and puma urine volatiles [10]. TAARs thus play important roles in
sensing predator and prey odors. Recently in zebrafish, TAAR13c has been shown to give high-
affinity responses to cadaverine (1,5-diaminopentane, a major product of fish tissue decay) and
related aliphatic diamines with odd chains of medium length [11]. Ferrero et al. [12] further-
more showed that TAARs can be classified into two groups (TAAR1-4 vs. TAAR5-9) based on
whether they preferentially detect primary or tertiary amines (RNH, or R;N).

While there are other types of biogenic amine receptors such as serotonin-gated cation chan-
nel in vertebrates and biogenic amine-gated chloride channels in invertebrates [2], TAARs and
almost all biogenic amine receptors belong to the G-protein-coupled receptor (GPCR) superfam-
ily. GPCRs are characterized by seven hydrophobic transmembrane regions with three intracellu-
lar and three extracellular loops. They mediate signal transduction in response to a wide variety
of stimuli and represent the largest multi-gene family in animal genomes. For example, there are
more than 900 GPCRs in human [13] and more than 1,800 in mouse [14]. Within the GPCR
superfamily, TAARs as well as biogenic amine receptors belong to the Class A: Rhodopsin-like
family [7]. In the mouse genome, for example, fifteen functional genes and one pseudogene are
known for TAARs. They are classified into nine subfamilies (TAARI through TAARY). In
mouse, most of these subfamilies are represented by single copy genes except for TAAR7, which
includes five genes and one pseudogene, and TAARS, which includes three genes [15]. All mouse
TAARs except for TAARI are expressed in the main olfactory epithelium (MOE) [8, 16].

TAARLI is expressed in the brain [7]. The olfactory receptors (ORs) in mammals, another Class
A family of GPCRs, also are predominantly expressed in the MOE [17]. The sensory neurons in
the mammalian MOE thus have two types of chemosensory receptors, TAARs and ORs.

In vertebrates, the comparative genomics and molecular evolution of the OR family has been
studied extensively in teleost fishes and tetrapods [18-20]. Taken together, these studies show that
while the tetrapod genomes have a large number of OR genes, ranging from 400 to 2,100, a signifi-
cant portion of them, in the order of 20-50%, are pseudogenes [20]. Although the OR genes are scat-
tered over almost all chromosomes [21, 22], they are mainly generated by tandem gene duplications
[23]. Species-specific expansions of OR genes are found in several species and these expansions have
been linked to ecological adaptations [24]. A recent study of the Nematostella vectensis (sea anem-
one) genome indicated that the origin of vertebrate ORs can be traced back to the Cnidaria [25].

Unlike the OR family, a limited number of molecular evolutionary studies have been done
for TAARs. The complete TAAR gene set has been described in nine mammalian species
(human, chimpanzee, macaque, mouse, rat, dog, cow, opossum, and platypus) [15, 26, 27],
chicken [28], six teleosts (fugu, spotted green pufferfish, stickleback, medaka, zebrafish, and
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Atlantic salmon), a cartilaginous fish (elephant shark), and a jawless fish (sea lamprey) [26, 29,
30]. These studies showed that the tetrapod genomes have small numbers of TAAR genes (3—
22 genes), while many teleost fishes have higher numbers of TAAR genes compared to tetra-
pods, ranging from 13 to 109 genes.

The goal of this study is to understand the molecular evolutionary process of the TAAR
gene family. We focused on elucidating how species-specific duplication contributed to their
functional divergence among mammals. We identified complete repertoires of TAAR genes
and pseudogenes from 30 metazoan genomes, especially from 17 species of mammals. We
found that the size of the TAAR family varies significantly among mammals. While the largest
number of TAARSs, 26 functional genes, was found in the flying fox genome, no functional
TAAR genes were found in the dolphin genome. In addition to the previously known nine sub-
families, we identified four subfamilies all therian-specific (found only in marsupials and pla-
cental mammals). Among the mammalian-specific TAAR subfamilies, TAAR7 was found to
be subject to rapid species-specific gene duplications in many species. We also found that
TAARs have two different evolutionary patterns. Primary amine-detecting TAARs (TAAR1-4)
appear to be evolving under strong negative selection, whereas tertiary amine-detecting
TAARs (TAARS5-9) have significant variations in gene numbers and many of them appear to
evolve under the influence of positive selection, reflecting complex species-specific relation-
ships between environmental and evolutionary factors.

Results and Discussion
Identification of TAAR Genes

Using previously reported TAAR protein sequences as queries, we searched TAAR candidates
from 30 metazoan genomes (S1 Table). A total of 493 TAAR genes (including 84 pseudogenes)
were identified from 26 vertebrate genomes (Table 1; see S2 Table for the details). Our analyses
failed to identify TAAR candidates in any of the four non-vertebrate genomes we examined
(an amphioxus, two tunicates, and a sea anemone). Gnathostome (jawed vertebrate) paralogs
were classified based on sequence similarities and on phylogenetic analyses. The nine TAAR
subfamilies (TAAR1-9) were easily recognized from the tetrapod genomes. We also identified
four new mammalian-specific subfamilies (E1 and M1-M3) (described later). Consistent with
the previous findings [26], one group of TAAR-like genes was found only in teleosts (zebrafish,
stickleback, medaka, and spotted green pufferfish) and a frog; they were designated as the
TAAR subfamily V (TAAR V) following Hashiguchi and Nishida [26]. In our search using the
TAARV profile hidden Markov model, we confirmed that TAAR V was found only in the
genomes of two teleost fishes (fugu, Takifugu rubripes, and spotted green pufferfish, Tetraodon
nigroviridis) and a frog (Xenopus tropicalis) but not in any other tetrapod species we examined.

Synteny of TAAR Loci among Tetrapod Species

TAAR genes in human, mouse, opossum, and chicken are known to be located on a single
chromosome, while teleost TAARs are scattered over multiple chromosomes [15, 26]. We ana-
lyzed the distribution of the TAAR and other adjacent genes in nine representative tetrapods
and summarized the results in Fig 1. The syntenic relationships of TAARs and the adjacent
genes are highly conserved as a single gene cluster. At least in amniotic genomes (mammals
and chicken), the TAAR genes are all clustered in the specific region of a single chromosome.
The average length of intergenic regions between two adjacent TAARs is 12,235 bps for five
eutherian species (human, mouse, rat, cow, and horse). The transcriptional orientations are
highly consistent among orthologs (Fig 1). We observed many tandem duplications especially
in TAAR6, TAAR7, and TAARS, which are all eutherian specific. All tetrapod TAAR genes we
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Fig 1. Syntenic relationship of the TAAR genes in nine vertebrate genomes. Only genomes in which all TAAR genes are located in one chromosome or
no more than two scaffolds were examined (Xenopus genes are found in two scaffolds). TAAR and adjacent non-TAAR genes are depicted by the closed and
open boxes, respectively (pseudogenes are not included). TAAR genes are shown in different colors based on their taxonomic distributions as follows:
TAAR?1 found in jawed vertebrates in red, amniote-specific TAAR2 and TAARS5 in purple, mammalian-specific TAARS3 in orange, tetrapod-specific TAAR4 in
dark blue, eutherian-specific TAARS, 7, and 8 in light green, therian-specific TAAR9 in cyan, and metatherian-specific TAARM1-M3 in dark green. Note that
the same color scheme is used in Figs 2 and 3. When tandemly duplicated functional copies exist for a TAAR gene, the copy number is also shown. Gene
locations are not in scale (see S2 Table for the actual positional information). Black arrows indicate transcriptional directions. A current consensus of the
tetrapod phylogeny with their approximate divergence times (million years ago; MYA) is illustrated at the top [33, 34]. The chromosome or scaffold numbers

are shown below the genus names.

doi:10.1371/journal.pone.0151023.g001

examined are nested between Vanin (VNN) and Syntaxin 7 (STX7) genes. VNNT1 is associated
with pantetheinase activity [31]. STX7 protein forms a SNARE complex and is involved in pro-
tein-trafficking [32]. It is not known, however, if these adjacent genes and TAARs are co-
expressed or share functional relationships.

Origin and Early Evolution of TAARs

Fig 2 shows the phylogeny of the representative TAAR proteins from five tetrapods (mouse,
tammar wallaby, platypus, chicken, and frog), three teleosts (fugu, spotted green pufferfish,
and zebrafish), a cartilaginous fish (elephant shark), and a jawless fish (sea lamprey). This
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newly identified in this study are shown in italics. The numbers at internal branches show the bootstrap support values (%) for the maximum-likelihood and
neighbor-joining phylogenies and the posterior probability (%) for the Bayesian phylogeny in this order. Supporting values are shown only for the internal
branches that have at least one method supporting higher than 70%. For TAAR V, teleost TAARs, and lamprey TAAR-like, we followed the gene names
given by Hashiguchi and Nishida [26]. The inset illustrates a current consensus of the vertebrate phylogeny with their approximate divergence times (MYA)

[383, 34].
doi:10.1371/journal.pone.0151023.g002

phylogeny clusters TAAR subfamilies into three strongly supported monophyletic groups:
TAARYV, lamprey TAAR-like, and TAARs found in gnathostomes (jawed vertebrates)
(TAARI1-9). The TAAR V group is clearly clustered separately from other GPCRs including
biogenic amine receptors, and located most basal after these GPCRs (Fig 2 and S1 Fig). This
family seems to have been maintained only in teleost and amphibian lineages but lost from
other vertebrates. All 25 TAAR-like proteins found from the sea lamprey (Petromyzon mari-
nus) genome form a well-supported monophyletic group (100% bootstrap value, S1 Fig). Our
phylogenetic analysis indicates that the sea lamprey TAAR-like genes and the gnathostome
TAARI-9 shared the direct common ancestor. While Hashiguchi and Nishida [26] showed the
TAAR V genes to be more closely related to gnathostome TAARs, their phylogeny showed no
significant support for the location of TAAR V and lamprey TAAR-like groups. Furthermore,
as described in Materials and Methods, the TAAR signature motif (52 Fig) was only weakly
conserved both in TAAR V and in the sea lamprey TAAR-like genes, but was present in the
majority of the gnathostome members of the TAAR subfamilies. These results suggest that the
well-conserved TAAR motif, and also the TAAR function, appeared after jawed vertebrates
(gnathostomes) diverged from jawless fish, about 652 million years ago (MYA) [33].

Cartilaginous fish represent one of the earliest branches of the gnathostome tree (see the
inset of Fig 2). The elephant shark (Callorhinchus milii), the representative of this group in our
study, possesses two distinct TAAR genes in its genome: TAAR Sla and TAAR S2a. These two
elephant shark TAARs maintain the TAAR signature motif (S3 Fig). Ortholog relationship
between the shark TAAR Sla and the tetrapod TAARI subfamily was confirmed by their
sequence similarities (70% to the mouse TAAR1), reciprocal blastp results, and phylogenetic
analysis (Fig 2 and S1 Fig). The shark TAAR S2a was most similar to TAAR4 proteins (63% to
the mouse TAAR4). However, this probably reflects the retention of ancestral characteristics
by TAAR4 rather than orthology. Phylogenetic placement of TAAR S2a indicates that this
shark TAAR gene diverged from the lineage leading to TAAR2-4 (Fig 2) or even all other
gnathostome TAARs other than TAARI (S1 Fig).

The teleost fish genomes have generally higher numbers of the TAARs than the tetrapod
genomes and the numbers vary significantly among teleost genomes (ranging from 18 in fugu
to 110 in zebrafish) [29]. Our phylogenetic analysis showed that teleost TAARs are placed in
three separate phylogenetic groups (Fig 2 and S1 Fig). While one group shows a clear ortholog
relationship with the tetrapod TAARI subfamily, other two groups have unclear phylogenetic
affinities. Hashiguchi and Nishida [26] also mentioned that the phylogenetic placement of
these teleost clusters is not fully resolved. With multiple species-specific duplications and fre-
quent loss of the TAAR-signature motif (S1 Fig, see also Materials and Methods), teleost line-
ages appear to have evolved TAAR subfamilies unique to their own and largely independent
from tetrapod TAARSs.

Evolution of TAAR Subfamilies in Tetrapods

To gain further insights into the evolution of the TAAR subfamilies, we next restricted our
attention to tetrapods with a focus on mammals, using the TAAR V genes from teleosts and
frog as well as the TAAR-like sequences from the sea lamprey as the outgroups (Fig 3). All our
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Fig 3. The maximum-likelihood phylogeny of TAAR proteins from 24 gnathostome genomes. All functional proteins in tetrapods, nine representative
teleost proteins, and two elephant shark TAARs are included in the analysis. TAAR V as well as the lamprey TAAR-like sequences are used as the outgroup.
The genes newly identified in this study are shown in italics. The numbers at internal branches show the bootstrap support values (%) for the maximum-
likelihood and neighbor-joining phylogenies and the posterior probability (%) for the Bayesian phylogeny in this order. Supporting values are shown only for
the major internal branches that have at least one method supporting higher than 70%. Blue-colored branches indicate the species-specific gene
duplications within a cluster supported by higher than 80% of bootstrap values or posterior probability for all methods. Red-colored branches and arrows
indicate those identified to be under positive selection by the branch-site models of PAML analysis (see S4 Table). Brown-colored branches indicate nine
representative teleost TAARS, elephant shark TAARs, and lamprey TAAR-like proteins. The inset illustrates the evolution of vertebrate TAARs with
approximate timing of various gain (green) and loss (blue) events. The vertebrate phylogeny is based on Blair and Hedges [33].

doi:10.1371/journal.pone.0151023.g003

phylogenetic analyses (Figs 2 and 3, and S1 Fig) support the TAARI subfamily representing
the oldest divergence among the gnathostome TAAR lineages [26, 29]. This is consistent with
its location at the beginning of the syntenic cluster (Fig 1) and its distribution across all verte-
brates including fishes (Table 1). They have apparently remained as a single-copy gene in the
majority of species analyzed. The remaining TAAR genes in the gnathostome subfamilies are
grouped into two separate clades: one that includes the TAAR2-4 genes and the other that
includes the TAARS5-9 genes as well as four newly defined mammalian-specific TAAR subfam-
ilies (Fig 3). While there is no significant support for the phylogenetic placement of the shark
TAAR $2a, as mentioned before, its position on the phylogenies would suggest that its ortholog
gave rise to TAAR2-4 subfamilies (Figs 2 and 3) or probably all other TAARs (TAAR2-9, see
S1 Fig). TAAR4 is probably the second oldest among the TAARSs, or the oldest subfamily
among the TAAR2-4 cluster, because TAAR4 sequences are found among mammals and frog
(see Table 1 and Fig 1). It must have appeared prior to the split between amphibians and amni-
otes (reptiles, birds, and mammals) and had been subsequently lost in the common ancestor of
reptiles and birds. The phyletic distribution and phylogenetic arrangement of the TAAR2 and
TAARS genes would indicate that the origin of these subfamilies predates the origin of amni-
otes. Since TAAR2 and TAAR3 cluster together with a high bootstrap support (100%) and
because of the presence of chicken and lizard TAAR2 genes, their origin must also predate the
origin of amniotes. All other TAAR subfamilies in the phylogeny (TAAR6-9, M1-M3, and E1)
form a monophyletic group and are restricted to mammals, suggesting that they are derived
from a single-copy TAAR gene. In mammals, descendants from this gene duplicated multiple
times to give rise to the TAAR6 to TAARO subfamilies as well as to four therian-specific sub-
families described in the next section (M1-M3 and E1).

In summary, we classify TAAR subfamilies into four separate groups based on the timing of
their inferred emergence (see Fig 3 inset). TAARI, the only TAAR that does not function as an
olfactory receptor, is the oldest subfamily, as its origin probably predates the deepest split
among gnathostomes. So far all TAARs except for TAARI have been found to be selectively
expressed in olfactory epithelium. Thus the expression pattern changed after TAAR4 and
newer TAARs diverged from TAARI1. TAAR4 is at least as old as tetrapods. Among other
younger subfamilies, the origins of TAAR2 and TAARS are traced back to the common ances-
tor of amniotes, whereas all others are apparently derived from mammalian-specific duplica-
tions. Many of these timing estimates will have to be re-evaluated once detailed analyses of
amphibian and sauropsid TAAR repertoires become possible.

In general, non-therian amniotes such as birds (Gallus gallus and Taeniopygia guttata),
anole lizard (Anolis carolinensis), and platypus (Ornithorhynchus anatinus, Prototheria) have
smaller numbers of TAAR genes than therian mammals (marsupials and placental mammals)
(Table 1). Although based on the timing of their origins, these lineages would be expected to
include members of five TAAR subfamilies, TAAR1-5, these genomes have retained only up to
four subfamilies. Note also that the frog (X. tropicalis) genome has only copies of the two oldest
types of TAARs (TAAR1 and TAAR4). The older types of TAAR subfamilies (TAAR1-5) exist
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as single-copy genes in each genome except for the expansion of TAAR4 in three genomes
(frog, opossum, and elephant). In amniotes, in most instances for these older types of TAAR
gene subfamilies, only one of the duplicated copies has remained functional, as in the case with
tenrec TAAR1a/1bP and TAAR2a/2bP/2cP, hedgehog TAAR1a/1bP, and common shrew
TAAR4a/4bP ('P' indicating a pseudogene). The two exceptions to this pattern are the chicken
TAAR2a/2b and horse TAAR5a/5b where both duplicated genes have intact structures.

Therian Mammal Specific TAAR Subfamilies

The more recently diverged TAAR subfamilies (TAAR6-9, M1-M3, and E1) are apparently
restricted to therian mammals (eutherians and metatherians; Table 1, Figs 1 and 3, and S1 Fig).
The cluster including these TAAR subfamilies is supported by 99% bootstrap value in the max-
imum likelihood phylogeny. These TAAR subfamilies must have emerged after the divergence
between Prototheria (e.g., platypus) and Theria (230-166 MYA) [34, 35]. TAAR6-8 are all
eutherian (placental mammal) specific. In addition, we found eutherian- and three metatherian
(marsupial)-unique TAAR subfamilies (TAAR E1 and TAAR M1-M3, respectively) in this
cluster. Three metatherian (tammar wallaby and opossum) TAAR groups are highly supported
(>99% by at least one method; Fig 3). While TAAR M1 is a single-copy gene, TAAR M2 and
M3 show species-specific expansions. Although the TAAR E1 subfamily is not highly sup-
ported (less than 70% bootstrap values in the maximum-likelihood and neighbor-joining phy-
logenies but 0.85 posterior probability in the Bayesian phylogeny), it forms a distinct cluster
consistently in the three different phylogenetic reconstructions. TAAR E1 is found only in a
few species of mammals: in two species of Laurasiatheria (common shrew and hedgehog) and
in two species of Afrotheria (tenrec and african elephant) (see Table 1 for details). Therefore,
TAAR E1 must have been present in early eutherians but have been lost in the ancestral lineage
of Euarchontoglires (human, mouse, and rat) as well as in many Laurasiatheria species.

Gain and Loss of TAAR Genes in Different Mammalian Lineages

The number of TAAR genes varies widely among the mammals we examined, ranging from
0 in dolphin to 26 in flying fox (Table 1). Frequent gene gains have occurred particularly in
therian-specific TAAR genes (species-specific duplications are shown with blue branches in
Fig 3).

As shown in Table 1 and Fig 1, the human genome does not have functional copies of
TAAR3, TAAR4, and TAAR?7. Staubert et al. [36] showed that pseudogenization of TAAR3
and TAAR4 happened before the divergence of human and orangutan (for TAAR3) or gorilla
(for TAAR4). Interestingly, they also showed that independent pseudogenizations have also
occurred in the marmoset/tamarin lineages for both TAAR3 and TAAR4. Our preliminary
search showed that in parallel to human, common marmoset (Callithrix jacchus) also lost
TAAR?7 (no pseudogene is found). In fact, the marmoset genome has only two functional
TAAR genes: TAAR] and TAARS. All other five TAAR sequences we found were pseudogenes.
Marmoset appears to have the fewest number of functional TAARs following dolphin and dog
(Table 1). Fewer gene numbers in primates have been reported also for the OR gene family (S1
Table) [37, 38], which has been associated with poor olfaction senses in primate species [24].

The most extreme reduction in TAAR repertoire is seen in the bottlenosed dolphin (Tur-
siops truncatus) genome, which apparently has no functional TAAR gene, and only possesses
three pseudogenes (TAARIP, TAAR9aP, and TAAR9DP). As an interesting concordance, the
dolphin appears to have also lost most but 26 of the functional OR genes (S1 Table) (also [24]).
Our preliminary study shows that dolphin genome carries only three and four intact vomero-
nasal type-1 and type-2 receptor genes, respectively, and no functional gene but three
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pseudogenes of the Taste 1 (sweet taste) receptor. Massive losses of taste receptor genes have
been also reported recently from toothed and baleen whales [39]. Dolphin, and cetaceans in
general, appears to be a group of mammals that have the smallest number of chemoreceptors,
apparently associated with their secondary adaptation for the aquatic environment and with
the TAAR genes following the trend.

The dog genome has only two functional TAARs (TAAR4 and TAARS5) and two pseudo-
genes (TAAR1P and TAAR2P). On the contrary, a large number of OR genes (822 functional
genes) with high divergence and with a small proportion of pseudogenes (25.3%) are found in
the dog genome compared to other tetrapod species (S1 Table) [21, 40]. The TAARI pseudo-
genization seems to be a recent event. It must have happened after the divergence from feli-
forms because TAARISs are all pseudogenes in wild gray wolf and four other caniforms but it is
intact in cats [41]. The reliance on the higher number of ORs in the dog may have led to the
reduction of TAARs due to their possibly overlapping functions.

The flying fox (Pteropus vampyrus) genome carries the largest number of TAARSs (26 genes
and 10 pseudogenes) while another Chiroptera, little brown bat (Myotis lucifugus), has a
smaller number of TAARSs (6 genes and 1 pseudogene). The larger number of TAARs in flying
fox is caused, on one hand, by the flying fox-specific duplications of TAAR6 and TAAR?7, and
on the other hand, by the loss of TAAR6-8 in little brown bat. It is possible that the functions
of TAARG6 and TAAR?7 subfamilies may be related to dietary difference between fruit-eating
flying fox and insectivorous little brown bat. TAAR7 especially is most prone to duplicate
among TAAR subfamilies (Table 1 and Fig 3), and as described later, positive selection is
detected in some TAAR?Y genes. We should note, however, that no difference has been
observed between these two Chiroptera species in terms of evolutionary patterns (e.g., selection
and gene numbers) in other chemoreceptor genes such as sweet taste receptors [42], ORs [24],
and vomeronasal sensitivity [43]. The sensory trade-off hypothesis has been considered for
enhanced color-vision in primates and their often reduced or inactivated chemosensory genes
([44, 45], however [46]). A similar scenario may be considered for echolocating insectivorous
little brown bat, which lost three TAAR genes. However, laryngeal echolocation appears to
have evolved earlier than the divergence of the two Chiroptera species we examined [47], and
as mentioned above, no such associated difference is known for other chemoreceptors in these
or other Chiroptera species. It is thus difficult to apply the trade-off hypothesis in this case.

The numbers of OR and TAAR genes both vary widely among mammalian genomes (see S1
Table for the number of OR genes). In general, their numbers appear to be correlated. The dol-
phin genome has only 26 OR genes and no TAARs. Primates and platypus have relatively
small numbers of OR as well as TAAR genes. Rodents (mouse and rat), cow, and opossum all
have large numbers of both OR and TAAR genes. Exceptions are, as mentioned before, the dog
genome where the majority of TAAR gene functions seem to have been displaced with highly
divergent OR functions (more than 800 functional genes are found), and the two Chiroptera
genomes where TAAR gene numbers vary significantly (6 vs. 26) while similar numbers of ORs
are found between them. The two chemoreceptor families thus seem to have complex relation-
ships in response to both environmental and evolutionary factors.

Functional Differentiation among TAAR Subfamilies

TAARs are classified into two groups based on the types of ligands (amines) they detect [12].
TAARI-4 are stimulated by primary amines (e.g., isoamylamine), which can be derived from
natural amino acids by a single decarboxylation reaction. TAARS5-9, on the other hand, detect
tertiary amines (e.g., N,N-dimethylated amines). We note that such TAAR ligand preference
has been directly confirmed only in limited organisms (e.g., human and rodent). However, the
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amino acid sequences, especially those corresponding to ligand-binding sites, are highly con-
served within each TAAR subfamily, and as our phylogenetic analysis clearly showed (Figs 2
and 3), proteins in TAARS5-9 cluster together and distinctively from those in TAAR1-4. There-
fore, we hypothesize that TAAR proteins in each group share similar preference for tertiary vs.
primary amine ligands. Following also Ferrero et al. [12], we call these two TAAR groups ter-
tiary amine and primary amine detecting TAARs, respectively. The phylogenies indicated that
the tertiary amine-detecting TAARs emerged from an ancestral type, primary amine-preferring
TAAR.

The "differential tuning hypothesis" has been put forth to explain why tetrapods have two
olfactory systems: the main olfactory system (MOS) and the vomeronasal system (VNS) [48,
49]. It is suggested that receptors expressed in MOS are broadly-tuned generalists that can
detect an overlapping set of ligands and thus are more likely to be conserved, while receptors
expressed in VNS are narrowly-tuned specialists and would evolve in a more lineage-specific
manner. Grus and Zhang [48] tested this hypothesis and showed that VNS-expressed vomero-
nasal receptors (V1Rs and V2Rs) in tetrapods have abundant lineage-specific gene gains and
losses. They found opposite patterns in MOS-expressed ORs and TAAR:s.

In our study, differences in evolutionary patterns were also found among the TAAR sub-
families. Fig 4 compares the number of TAAR genes among TAAR subfamilies for each therian
species. While very few species-specific gene duplications were observed in primary amine-
detecting TAAR subfamilies (TAARI1-4), multiple species-specific duplications were found in
tertiary amine-detecting TAARs (TAARS5-9). Other newer TAAR subfamilies (TAAR E1 and
M1-M3) belong to the same cluster with TAAR5-9. They are potentially tertiary amine detec-
tors and also have multiple duplications. Grus and Zhang [48] observed two TAAR groups:
TAARI1-5 and TAARG6-9 based on mouse, rat, and opossum data. With more data, our current
analysis clarified the TAAR subfamilies to be classified into two groups that are consistent with
their ligand types (primary vs. tertiary amines).
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Different Evolutionary Patterns in Primary and Tertiary Amine-Detecting
TAARs

In order to test possible differences in evolutionary patterns between primary and tertiary
amine-detecting TAARs, we estimated the average w (the ratio of nonsynonymous to synony-
mous distances, dn/ds) for each TAAR subfamily. As shown in Fig 4 (see also S3 Table), the
average w's were about two times higher in tertiary amine detectors than in primary amine
detectors (w ranging from 0.0774 to 0.1807 for TAAR1-4 and from 0.1388 to 0.3512 for
TAARS5-9, E1, and M1-M3; the difference between two groups is significant with P = 0.005 by
one-tailed ¢-test and P = 0.0253 by Mann-Whitney U test). We selected four representative
TAAR subfamilies: two primary amine detectors (TAAR1 and TAAR3) and two tertiary amine
detectors (TAAR7 and TAARS) and tested which lineage(s) show(s) significantly different w
using the PAML branch models [50]. Estimated w's were significantly larger in TAAR7 com-
pared to other lineages (P < 0.0001; Tests 1, 4, and 5 in S4 Fig). w was also significantly larger
in TAARS8 when compared against primary amine-detecting TAAR lineages (P = 0.0031; Test
2 in §4 Fig). Thus, the nonsynonymous substitutions in these tertiary amine-detecting TAAR
subfamilies were substantially accelerated after the divergence from older primary amine-
detecting TAARs. We next tested with the site models for the possibility of positive selection in
each TAAR subfamily. The tests showed a highly significant support of positive selection for
TAAR7 (P < 0.0001) and a weak but significant support (P = 0.0327) for TAARS (S4 Table).
To further confirm the occurrence of positive selection in tertiary amine detectors, we tested
using the branch-site models that can detect a short episode of positive selection occurring in a
small fraction of amino acids [51]. Based on the results obtained above, we chose TAAR7 and
TAARS for this test. As summarized in S4 Table, significant results were found in two branches
in TAAR?7 and one branch in TAARS. These branches are also shown in red in Fig 3. It further
supports that the evolution of tertiary amine-detecting TAARs has been partly driven by posi-
tive selection.

Positive-Selection Sites Are Located in the Potential Ligand-Binding
Sites in TAAR7 and TAARS8 Proteins

For TAAR7 and TAARS, the amino acid sites under positive selection were identified using the
Bayes Empirical Bayes (BEB) inference [52]. Eleven sites were identified with the site models
(S3 Table) and six sites with the branch-site models (S4 Table). Four of eleven sites identified
in TAAR?Y (positions 137*%,155%°7 184, and 188>, see Materials and Methods and S5 Fig
for the Ballesteros and Weinstein numbering scheme shown as superscripts) and one of five
sites identified in TAARS (position 194>*%) had their posterior probabilities higher than 0.95, a
strong indication of positive selection. The spatial distribution of these sixteen positive-selec-
tion sites on the TAAR proteins is illustrated in Fig 5 (see S6 Fig for more details). Thirteen
sites are present in the extracellular loop regions, especially in EC2, and in the extracellular-
ends of TM regions. As shown in S5 Fig, many residues predicted to involve with ligand-bind-
ing based on the solved protein structures are distributed in EC2, EC3, and their surrounding
areas. The positive-selection sites are concentrated especially in the area surrounding the pre-
dicted main ligand-binding pocket. The seven positively selected sites in TAAR7 and TAARS8
(positions 103°72,1047%, 159*°', 184, 186, 1907, and 194°*%) correspond to residues identi-
fied to be directly involved with ligand-binding on related biogenic amine receptors, f-adrener-
gic receptors 1 and 2 (B;AR and B,AR) [53-55] (see S5 Fig for the details). Positions 104>
and 155*>” were identified to be under positive selection in TAAR7 (S3 Table, and S5 and S6
(C) Figs).
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Fig 5. The 3D-structural model of the elephant TAAR7a protein (cyan) superimposed with the turkey
B1-adrenergic receptor (B1AR, gray). The ligand of the 31AR, dobutamine, is shown with the stick model.
Positively selected sites are indicated by red (detected by the site model in TAAR?7), green (detected by the
branch-site model in flying fox TAAR7c and elephant TAAR7a), purple (detected by the site model in
TAARS), and brown (detected by the branch-site model in mouse TAAR8a). The transmembranes (TM) and
internal/external loop (IC1-3 and EC1-3) regions as well as N-terminal (N) are labeled. The C-terminal is
invisible locating behind TM1. See S6 Fig for more details.

doi:10.1371/journal.pone.0151023.g005

A mutational study of the f,AR demonstrated that replacement of two amino acids (corre-
sponding to positions 151*>* and 155**” in human TAAR1) significantly affected the receptor
expression and agonist-stimulated activity [56]. The position 104>** is usually conserved with
valine in BARs. However, a mutation in 104>>%, which by itself reduces the ligand-binding
affinity, was found to rescue the binding affinity in double mutants. Different residues in this
position were reported to affect the binding of both agonists and antagonists [57]. Therefore,
these positive-selection positions are potentially important in functions including the folding
and ligand-binding.

Ferrero et al. [12] demonstrated that mutating two amino acids closely located to possible
ligand-binding sites in TM3 (108> and 109°**) between those found in the mouse TAAR7e
(SS) and those in TAAR7f (YC) dramatically reversed the ligand responsiveness. In our PAML
site-model (M8) analysis of TAAR7, these two sites have relatively high w's (1.022 and 0.902)
but low posterior probabilities (< 0.3). Other sites whose w's were larger than 1.0 but have low
posterior probabilities include 100*% and 196>**. The position 100**’ is one of the ligand-
binding sites (S5 Fig). Two other ligand-binding neighboring sites, 28'*” and 152*%*, in
TAARS were also identified with high w's (site-model M8 analysis) but with low probabilities.
Although they may be false positives, it warrants further studies.
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Changes of Amino Acid Properties in Positive-Selection Sites

Many amino acid changes found in the positively selected sites are those altering physicochem-
ical properties (S7 Fig). We examined these substitutions using TreeSAAP [58, 59]. Side-chain
changes involving volume, torsion angles, hydrophobicity, and charge found in positively
selected positions as well as their neighboring sites were shown to be under positive destabiliz-
ing selection (P < 0.001). Pairwise TreeSAAP analysis also showed that many long branches
found in the TAAR?7 family (e.g., flying fox 7h and cow 7c in Fig 3) may also be under such pos-
itive destabilizing selection. Of particular interests is three changes identified in the tenrec/ele-
phant lineage of TAAR?7 using branch-side models. All three changes (positions 161, 177, and
188°7°) involve acquisition of serine residues. Changes involving serines are also found in two
other highly significantly supported positions (155*°” in TAAR7 and 194”** in TAARS). All
these changes are located within or at the border of the EC2 loop region. Although the posi-
tions are not consistent, for B; AR, serine residues in TM5 (positions 194421954 and
198°*%) have been reported to be critical for agonist binding and receptor activation [60, 61].
Structural analysis of B; AR by Warne et al. [53] indicated that the ligand-induced rotamer con-
formational changes of these serine residues and stabilization of the contracted ligand-binding
pocket (through hydrogen-bonding interactions between the ligand and these residues) dictate
the efficacy of ligands. Therefore, the changes found in these positive-selection sites may have
played an important role in defining ligand-binding activities and specificities among proteins
belonging to the tertiary amine-detecting TAAR subfamilies.

Ligand-Binding Sites Show Different Evolutionary Patterns

The ligand-binding space in the Rhodopsin-like GPCR proteins consists of a deeper main
ligand-binding crevice and a shallower minor binding pocket [62, 63]. The latter area is consid-
ered to be important for receptor activation rather than ligand-specificity. The residues sur-
rounding the minor pocket are in fact highly conserved especially among TAARs (S5 Fig) and
consistent with potentially higher selective constraints. Interestingly, the position 103°>? i
TM3 was found to be under positive selection in TAAR7, and it is located at the boundary
between the two binding pockets. Kleinau et al. [55] showed that six of the twenty nine residues
identified as ligand-binding sites are conserved among biogenic amine receptors including
human TAARs and adrenergic receptors, and considered them to be determinants of the
ligand-binding regions among these receptors. All but one (103**?) of these positions are in
fact highly conserved among the TAARs we examined. Kleinau et al. [55] further pointed out
that six additional ligand-binding residues in human TAARTI are identical or similar to those
of biogenic amine receptors. They speculated that this similarity could explain the ligand pro-

n

miscuity of TAAR1. While we confirmed that these residues are also conserved in all other
TAARISs, residues in the corresponding positions in tertiary amine-detecting TAARs are more
diverse (see S5 Fig for the details).

Conclusion

Our molecular evolutionary analysis of metazoan TAARs showed that an ancestral-type
TAAR-like protein emerged in lamprey. The conserved TAAR signature motif appeared after
jawed vertebrates diverged from jawless fish. Among mammalian TAARs, older types of
TAAR subfamilies (TAARI1-4) are primary amine-detecting receptors. They are more con-
served and maintained as single-copy genes in each genome except for TAAR4. Newer types of
mammalian TAARs (TAAR5-9, M1-M3, and E1) are considered to be tertiary amine-prefer-
ring receptors. They are found only in therian mammals and, except for TAARS5, have experi-
enced frequent species-specific duplications. Our evolutionary analysis found evidence of
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positive selection distributed around the ligand-binding sites in TAAR7 and TAARS proteins.
These changes could have affected ligand-binding activities and specificities in these TAARs. It
may have contributed to therian mammal's adaptation to the dynamic land environments by
allowing finer discrimination among a diverse array of volatile amines. Specific ecological con-
ditions in some species may have led to additional duplications or losses of especially tertiary
amine-detecting TAARs. Furthermore, birth and death processes of two chemoreceptor fami-
lies (ORs and TAARs) seem to be under the influence of both environmental and evolutionary
factors. Further studies on TAAR evolution and their functions will provide more insights into
functional divergence of chemosensory receptors.

Materials and Methods
Query and Genome Sequences

Previously reported TAAR genes were used as search queries. The sequences were obtained
from Lindemann et al. [15] and from Hashiguchi and Nishida [26]. Genomic sequences were
obtained from multiple sources (S1 Table). It includes 17 mammals (14 eutherians, 2 metather-
ians, and 1 prototherian), two birds, one reptile, one frog, two teleost fishes, elephant shark, as
well as four non-vertebrate species. Note that the zebrafish TAARs and sea lamprey TAAR-like
genes obtained from Hashiguchi and Nishida [26] are also included in our analysis.

TAAR Gene Mining

Similarity search was performed using the Basic Local Alignment Search Tool (BLAST, ver. 2.2.17)
programs [64]. The default parameters were used for tblastn except for setting the effective length
of database (option -z) to 1.1x10'%. This was done to obtain E-values comparable among different
sizes of genomes and equivalent to those from the search against the non-redundant (NR) protein
database at the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.
gov). The E-value threshold of 1x10>° was used to identify TAAR gene candidates from each
genome. The putative TAAR genes were verified by searches using blastp against the NR database.
A putative protein was considered to be a TAAR candidate if the top hit from the blastp search
was a previously known TAAR. The TAAR candidates newly identified were subsequently used as
queries against their genomes again to find any additional candidates. These steps were recursively
performed until no other TAAR candidate sequences were detected from each genome.

One group of TAAR genes, designated as the TAAR subfamily V (or simply "TAAR V") by
Hashiguchi and Nishida [26], has been identified only from a limited number of species, mostly
from teleost fishes. For more sensitive search, we built a profile hidden Markov model (HMM) with
five TAARV protein sequences from frog (X. tropicalis, XP_002935532), zebrafish (Danio rerio,
XP_001337671), spotted green pufferfish (T. nigroviridis, CAF93600), stickleback (Gasterosteus acu-
leatus, [26]), and medaka (Oryzias latipes, [26]). Each genome was searched using the hmmbuild
and hmmsearch programs of the HMMER package (ver. 3.0) [65] with default parameters.

The TAAR genes are intron-less and encoded in a single exon. TAAR?2 genes, also known as
GPR58, are exceptions and have two exons. To determine exon-intron boundaries for TAAR?2,
a profile HMM was built from human, mouse, and rat TAAR?2 protein sequences using the
HMMER package (ver. 2.3.2) [66]. Using this profile HMM, the coding sequences were pre-
dicted using GeneWise (ver. 2.2) [67].

TAAR Signature Motif

TAAR proteins have a unique peptide motif that is absent from all other known GPCRs [15].
This motif is located within the seventh transmembrane (TM) region, and defined as
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NSX,NPX,[Y/H]X;YXWEF where X, represents any n amino acid residue(s) (S2(A) Fig). The
motif is most strongly conserved in the TAAR3 family (S2(B) Fig). All tetrapod TAAR proteins
identified in this study have this motif, while all lamprey TAAR-like and five TAAR V proteins
have only weakly conserved motifs. Motifs found in the corresponding regions of the lamprey
TAAR-like and TAAR V proteins are XSX,NPX,[Y/F]X¢F and NSX,NPX,YX,[H/N]XS[Y/F],
respectively. Among the 157 teleost TAARs we identified, 32 of them from zebrafish and green
pufferfish have only weakly conserved TAAR signature motif (S2(C) Fig). We also found 9 tele-
ost TAARs that lack the signature motif. In S1 Fig, the distribution of teleost fish TAARs
among vertebrate TAARs as well as the conservation of the motif is illustrated.

Multiple Sequence Alignments

Multiple alignments of TAAR protein sequences were generated using MAFFT with the
L-INS-i algorithm (ver. 6.24) [68], MUSCLE (ver. 3.7) [69], ProbCons (ver. 1.12) [70], and
PRALINE [71], each with the default parameters. Alignments were adjusted manually when
necessary. For consistency, all amino acid positions shown in this study are numbered based
on the human TAARI sequence in the alignment given in S5 Fig. Position numbers are also
presented using the scheme proposed by Ballesteros and Weinstein [72]. In the Ballesteros-
Weinstein system, the most conserved residue in each TM region among all Rhodopsin-class
GPCRs is assigned the position index “50” and the rest of the positions within each TM region
are numbered accordingly. In this study the Ballesteros-Weinstein position numbers are based
on the TM regions of the turkey B;-adrenergic receptor (B; AR, P07700) sequence obtained
from the GPCRDB Web server (http://www.gpcr.org/7tm) [73]. These numbers are given as
superscripts. All TAAR sequences and alignments are available in: http://bioinfolab.unl.edu/
emlab/TAAR

Phylogenetic Analysis

Phylogenetic relationships were reconstructed by the maximum-likelihood method with the
PROTGAMMA]JTT model (JTT matrix with gamma-distributed rate variation) using RAXML
(ver. 7.0.4) [74]. The neighbor-joining phylogenies [75] were reconstructed by using neighbor
of the Phylip package (ver. 3.67) [76]. The protein distances were estimated using protdist of
the Phylip package with the JTT substitution model with the gamma-distributed rate variation
(oo =1.3004 was estimated using the maximum-likelihood method implemented RAxML) [77].
Bayesian inference of phylogeny was performed using MrBayes (v3.1.2) [78] with the JTT sub-
stitution model with the gamma-distributed rate variation (o = 1.3004). The Markov chain
Monte Carlo search was run for 10° generations, with a sampling frequency of 10°, using three
heated and one cold chain and with a burn-in of 10 trees. In addition to TAAR sequences,
eight representative biogenic amine receptors (BARs), four cow opsin sequences, as well as
eight representative dog ORs were included in phylogenetic analysis. OR sequences were used
as the outgroup. Non-parametric bootstrapping with 1000 pseudo-replicates [79] was used to
estimate the confidence of branching patterns for the maximum-likelihood and neighbor-join-
ing phylogenies. Presentation of the phylogenies was done with FigTree (http://tree.bio.ed.ac.
uk/software/figtree). All phylogenies are available in: http://bioinfolab.unl.edu/emlab/TAAR.

Transmembrane Protein Topology Prediction

HMMTOP (ver. 2.1) [80] and Phobius (ver. 1.01) [81] were used to predict the transmembrane
protein topology, which includes N-terminal, transmembrane (TM), intercellular loop (IC),
extracellular loop (EC), and C-terminal regions.
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Tests of Selection Patterns

Selection patterns were tested using the maximum-likelihood framework developed by Gold-
man and Yang [82]. The site-, branch-, and branch-site models implemented in codeml of the
PAML (Phylogenetic Analysis by Maximum Likelihood) package (version 4.5) were used [50].
We first used the site-model MO (one-ratio, w, for all sites) to estimate the dy/dg (w) for each
TAAR subfamily. Two sets of likelihood-ratio tests (LRTs; d.f. = 2) were performed for positive
selection: M1a (two site-classes, nearly neutral model: 0 < wy < 1 and w; = 1) vs. M2a (three site-
classes including positive selection: 0 < wy < 1, w; = 1, and w, > 1) and M7 (beta distribution
and 0 < w < 1) vs. M8 (beta distribution and w > 1). Using the branch models, we performed
LRTs with d.f. = 1 between a one-ratio model (R1; the same w for all branches) and a two-ratio
model (R2; two independent w's) [83, 84]. As illustrated in S4 Fig, each test was set to compare
primary amine-detecting TAAR lineages (TAARI and TAAR3) against tertiary amine-detecting
receptor lineages (TAAR7 and TAARS). We also used the branch-site models in order to detect
positively selected sites along specific branches [51, 84]. In these models, positive selection was
allowed on a specific, "foreground", branch, and the LRTs (d.f. = 1) were performed against null
models that assume no positive selection. The branch-site test of positive selection ("Test 2" in
[51]) has four site classes: 0, 1, 2a, and 2b. For the site classes 0 and 1, all codons are under purify-
ing selection (0 < wy < 1) and under neutral evolution (w; = 1), respectively, on all branches. For
the site classes 2a and 2b, positive selection is allowed on the foreground branches (w, > 1) but
the other, "background", branches are under purifying selection (0 < wy < 1) and under neutral
evolution (w, = 1), respectively. For the null model, w, is fixed as 1. For our analysis, TAAR7 and
TAARS subfamilies were tested. For each subfamily phylogeny, tests were done using each
branch (from both internal and terminal branches) as the foreground. The numbers of tests per-
formed were 61 and 26 for TAAR7 and TAARS, respectively.

All PAML analyses were carried out using the F3X4 model of codon frequency [82]. The
level of significance (P) for the LRTs was estimated using a y* distribution with given degrees
of freedom (d.f.) and the test statistic calculated as twice the difference of log-likelihood
between the models (2AlnL = 2[InL, -InL,] where L, and L, are the likelihoods of the alterna-
tive and null models, respectively). Positively selected amino acid sites are identified based on
Bayes Empirical Bayes posterior probabilities [52].

Analysis of Selection on Amino Acid Properties

Possible selection on changes in amino acid properties were examined by TreeSAAP (version 3.2)
[58, 59]. The program reconstructs the ancestral character states at each node based on a given
phylogeny. Observed amino acid substitutions are analyzed in the context of 539 physicochemical
properties (downloaded from http://dna.cs.byu.edu/treesaap) [85] and their magnitude of change
(in 8 categories, with 1 being the most conservative and 8 the most radical). Based on the methods
by Xia and Li [86], McClellan and McCracken [87], and McClellan et al. [59], observed differ-
ences are compared against the expected differences under the neutrality. The most radical
changes (categories 6-8) with significant positive z-scores (> 3.09; P < 0.001) are considered to
be under positive-destabilizing selection. In order to confirm if the results are not affected by the
phylogenetic topologies we used, we also performed pairwise analysis of TreeSAAP. Pairwise
comparisons were done for 16 flying fox TAAR7, 29 other mammalian TAAR7, and 16 TAARS
sequences. TreeSAAP results are available in: http://bioinfolab.unl.edu/emlab/TAAR.

Protein Structural Homology Modeling

Homology modeling of TAAR protein structures was performed using the SWISS-MODEL
Web server (http://swissmodel.expasy.org) [88]. The same template, the B-chain of the turkey
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(Meleagris gallopavo) B;AR (4AM]), was selected for the human TAARI, elephant TAAR7a,
and mouse TAAR8a proteins. See S6 Fig for the details on TAAR protein structural modeling.
The graphical representation of TAAR structures was prepared with the PYMOL Molecular
Graphics System (version 1.3, Schrédinger, LLC).
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