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ABSTRACT

Base excision repair (BER) is the major pathway for
the repair of simple, non-bulky lesions in DNA that is
initiated by a damage-specific DNA glycosylase.
Several human DNA glycosylases exist that
efficiently excise numerous types of lesions,
although the close proximity of a single strand
break (SSB) to a DNA adduct can have a profound
effect on both BER and SSB repair. We recently
reported that DNA lesions located as a second
nucleotide 5'-upstream to a DNA SSB are resistant
to DNA glycosylase activity and this study further
examines the processing of these ‘complex’ lesions.
We first demonstrated that the damaged base
should be excised before SSB repair can occur,
since it impaired processing of the SSB by the BER
enzymes, DNA ligase lllo and DNA polymerase .
Using human whole cell extracts, we next isolated
the major activity against DNA lesions located as a
second nucleotide 5-upstream to a DNA SSB and
identified it as DNA polymerase & (Pol &). Using
recombinant protein we confirmed that the 3'-5'-
exonuclease activity of Pol & can efficiently remove
these DNA lesions. Furthermore, we demonstrated
that mouse embryonic fibroblasts, deficient in the
exonuclease activity of Pol ¢ are partially deficient in
the repair of these ‘complex’ lesions, demonstrating
the importance of Pol 5 during the repair of DNA
lesions in close proximity to a DNA SSB, typical of
those induced by ionizing radiation.

INTRODUCTION

Endogenous oxidative metabolism and exogenous agents,
such as ionizing radiation, can generate reactive oxygen
species (ROS) that attack DNA to produce a plethora of
lesions including oxidized bases, strand breaks and
deamination of DNA bases, such as the formation of

uracil and hypoxanthine (1,2). Since ROS can be
produced at high local concentrations through the
deposition of ionizing radiation energy in small volumes
of nanometer dimensions, base lesions and DNA single
strand breaks (SSBs) may arise in close proximity to each
other and may affect each other during repair (3). Such
‘complex’ lesions may delay repair and generate DNA
double strand breaks and mutations (4-6).

The majority of these ‘complex’ lesions are repaired
by proteins of the base excision repair (BER) pathway
(7-10). The repair process involves removal of the
damaged base, excision of the abasic sugar, filling
the created gap with an undamaged nucleotide and
sealing the DNA strands. Processing of different alky-
lated/methylated bases is initiated by N-methylpurine
DNA glycosylase (MPQG), that also excises hypoxanthine
lesions derived from the oxidative or radiation-induced
deamination of adenine (11). The effect of a nearby SSB
on MPG activity has not been investigated previously.
Two major DNA glycosylases are involved in recognition
and excision of oxidative base lesions in human cells,
namely 8-oxoguanine-DNA glycosylase (OGGI1) and the
endonuclease III homologue (NTH1) (12—-15). However,
the endonuclease VIII (Nei)-like proteins (NEIL) that
possess a broad substrate specificity have recently been
identified and were thought to act as a backup repair
system to OGGI1 and NTHI1 (16,17). Although these
DNA glycosylases cover removal of the majority of
oxidative DNA lesions, recent reports have demonstrated
that NTH1 and OGG1 have limited activity on oxidative
base lesions located at the 3’-termini of SSBs and repair
of such lesions is carried out by other BER enzymes.
For example, the major activity against 3'-terminal
8-oxoguanine in human cell extracts was shown to be
AP endonuclease-1 (APE1) (18). We have also recently
shown that NEIL1 is involved in the repair of
S5-hydroxyuracil and 8-oxoguanine located in close
proximity to the 3’-end of a DNA SSB that are not
excised by OGGI1 and NTHI1 (19).

However, some base lesions located in close proximity
to SSBs are resistant to removal by BER enzymes. In our
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previous study, we demonstrated that DNA base lesions
located as a second nucleotide 5'- to the SSB end are
resistant to cleavage by human DNA glycosylases and
to APE1 (19). In the present work, we have extended
these findings and isolated the major activity against
S-hydroxyuracil (5-OHU) and hypoxanthine (Hx) located
as a second nucleotide 5'- to a SSB in human cells using
fractionated human cell extracts and oligonucleotide
duplexes. Using this approach, we discovered that the 3'-
5'-exonuclease activity of DNA polymerase 6 (Pol d) is the
major activity involved in repair of these lesions.

MATERIALS AND METHODS
Materials

Synthetic oligodeoxyribonucleotides were purchased from
Eurogentec and gel purified on a 20% polyacrylamide gel.
[y-**P]JATP (3000 Ci/mmol) was purchased from
PerkinElmer Life Sciences. Histidine-tagged human
DNA polymerase B, PCNA, FEN-1 and DNA ligase
Ile were purified on a Ni*'-charged His-Bind resin
(Novagen) as described by the manufacturer. DNA ligase
I was a gift from A. Tomkinson and Pol § purified as
described (20) was kindly provided by V. Podust. MPG
was purified as described (21). Antibodies against human
Pol & were raised in rabbit and affinity purified as
described (22) and antibodies against XPF were purchased
from Abcam. Wild-type and DNA polymerase
& exonuclease deficient (D400A) mouse embryonic
fibroblasts were grown as described previously (23).

Substrate labelling

Oligonucleotides were 5-end labelled with [y->’PJATP
using T4 polynucleotide kinase and unincorporated label
was removed on a BioSpin P-6 spin column (BioRad).
To prepare the substrates used in the repair assays, the
labelled oligonucleotides were annealed to the relevant
oligonucleotides shown in Figure 1 at 90°C for 3—5min
followed by slow cooling to room temperature.

Fractionation of cell extracts

HeLa cell pellets were purchased from Paragon, USA.
WCE were prepared by the method of Manley et al. (24)
dialysed overnight against buffer containing 25mM
HEPES-KOH, pH 7.9, 100mM KCI, 12mM MgCl,,
0.1mM EDTA, 17% glycerol and 2mM DTT and
aliquots frozen at —80°C. An aliquot of this extract
(250 mg protein) was then fractionated by phosphocellu-
lose chromatography using a step elution of 150 mM KCI
(PC-FI) and 1M KCI (PC-FII) as previously described
(25,26). Proteins (50 mg) from the PC-FII fraction were
further separated by gel filtration on a Superose-12
column (Amersham) in a buffer containing 50 mM
HEPES (pH 7.9), 150mM KCI, 1mM EDTA, 1mM
DTT and 1mM PMSF and 0.5ml fractions collected.
Active fractions were pooled, dialysed against buffer
containing S0 mM HEPES (pH 7.9), 50mM KCI, | mM
EDTA, 1mM DTT and further separated on a 1ml
Mono-Q column (Amersham) using a 20ml gradient
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elution of 50-1000mM KClI, collecting 0.5ml fractions.
Activity assays were performed as described below.

Repair assays

Assays using purified proteins contained 300 fmol
oligonucleotide per reaction in 10ul reaction buffer
containing S0 mM HEPES-KOH, pH 7.8, 50mM KClI,
10mM MgCl,, 0.5mM EDTA, 1.5mM DTT, 8.5%
glycerol and 100 pg/ml BSA. Primer extension reactions
also included 3.5pmol PCNA and 20uM of each
dCTP, dATP, dGTP and TTP. Ligation reactions were
supplemented with 2mM ATP and full reconstitution
reactions contained all the above. Repair assays using
fractionated cell extract (2pl) included 0.25mM NAD™
and 1pg of carrier DNA (single stranded 30-mer
oligonucleotide). All reactions were incubated for
20min at 37°C and 10l formamide loading dye (95%
formamide, 0.02% xylene cyanole, 0.02% bromophenol
blue) added and the samples heated to 95°C for 5min.
Products were subsequently analysed by 20% denaturing
polyacrylamide gel electrophoresis and gels exposed to
storage phosphor screens at 4°C prior to analysis by
phosphorimaging.

Immunodepletion of Pol 6

Protein A Sepharose CL-4B was allowed to swell for 1 h in
PBS and following washes with PBS a 50% suspension
was prepared. To 200 pul suspension was added 5pul Pol &
antibodies or 5pl pre-immune serum and incubation was
carried out for 2 h at 4°C with gentle shaking. The anti Pol
O -Sepharose was washed five times with 0.5ml PBS and
resuspended in 100 ul PBS. Fractions purified from Mono-
Q chromatography (50 pl) were mixed with 50 pl anti Pol &
-Sepharose and incubated for 2 h at 4°C with gentle
shaking. The mixture was filtered through Spin-X columns
at 4°C and aliquots taken and SDS-PAGE loading dye
(25mM Tris-HCI, pH 6.8, 2.5% mercaptoethanol, 1%
SDS, 5% glycerol, I mM EDTA, 0.15mg/ml bromo-
phenol blue) added. The samples were heated to 90°C for
3min prior to loading on a 10% SDS-polyacrylamide gel
followed by transfer to a PVDF membrane and immuno-
blot analysis with the indicated antibodies. Aliquots were
also taken for repair assays as described above.

Host cell reactivation assay

The pGL3-control luciferase reporter vector (Promega)
was digested with Hind IIT and Nco I restriction enzymes
to remove a sequence of 33 bp between the promoter and
luciferase gene. The plasmid was electrophoresed on a
0.7% agarose gel and the linear plasmid DNA isolated
from the gel using the QIAquick gel extraction kit
(Qiagen). Oligonucleotides were 5'-phosphorylated using
T4 polynucleotide kinase and duplexes were constructed
(Figure 8A) by heating to 90°C for 3—5min followed by
slow cooling to room temperature. A 200pul ligation
reaction containing 1 pg (300 fmol) linear plasmid DNA,
1.5 pmol oligonucleotide duplex and 40 U T4 DNA ligase
in buffer containing 50 mM Tris-HC1 (pH 8.0), 10mM
MgCl,, 1mM ATP, 10mM DTT, 25ug/ml BSA was
incubated overnight at 4°C. Analysis by agarose gel
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Nucleotide sequence

Designation

5-CCTGCAGGTCGACTCTAGAXGCCGGCCGATCAAGCTTATTGGGT-3’ X X
3’-GGACGTCCAGCTGAGATCTYCGGCCGGCTAGTTCGAATAACCCA-5’

N\ s
5'-CCTGCAGGTCGACTCTAGAX GCCGGCCGATCAAGCTTATTGGGT-3’ X X1
3'-GGACGTCCAGCTGAGATCTYCGGCCGGCT AGTTCGAATAACCCA-5

N\ s
5-CCTGCAGGTCGACTCTAGXG GCCGGCCGATCAAGCTTATTGGGT-3’ X-N X2
3-GGACGTCCAGCTGAGATCYCCGGCCGGCTAGTTCGAATAACCCA-5’

N\ s
5-CCTGCAGGTCGACTCTAXAG GCCGGCCGATCAAGCTTATTGGGT-3’
3’-GGACGTCCAGCTGAGATYTCCGGCCGGCT AGTTCGAATAACCCA-5’

\ s
5-CCTGCAGGTCGACTCTXGAG GCCGGCCGATCAAGCTTATTGGGT-3’
3’-GGACGTCCAGCTGAGAYCTCCGGCCGGCTAGTTCGAATAACCCA-5’

X-N-N X3

— X-N-N-N

Figure 1. Structures of oligonucleotides used. Oligonucleotides (20-mer) containing 5-OHU or Hx (designated X) were 5'-end labelled and a 24-mer
adjacent oligonucleotide added and annealed to the corresponding complementary strand (with base Y corresponding to guanine and thymine
opposite to 5-OHU and Hx, respectively) to generate substrates containing DNA lesions located 1-4 nucleotides apart from a DNA single strand
break. Substrates containing 5'-end labelled isolated DNA lesions were also used as a control. N refers to a normal base.

electrophoresis demonstrated that approximately 10% of
the plasmid DNA was circularized with oligonucleotide
duplex during the ligation reaction. The DNA was
concentrated using Amicon-30 columns (Millipore) and
buffer exchanged by washing twice with 1 mM Tris-HCI
(pH 8.0), prior to concentration to 10 ul. Pol 8 D400A
exonuclease deficient and the corresponding wild-type cell
lines were seeded at 1 x 10° cells/well in a volume of 500 ul
in a 24-well plate and cultured overnight at 37°C in 5%
COs,. The crude DNA ligation reactions, in combination
with 0.2pug pRL-TK renilla luciferase reporter vector,
used as an internal control, were transfected into the cells
using Lipofectamine 2000 reagent (Invitrogen) as recom-
mended by the manufacturer using a 1:1 ratio of plasmid
(ng) to reagent (ul) in a volume of 100 ul. The cells were
incubated further for 8h at 37°C in 5% CO, and cell
extracts prepared by washing the cells in PBS prior to the
addition of 100pl passive lysis buffer (Promega) and
incubation at room temperature for 15 min with agitation.
The extracts were collected and frozen at —70°C until
required. For measurement of firefly and renilla luciferase
expression, the dual-luciferase reporter assay system
(Promega) and a luminoskan ascent luminometer

(Thermo) were used as described by the manufacturers.
The results were expressed as a ratio of firefly to renilla
luciferase expression and an average ratio was obtained in
each experiment from duplicate transfections. These
values were then expressed as a percentage against the
average ratio for the undamaged sequence and then
normalized to that obtained with the wild-type cell line
that was set to 100%. At least five transfection experiments
were performed for each substrate prepared.

RESULTS

Excision of DNA lesions located in close proximity to the
3’-end of a DNA single strand break

Recently, we have shown that when an oxidative base
lesion is situated as a second nucleotide 5'-upstream to a
SSB, then it is resistant to excision by the major DNA
glycosylases, including NTH1, OGG1 and NEIL1 (19). To
understand whether this observation can be extended to
other types of base lesions, we have examined the excision
of Hx by MPG when placed in close proximity to the
3’-end of a DNA SSB. Excision of the modified base was
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Figure 2. Excision of Hx in close proximity to the 3’-end of a DNA
single strand break by MPG. Oligonucleotide substrates (0.3 pmol),
shown at the top of each panel, were incubated with MPG
(60 or 120fmol) for 20min at 37°C prior to treatment with 5%
piperidine for 15min at 95°C. The samples were subsequently
dried, resuspended in formamide loading dye and an aliquot was
analysed by 20% denaturing polyacrylamide gel electrophoresis and
phosphorimaging.

monitored by incubation of the 5-end labelled oligo-
nucleotide substrate (Figure 1) with purified MPG and
subsequent excision of the AP site with piperidine. Similar
to our observation of the inability of NTH1 and OGGl1 to
remove 3'-proximal oxidative lesions (18,19), we observed
that Hx located immediately on the 3'-terminus (Hx') or
as a second nucleotide 5-upstream to the SSB (Hx") is
not excised by MPG (Figure 2). However, we found
that human AP endonuclease (APEl), that we
recently identified as the major 3’-phosphoglycolate and
3’-8-oxoguanine activity in human cell extracts (18,20) is
also able to excise 3'-terminal Hx (data not shown).
In contrast, we found that APEl, NEIL1 or NEIL2 can
not process Hx (or 5-OHU) located as a second nucleotide
S'-upstream to the SSB (data not shown). Furthermore,
5-OHU in this position is also not excised by UNG2 and
SMUGI! (data not shown) that have previously been
demonstrated to contain 5-OHU activity (27,28). We thus
conclude that DNA base lesions of a broad chemical
nature located as a second nucleotide 5'-upstream to the
strand break are resistant to repair by DNA glycosylases
and other enzymes should be involved in their processing.

DNA single strand breaks containing 3'-end proximal lesions
are poorly processed by DNA ligase and DNA polymerase

To exclude the possibility that DNA lesions located as
a second nucleotide 5'-upstream to the SSB are sealed by a
DNA ligase and then subsequently repaired by a DNA
glycosylase, we investigated the effect of Hx and 5-OHU
on DNA ligase Ill, the major ligase employed during
BER. We found a significant reduction in the amount of
substrate, containing either 5-OHU or Hx in close
proximity to the SSB, which was ligated by DNA ligase
[Tl in comparison to the control duplex oligonucleotide
(Figure 3A). The most dramatic reduction was observed in
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Figure 3. DNA lesions located as a second nucleotide 5'- to a SSB
inhibit DNA ligase IIla and Pol B activities. Oligonucleotide substrates
(0.3pmol), shown at the top of the panel, were incubated with
increasing concentrations of DNA ligase Illa (A) or Pol B (B) for
20min at 37°C prior to the addition of formamide loading dye. An
aliquot was analysed by 20% denaturing polyacrylamide gel electro-
phoresis and phosphorimaging.

the case of 5-OHU? that caused an approximate 10-fold
inhibition in ligation, with Hx? causing an approximate
3-fold inhibition.

Since after incorporation of even one nucleotide to the
3’-end of the strand break, the base lesion may become
removable by a DNA glycosylase, we also examined the
effect of neighbouring lesions on DNA polymerase [
(Pol B). Similar to DNA ligase IIlx, we observed a defect
in one nucleotide addition by Pol B, with both 5-OHU?
and Hx? substrates exhibiting an approximate 4-fold
decrease (Figure 3B). We thus conclude that Pol B and
DNA ligase [IIe-XRCCI1 heterodimer, that are the major
DNA polymerase and DNA ligase activities involved in
BER and SSB repair, operate with very low efficiency on
such ‘complex” SSBs. We hypothesized that the damaged
base should be removed prior to SSB repair and that a
specific activity involved in the excision of damaged bases
located as a second nucleotide 5-upstream to a SSB is
apparent in human cells.

Isolation of enzyme activity against S-OHU in close proximity
to a single strand break

To isolate the major excision activity against DNA lesions
located as a second nucleotide 5-upstream to a SSB,
a protein purification scheme was designed using the
5-OHU? substrate to monitor excision activity
(Figure 4A). Briefly, HeLa WCE was generated by the
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method of Manley ef al. (24) and proteins subsequently
separated by phosphocellulose chromatography using a
step elution of buffers containing 0.15M (PC-FI) and 1 M
KCI (PC-FII). An excision activity against 5-OHU? was
detected in PC-FII that was subsequently fractionated by
gel filtration chromatography on a Superose 12 column.
The major peak of activity corresponded to a protein of
molecular weight greater than 100kDa using protein
standards (data not shown). The peak activity fractions
were pooled, dialysed and separated on a Mono-Q column
using an elution gradient of 50-1000 mM KCI. Fractions
containing excision activity against the 5-OHU? substrate
were subsequently detected, eluting at approximately
250mM KCI (Figure 4B). What was apparent from the
activity profile was that the enzyme may be an exonuclease
due to the cleavage of at least five sequential nucleotides.
The major known exonucleases in human cells include
DNA polymerase & (Pol 8), DNA polymerase &, Werner
(WRN) protein and MREI1 (29). However, recent
evidence has suggested that xeroderma pigmentosum
group F complementing protein (XPF) may be involved
in the removal of 3’-blocked termini from DNA strand
breaks (30). We therefore probed active fractions for XPF
protein and found that it co-purified, although not
completely aligned, with the activity against the 5-OHU?
substrate (Figure 4C). However, immunodepletion of
active fractions using XPF antibodies or analysing the
activity of purified ERCC1-XPF complex on the 5-OHU?
substrate, known to be active on a stem-loop containing
substrate, did not ablate the activity (data not shown). As
the 3’-5" exonuclease activity of WRN protein has been
shown to be inhibited by the presence of certain oxidative
modifications (31) we eliminated this protein as the major
activity against this substrate. We switched our attention
to Pol 6 and using western blotting and antibodies specific
to this protein, similar to XPF protein, we observed Pol &
in active fractions (Figure 4C). Immunodepletion of Pol &
from the peak active fraction and subsequent analysis by
western blotting revealed that the levels of Pol & are only
slightly reduced by mock immunodepletion compared to
the original fraction, while the Pol & specific antibodies
completely removed the Pol § protein from the fraction
(Figure 5A). However, we also show that XPF remains in
the mock- and Pol 8— immunodepleted fraction indicating
the antibody specificity (Figure 5A). We further demon-
strated that the mock-immunodepleted fraction has
a slightly reduced excision activity against 5-OHU?
(Figure 5B), in accordance with the slightly reduced
levels of Pol & compared to the original fraction caused by
the mock-immunodepletion protocol. Furthermore,
immunodepletion using Pol & specific antibodies ablates
the activity observed in the purified Mono-Q fraction
indicating that Pol & is the major activity in human cell
extracts eliminating 5-OHU located as a second nucleotide
5-upstream to a SSB (Figure 5B).

Characterization of recombinant Pol 6 activity against DNA
lesions in close proximity to a SSB

As we demonstrated that the major excision activity in
human cell extracts against 5-OHU? is Pol 8, we analysed

HelLa cells (15 g)
L@
HelLa WCE (250 mg)
e
PC-FI  PC-Fll (50 mg)
@
Superose12 (>100 kDa)
4
Mono-Q (~250 mM KCI)

>

B 'g Active fractions (2ul)
°
& 3
Z° S 19 20 21 22 23 24 25
<—20-mer
<—19-mer
<—18-mer
<—17-mer
- - <—16-mer
- @ - - <—15-mer
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XPF J— — — —
Pol § — — o B == —— —

Figure 4. Purification of the major activity against 5-OHU located as a
second nucleotide 5'- to a DNA single strand break in human cells. A
protein purification scheme was designed using HeLa cells (A) and
involved generating whole cell extracts (step 1), separation of proteins
by phosphocellulose chromatography using a step elution of 0.15M
KCI (PC-FI) and I M KCI (PC-FII; step 2), separation of proteins in
PC-FII by Superose 12 gel-filtration chromatography (step 3), followed
by separation of proteins (>100kDa) using a Mono-Q column and a
gradient elution of 0.05-1M KCI (step 4). During each stage, the
activity against a 5-labelled 5-OHU lesion located as a second
nucleotide 5'- to a DNA single strand break (5-OHU?) was measured
and the corresponding active fractions pooled, dialysed if necessary and
used in the following step. Activity against 5-OHU? from fractions
eluted from the final Mono-Q stage are shown (B) and these were
further analysed by western blotting using XPF and Pol & specific
antibodies.

the activity of recombinant Pol § against 5-OHU and Hx
located as a second nucleotide 5-upstream to a SSB.
We confirmed that purified recombinant Pol &, albeit
with different efficiencies, is able to excise 5-OHU and
Hx in close proximity to a SSB using its associated
3’-5-exonuclease activity in comparison to the control
oligonucleotide substrate, at the enzyme concentrations
tested (Figure 6). The exonuclease activity of Pol 6 was
markedly greater on the Hx-containing substrate in
comparison to the 5-OHU-containing substrate, although
very little exonuclease products were observed with the
control substrate indicating substrate specificity. Although
PCNA notably stimulated the DNA polymerase activity
of Pol 9, it only moderately (1.2 fold) stimulated the 3'-5'-
exonuclease activity (data not shown). These results imply
that under the conditions of the exonuclease assay Pol 6 is
able to excise DNA lesions in close proximity to a SSB.



Fraction Mock ID

POl §| oumn s

XPF| S o o=

01 2 4|0 1 2 4] 01 2 4 (W

Fraction 22 Mock ID Pol 6 ID

Figure 5. Immunodepletion of Pol & from purified human whole cell
extract fractions containing activity directed against 5-OHU?. Active
fraction (fraction 22) from Mono-Q chromatography containing 5-
OHU? activity was mock-immunodepleted and immunodepleted using
Pol & specific antibodies and samples analysed by SDS-polyacrylamide
gel electrophoresis and western blotting using antibodies against XPF
and Pol 8. (A) The original fraction, mock-immunodepleted and Pol &
immunodepleted fraction was tested for 5-OHU? activity using 300 fmol
of duplex oligonucleotide (B) Samples were incubated for 20 min at
37°C prior to the addition of formamide loading dye and analysis by
20%  denaturing  polyacrylamide  gel  electrophoresis  and
phosphorimaging.

Subsequently, we reconstituted the repair of Hx? an
efficient substrate for the 3'-5-exonuclease activity of
Pol 6, using purified BER proteins (Figure 7A). DNA
ligase I, in the presence of the processivity factor PCNA
that was added to all enzyme reactions (lanes 2-8), was
unable to ligate the substrate DNA directly to generate the
fully repaired 44-mer product at the concentration tested
(lane 2). Exonuclease and polymerase extension inter-
mediates were observed on incubation with Pol & only
(lane 3). Interestingly, the addition of FEN-1 appeared to
slightly stimulate the activities of both DNA ligase I
(compare lanes 5 and 2), forming a minor amount of full
length 44-mer product, and Pol 6 (compare lanes 7 and 3),
increasing the level of nucleotide incorporation, although
FEN-1 alone had no effect on the Hx” substrate (lane 4).
Incubation with both Pol & and DNA ligase I was unable
to generate full length product (lane 6), however a
repaired product was effectively observed on incubation
of the full complementation reaction consisting of PCNA,
Pol 6, DNA ligase I and FEN-1 (lane 8).

To examine whether Pol § is either simply extending
from the SSB or using its associated exonuclease activity
prior to gap filling and repair, we subsequently purified the
full length product obtained from the full complementa-
tion reaction (Figure 7A, lane 8) and further incubated
with an excess of MPG and APEI known to cleave 100%
of full length product (see Figure 2). We found that on
average 65% of the repaired product was resistant to
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Figure 6. The 3'-5-exonuclease activity of recombinant Pol § against
DNA lesions located as a second nucleotide 5'- to a DNA single strand
break. Oligonucleotide substrates (0.3 pmol), shown at the top of each
panel, were incubated with increasing concentrations of Pol §
(0240 fmol) in reaction mixture without dNTPs for 20 min at 37°C
prior to the addition of formamide loading dye. An aliquot was
analysed by 20% denaturing polyacrylamide gel electrophoresis and
phosphorimaging.

excision by MPG (Figure 7B) demonstrating that this
proportion of substrate is repaired using the
3’-5'-exonuclease activity of Pol 9.

Repair of Hx in close proximity to a SSB is impaired in cells
deficient in Pol 6 exonuclease activity

As we observed that Pol o efficiently processes Hx lesions
located as a second nucleotide 5-upstream to a SSB in
vitro, we examined specifically whether the exonuclease
activity of Pol § is required for the repair of this lesion in
vivo using cultured cells derived from mice containing a
mutant form of Pol & (D400A) that is deficient in
exonuclease activity (23), in combination with a host cell
reactivation assay. This assay uses a firefly luciferase
reporter vector that on transfection into cultured cells will
cause expression of the luciferase gene. We replaced part
of the original plasmid sequence with oligonucleotide
duplexes containing either a control sequence (no
damage), a SSB or a SSB with Hx located as a second
nucleotide 5-upstream to the SSB (Figure 8A). The
oligonucleotide duplexes were introduced into the vector
between the promoter and the luciferase gene, such
that only repair of the DNA damage will cause
luciferase expression. Following 8h of transfection into
either wild-type or Pol & exonuclease-deficient cultured cell
lines, we measured the ratio of firefly and renilla (internal
transfection control) luciferase activities in both cell lines.
Using the nick-containing plasmid, we observed a similar
level of luciferase expression in both the wild-type and Pol
d exonuclease mutant cell lines, indicating that SSBs are
efficiently repaired in both cell lines (Figure 8B). However,
using a substrate containing Hx located as a second
nucleotide 5-upstream to the SSB (Hx?), we observed a
significant decrease (~50%) in the levels of expression in
the mutant in comparison to the wild-type cell line
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Figure 7. Reconstitution of repair of Hx located as a second nucleotide
5- to a DNA single strand break using purified proteins. Hx>
oligonucleotide substrate (0.3 pmol) was incubated with the indicated
amount of either PCNA (3.5 pmol), Pol & (240 fmol), FEN-1 (230 fmol)
or DNA ligase I (10 fmol) in the presence of dNTPs for 20 min at 37°C
prior to the addition of formamide loading dye. An aliquot was
analysed by 20% denaturing polyacrylamide gel electrophoresis and
phosphorimaging (A). The full complementation reaction (lane 8) was
subsequently purified by phenol-chloroform extraction and Biospin
P-30 gel filtration columns, incubated with MPG (600 fmol) and APEI
(600 fmol) for 20min at 37°C prior to analysis by 20% denaturing
polyacrylamide gel electrophoresis and phosphorimaging (B).

indicating that this substrate partially requires the
exonuclease activity of Pol & for complete repair.

DISCUSSION

Endogenous oxidative metabolism or exogenous agents,
such as ionizing radiation may generate DNA lesions, such
as 5-OHU and Hx, in close proximity to a DNA SSB.
Some of these lesions may impair repair by DNA
polymerases and ligases and should be promptly removed,
since delay in SSB repair results in genome instability and
presents a threat to cell survival. The major human DNA
glycosylases OGG1, NTH1 and NEILI excise 8-0xoG and
oxidized pyrimidines from DNA in human cells, including
some of the lesions located in close proximity to the SSB
(6,12-17,19,32). However, we recently demonstrated that
oxidative DNA lesions located as a second nucleotide
5'- to the SSB are not excised by these major human DNA
glycosylases or by APE1 (19). In the present study, we
extended these observations and have also shown that
MPG is also unable to excise Hx in the same position.
These data suggest that the position of the lesion, rather
than their chemical nature, determines its repairability by
DNA glycosylases. We also demonstrated that some of
these ‘complex’ lesions efficiently block Pol B and DNA
ligase Ille thus preventing an alternative pathway for
repair. We therefore pursued isolation of the major
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Figure 8. Repair ability of mouse embryonic fibroblasts deficient in Pol
d exonuclease against Hx located as a second nucleotide 5'- to a DNA
single strand break. Plasmid constructs used in the experiments were
prepared by ligation of the shown oligonucleotide duplexes into a
luciferase reporter vector (A). Plasmids were transfected into either
wild-type (Pol 8 +/+) or mutant (Pol 6 D400A) cells and after 8h cell
extracts were prepared and luciferase activity was measured. The
average and standard error are shown graphically (B). Asterix (x)
represents a statistical difference P <0.02 compared to the wild-type cell
line using t test.

activity against DNA lesions positioned as a second
nucleotide 5'- to the SSB using HelLa whole cell extracts
and conventional protein purification methods.

Our results demonstrated that the enzyme involved was
an exonuclease and not a specific activity directed at the
DNA lesion. The major known 3'-5-exonucleases in
human cells include DNA polymerase 6 (Pol 3), DNA
polymerase ¢, Werner (WRN) protein and MREI11 (29)
indicating these as potential enzymes involved in the
repair of DNA lesions located as a second nucleotide 5'- to
the SSB. However, under our experimental conditions we
did not observe any activity of ERCC1-XPF complex on
these substrates, although it has been recently shown that
this complex may be involved in the removal of 3'-blocked
termini from DNA strand breaks (30). Furthermore, the
3’-5" exonuclease activity of WRN protein has been shown
to be inhibited by the presence of certain oxidative
modifications (31). Exonuclease I, the major human
5'-3’-exonuclease that also possesses 3'-5-exonuclease



activity was found in the low-salt elution fraction (PC-FI)
from phosphocellulose chromatography and did not
co-purify with the major activity isolated (data not
shown). We therefore focused on Pol 6 and demonstrated
that in fact the 3’-5-exonuclease activity of Pol & is the
major activity that excises DNA lesions located as a
second nucleotide 5'- to the SSB in human cell extracts.
We were also able to demonstrate using an in vitro
reconstituted system that efficient repair requires the
presence of Pol 6, PCNA, DNA ligase I and FEN-I.
However, the ability of Pol 6 to process different ‘complex’
lesions varies. For example, Pol & is very active on Hx-
containing lesions, but much less active on 5-OHU-
containing substrates and also very low activity was
observed against 8-0xoG located as a second nucleotide
5’- to the SSB (data not shown). Therefore, one can expect
that the role of Pol d in cellular processing of these lesions
may also vary and may be more important for some
lesions than for others.

Pol & is one of the major replicative polymerases in
chromosomal DNA synthesis although it is also known to
be involved in BER (33). The ‘long-patch’” BER pathway
involves the incorporation of several nucleotides into the
repair gap by Pol & that cause strand displacement of the
adjacent strand creating a flap structure that is excised by
the flap endonuclease FEN1 (34,35). This reaction occurs
in a PCNA-dependent manner (35) and the fidelity of
nucleotide insertion during ‘long-patch” BER and DNA
replication is enhanced by the associated 3'-5-exonuclease
activity of the polymerases (36). However, ‘long-patch’
BER usually occurs as a result of the inability of Pol B to
remove the 5-deoxyribose phosphate moiety following
apurinic/apyrimidinic site incision due to modification of
the 5’-end by oxidation or reduction. Our study suggests a
new important role of Pol & in the repair of ‘complex’
SSBs. In this scenario the inability of both DNA ligase to
seal the DNA strands and of Pol B to ‘move’ the SSB
further away from the damaged base by DNA repair
synthesis should initiate a switch of repair synthesis to
Pol 8. However, damage removal by Pol & exonuclease
activity should precede DNA synthesis (Figure 9).

The observation that Pol § is able to excise modified
DNA bases through its 3’-5-exonuclease activity is a
novel finding, as it is regarded as a proofreading activity
to remove misincorporated bases, improving polymerase
fidelity. Interestingly, mice deficient in the 3’-5'-exonuclease
activity of Pol §, but still retaining DNA polymerase
activity, develop a high incidence of epithelial cancers,
demonstrating the importance of this proofreading
activity in genome stability (23). Using embryonic
fibroblasts generated from these mutant mice, we demon-
strated that a luciferase reporter vector containing HXx,
located as a second nucleotide 5'-upstream to a SSB, are
inefficiently repaired (50%) when transfected into the cells,
demonstrating the requirement for Pol 6 exonuclease
activity during the repair of these ‘complex’ lesions. The
remainder of these lesions are presumably repaired by
either Pol B or DNA ligase Ille as we only observed
a 3- and 4-fold decrease, respectively, in the activities
of both proteins in vitro. Also in vitro reconstitution
experiments demonstrated that approximately 35% of
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Figure 9. Proposed mechanism of repair of DNA lesions located in
close proximity to the 3’-end of a DNA single strand break by Pol &.
Complex DNA strand breaks containing 3'-proximal lesions that are
resistant to the major BER enzymes are recognized by Pol & (step A)
that excises the lesion through its associated 3'-5'-exonuclease activity
(step B). Pol & is then able to insert the correct nucleotides into the
gap causing strand displacement of the adjacent strand (step C).
The subsequent 5'-flap generated is removed by FENI and DNA ligase I
seals the nick (step D). PCNA can notably stimulate steps C and D.

Hx? is repaired by Pol & through simple extension of the
SSB causing strand displacement that makes it amenable
to MPG excision. Interestingly, a mammalian homologue
of Escherchia. coli endonuclease V has recently been
characterized that incises DNA at the second phospho-
diester bond 3’ to Hx and uracil-containing nucleotides
and thus would generate the Hx? substrate used in our
study that was predicted to be repaired by an exonuclease,
that we now demonstrate is Pol & (37,38).

In summary, our data suggest that Pol & plays an
important role in the repair of DNA damage in close
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proximity to a SSB that is not efficiently repaired by other
proteins of the BER pathway.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.
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