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Abstract: This paper studies the global stability of viral infection models with CTL immune
impairment. We incorporate both productively and latently infected cells. The models integrate two
routes of transmission, cell-to-cell and virus-to-cell. In the second model, saturated virus–cell and
cell–cell incidence rates are considered. The basic reproduction number is derived and two steady
states are calculated. We first establish the nonnegativity and boundedness of the solutions of the
system, then we investigate the global stability of the steady states. We utilize the Lyapunov method to
prove the global stability of the two steady states. We support our theorems by numerical simulations.
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1. Introduction

In the literature, several mathematical models of within-host virus dynamics have been
constructed and analyzed [1–9]. The cytotoxic T Lymphocyte (CTL) is one of the central components
of the immune system against viral infections. CTLs lyse the viral-infected cells which participate in
reducing or clearing the viruses from the body. Several mathematical models have been presented
which integrate the effect of the CTL immune response on viral dynamics (see e.g., [10–12]). Nowak
and Bangham [10] have presented a mathematical model to characterize the dynamics of the virus (J)
with uninfected cells (G), infected cells (I) and CTLs (K) as:

Ġ(t) = θ − µG(t)− ξG(t)J(t), (1)

İ(t) = ξG(t)J(t)− $I(t)− βI(t)K(t), (2)

J̇(t) = ϑI(t)− cJ(t), (3)

K̇(t) = ρI(t)K(t)− εK(t). (4)

The uninfected cells are replenished at rate θ, die at rate µG and become infected at rate ξGJ,
where ξ is the virus–cell incidence rate constant. βIK is the killer rate of infected cells by CTL and $I is
the death rate of the infected cells, where β and $ are constants. The CTLs are proliferated and die at
rates ρIK and εK, respectively, where ρ and ε are constants.
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Models (1)–(4) assume that the presence of antigen can activate the CTL immune response,
however, the CTL immune impairment is negelcted. To model the immune impairment,
Regoes et al. [13] have modified models (1)–(4) as:

Ġ(t) = θ − µG(t)− ξG(t)J(t), (5)

İ(t) = ξG(t)J(t)− $I(t)− βI(t)K(t), (6)

J̇(t) = ϑI(t)− cJ(t), (7)

K̇(t) = ρI(t)− εK(t)− hI(t)K(t), (8)

where the terms ρI and hIK represents the proliferation rate and the immune impairment, respectively,
and h is a constant. Mathematical models of virus dynamics with impairment of CTL functions have
been constructed in seveal papers (see e.g., [13–15]). The works presented in [13–15] assume that the
virus infects the uninfected cells by virus-to-cell transmission.

The uninfected target cells can be infected via two ways of transmissions, namely, the
diffusion-limited virus-to-cell transmission and the direct cell-to-cell transfer using virological
synapses [16]. The cell-to-cell transmission has been recognized in several works (see e.g., [17–20]).
Recent studies have revealed that over 50% of viral infection is due to cell-to-cell transmission [21]
and even with an antiretroviral therapy, the cell-to-cell spread of the virus can still permit ongoing
replication [22]. Thus, for some viruses, cell-to-cell transmission seems to be a more powerful means
of virus propagation than the virus-to-cell transmission [23,24]. Several mathematical models of virus
dynamics with two ways of infection have been developed by many researchers (see [25–30]). However,
in these papers, the impairment of CTL functions is not included. In a very recent work, Elaiw et al. [31]
have studied the dynamic behavior of virus infection with impairment of CTL functions and two
routes of infection, but with one class of infected cells, productively infected cells.

In case of human immunodeficiency virus (HIV) infection, current treatment consisting of several
antiretroviral drugs can suppress viral replication to a low level but cannot completely eradicate
the HIV [29]. An important reason is that HIV provirus can reside in latently infected cells [32,33].
Latently infected cells live long, are not affected by antiretroviral drugs or immune responses, but can
be activated to produce HIV by relevant antigens.

The aim of the present paper is to propose and analyze viral infection models which include
(i) both productively infected cells and latently infected cells, (ii) both virus-to-cell and cell-to-cell
transmissions, and (iii) impairment of CTL functions. We first show that the solutions of the models
are nonnegative and bounded, then we derive the basic reproduction number which determines the
existence and global stability of the steady states. We utilize the Lyapunov method to prove the global
stability of the two steady states. We support our theorems by numerical simulations.

2. The Model

We study the following model:

Ġ(t) = θ − µG(t)− ξ1G(t)J(t)− ξ2G(t)I(t), (9)

L̇(t) = (1− ν)(ξ1G(t)J(t) + ξ2G(t)I(t))− (b + d)L(t), (10)

İ(t) = ν(ξ1G(t)J(t) + ξ2G(t)I(t))− $I(t)− βI(t)K(t) + bL(t), (11)

J̇(t) = ϑI(t)− cJ(t), (12)

K̇(t) = ρI(t)− εK(t)− hI(t)K(t), (13)

where, L is the concentration of the latently infected cells. The uninfected cells become infected at
rates ξ1GJ and ξ2GI due to virus-to-cell and cell-to-cell infections, respectively, where ξ1 and ξ2 are
the incidence rate constants. The fractions 1− ν and ν with 0 < ν ≤ 1 are the probabilities that upon
infection, an uninfected cell will becomes either latently infected or productively infected, respectively.
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Parameter b denotes the average number of latently infected cells cells that become productively
infected cells, and d denotes the death rate constant of the latently infected cells.

2.1. Nonnegativity and Boundedness

Let us define

Ω =
{
(G, L, I, J, K) ∈ R5

≥0 : 0 ≤ G, L, I ≤ N1, 0 ≤ J ≤ N2, 0 ≤ K ≤ N3

}
. (14)

Lemma 1. The compact set Ω is positively invariant for system (9)–(13).

Proof. We observe that

Ġ
∣∣
(G=0) = θ > 0,

L̇
∣∣
(L=0) = (1− ν)(ξ1GJ + ξ2GI) ≥ 0, ∀G, J, I ≥ 0,

İ
∣∣
(I=0) = νξ1GJ + bL ≥ 0, ∀G, J, L ≥ 0,

J̇
∣∣
(J=0) = ϑI ≥ 0, ∀I ≥ 0,

K̇
∣∣
(K=0) = ρI ≥ 0, ∀I ≥ 0.

This confirms that (G(t), L(t), I(t), J(t), K(t)) ∈ R5
≥0 with (G(0), L(0), I(0), J(0), K(0)) ∈ R5

≥0.
Let F = G + L + I + $

2ϑ J + $
4ρ K. Then

Ḟ = θ − µG− ξ1GJ − ξ2GI + (1− ν)(ξ1GJ + ξ2GI)− (b + d)L + ν(ξ1GJ + ξ2GI)− $I

− βIK + bL +
$

2ϑ
(ϑI − cJ) +

$

4ρ
(ρI − εK− hIK)

= θ − µG− dL− $

4
I −

(
β +

$h
4ρ

)
IK− $c

2ϑ
J − $ε

4ρ
K

≤ θ − µG− dL− $

4
I − $c

2ϑ
J − $ε

4ρ
K

≤ θ − σ

(
G + L + I +

$

2ϑ
J +

$

4ρ
K
)
= θ − σF,

where, σ = min{µ, d, $
4 , c, ε}. Hence, 0 ≤ F(t) ≤ N1 for all t ≥ 0 if F(0) ≤ N1, where

N1 = θ
σ . Consequently, 0 ≤ G(t), L(t), I(t) ≤ N1, 0 ≤ J(t) ≤ N2 and 0 ≤ K(t) ≤ N3 for all

t ≥ 0 if G(0) + L(0) + I(0) + $
2ϑ J(0) + $

4ϑ K(0) ≤ N1, where N2 = 2ϑθ
$σ and N3 = 4ρθ

$σ . This establishes
the bondedness of G(t), L(t), I(t), J(t) and K(t).

Let us define the basic reproduction number of system (9)–(13) as:

R0 =
θ (dν + b) (ϑξ1 + cξ2)

$cµ(b + d)
. (15)

Lemma 2. For system (9)–(13),

(i) ifR0 ≤ 1 then there exists a disease-free steady state ∆0,
(ii) ifR0 > 1, then there exist two steady states ∆0 and endemic steady state ∆1.

Proof. The steady states of the system satisfy
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0 = θ − µG− ξ1GJ − ξ2GI, (16)

0 = (1− ν)(ξ1GJ + ξ2GI)− (b + d)L, (17)

0 = ν(ξ1GJ + ξ2GI)− $I − βIK + bL, (18)

0 = ϑI − cJ, (19)

0 = ρI − εK− hIK. (20)

By solving Equations (16)–(20) we get two steady states, disease-free steady state ∆0 =

(G0, 0, 0, 0, 0) where G0 =
θ

µ
. In addition, we have

A1 I2 + B1 I + C1 = 0,

where

A1 = (h$ + βρ)(b + d)(ϑξ1 + cξ2),

B1 = ((ϑξ1 + cξ2)ε + cµh)(b + d)$− (ϑξ1 + cξ2)θdhν− (ϑξ1 + cξ2)bθh + (b + d)βρcµ,

C1 = ε(bcµ$ + cdµ$) (1−R0) .

Define a function ψ1 by
ψ1(I) = A1 I2 + B1 I + C1 = 0.

Then, ψ1(0) = ε(bcµ$ + cdµ$) (1−R0) < 0 when R0 > 1 and lim
I→∞

ψ1(I) = ∞. Hence, there

exists I1 ∈ (0, ∞) such that ψ1(I1) = 0. Hence, whenR0 > 1, then

G1 =
θc

ξ1ϑI1 + ξ2cI1 + cµ
> 0, J1 =

ϑI1

c
> 0,

L1 =
(1− ν)θ I1(ξ1ϑ + ξ2c)

(ξ1ϑI1 + ξ2cI1 + cµ)(d + b)
> 0, K1 =

ρI1

hI1 + ε
> 0.

It follows that, an endemic steady state ∆1(G1, L1, I1, J1, K1), exists ifR0 > 1.

2.2. Global Stability

We define Γ(`) = `− 1− ln `. We note that Γ(`) ≥ 0 for any ` > 0 and Γ(1) = 0. To investigate the
global stability of the steady states, we construct Lyapunov functions using the method presented [4]
and followed by [5–7].

Theorem 1. Let R0 < 1, then ∆0 of models (9)–(13), is globally asymptotically stable and it is unstable if
R0 > 1.

Proof. Constructing a function Λ0(G, L, I, J, K) as:

Λ0(G, L, I, J, K) = G0Γ
(

G
G0

)
+

(
b

νd + b

)
L +

(
b + d

νd + b

)
I +

ξ1G0

c
J +

$(1−R0)

ρ

(
b + d

νd + b

)
K.

Clearly, Λ0(G, L, I, J, K) for all G, L, I, J, K > 0, while Λ0(G, L, I, J, K) reaches its global minimum
at ∆0. Calculating dΛ0

dt along the trajectories of (9)–(13) we get
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dΛ0
dt

=

(
1− G0

G

)
(θ − µG− ξ1GJ − ξ2GI) +

(
b

νd + b

)
((1− ν)(ξ1GJ + ξ2GI)− (d + b)L)

+

(
b + d

νd + b

)
(ν(ξ1GJ + ξ2GI)− $I + bL− βIK) +

ξ1G0
c

(ϑI − cJ) +
$(1−R0)

ρ

(
b + d

νd + b

)
(ρI − εK− hIK)

=

(
1− G0

G

)
(θ − µG) + $

(
b + d

νd + b

)(
ξ2G0(νd + b)

$(b + d)
− 1 +

ξ1G0ϑ(νd + b)
$c(b + d)

+ (1−R0)

)
I

−
(

b + d
νd + b

)(
β +

$h(1−R0)

ρ

)
IK− $ε(1−R0)

ρ

(
b + d

νd + b

)
K

= −µ
(G− G0)

2

G
−
(

b + d
νd + b

)(
β +

$h(1−R0)

ρ

)
IK−

(
b + d

νd + b

)
$ε(1−R0)

ρ
K.

SinceR0 < 1, then for all G, L, I, J, K > 0 we have
dΛ0

dt
≤ 0. The solutions of the system tend to

the largest invariant subset of {(G, L, I, J, K) : dΛ0
dt = 0} [34]. It can be easily show that dΛ0

dt = 0 at ∆0.
Applying LaSalle’s invariance principle (LIP), we get that ∆0 is globally asymptotically stable.

We calculate the characteristic equation at the steady state ∆0 as:

(λ + µ)(λ + ε)(λ3 + a1λ2 + a2λ + a3) = 0, (21)

where

a1 = −ξ2νG0 + $ + b + c + d, (22)

a2 = ((−ξ2νG0 + $ + b + d)c− (ξ2b + ν(ξ1ϑ + ξ2d))G0 + $(d + b), (23)

a3 = (−ξ2(νd + b)cG0 − ξ1ϑG0((νd + b))) + $c(d + b) = $c(d + b)(1−R0). (24)

Define
ψ2(λ) = λ3 + a1λ2 + a2λ + a3.

We have ψ2(0) = $c(d + b)(1 − R0). Hence, ψ2(0) < 0 when R0> 1. We have also
limλ→∞ψ2(λ) = ∞, which shows that ψ2 has a positive real root and then, ∆0 is unstable forR0> 1.

Theorem 2. For system (9)–(13), ifR0 > 1, then ∆1 is globally asymptotically stable.

Proof. Let a function Λ1(G, L, I, J, K) be defined as:

Λ1(G, L, I, J, K) = G1Γ
(

G
G1

)
+

(
b

νd + b

)
L1Γ

(
L
L1

)
+

(
b + d

νd + b

)
I1Γ
(

I
I1

)
+

ξ1G1

c
J1Γ
(

J
J1

)
+

β

2(ρ− hK1)

(
b + d

νd + b

)
(K− K1)

2.

Clearly, Λ1(G, L, I, J, K) > 0 for all G, L, I, J, K > 0, and Λ1(G1, L1, I1, J1, K1) = 0. Calculating dΛ1
dt

along the trajectories of (9)–(13) we get

dΛ1

dt
=

(
1− G1

G

)
(θ − µG− ξ1GJ − ξ2GI) +

(
b

νd + b

)(
1− L1

L

)
((1− ν)(ξ1GJ + ξ2GI)− (d + b)L)

+

(
b + d

νd + b

)(
1− I1

I

)
(ν(ξ1GJ + ξ2GI)− $I + bL− βIK)

+
ξ1G1

c

(
1− J1

J

)
(ϑI − cJ) +

β

ρ− hK1

(
b + d

νd + b

)
(K− K1) (ρI − εK− hIK)

=

(
1− G1

G

)
(θ − µG) + ξ2G1 I −

(
b

νd + b

)
L1

L
(1− ν)(ξ1GJ + ξ2GI) +

(
b(d + b)
νd + b

)
L1

− ν

(
b + d

νd + b

)
I1

I
(ξ1GJ + ξ2GI)− $

(
b + d

νd + b

)
(I − I1)− b

(
b + d

νd + b

)
I1

I
L− β

(
b + d

νd + b

)
(I − I1)K +

ϑξ1G1

c
I

− ϑξ1G1

c
J1

J
I + ξ1G1 J1 +

β

ρ− hK1

(
b + d

νd + b

)
(K− K1) (ρI − εK− hIK) . (25)
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Simplifying Equation (25) and applying the following conditions for ∆1:

θ − µG1 = ξ1G1 J1 + ξ2G1 I1, (1− ν) (ξ1G1 J1 + ξ2G1 I1) = (d + b)L1,

ν (ξ1G1 J1 + ξ2G1 I1) + bL1 = $I1 + βI1K1, ϑI1 = cJ1, ρI1 = εK1 + hI1K1,(
b + d

νd + b

)
($I1 + βI1K1) = ξ1G1 J1 + ξ2G1 I1,

we get

dΛ1

dt
= −

(
µ + ξ2 I1

(b + d)ν
νd + b

)
(G− G1)

2

G
− β

(
ε + hI

ρ− hK1

)(
b + d

νd + b

)
(K− K1)

2

+ ξ1G1 J1

(
b(1− ν)

νd + b

)(
4− G1

G
− L1GJ

LG1 J1
− I1L

IL1
− J1 I

J I1

)
+ ξ1G1 J1

(
(b + d)ν
νd + b

)(
3− G1

G
− I1GJ

IG1 J1
− J1 I

J I1

)
+ ξ2G1 I1

(
b(1− ν)

νd + b

)(
3− G1

G
− L1GI

LG1 I1
− I1L

I1L1

)
. (26)

We have ifR0 > 1, then G1, L1, I1, J1, K1 > 0. The geometrical and arithmetical means relationship
implies that

4 ≤ G1

G
+

L1GJ
LG1 J1

+
I1L
IL1

+
J1 I
J I1

,

3 ≤ G1

G
+

I1GJ
IG1 J1

+
J1 I
J I1

,

3 ≤ G1

G
+

L1GI
LG1 I1

+
I1L
I1L1

.

Hence for all G, L, I, J, K > 0 we have dΛ1
dt ≤ 0 and dΛ1

dt = 0 when G = G1, L = L1, I = I1, J = J1

and K = K1. Utilizing LIP we obtain that ifR0 > 1, then ∆1 is globally asymptotically stable.

3. Model with Saturated Incidence Rate

The rate of infection in model (9)–(13) is bilinear in the virus and the uninfected cell. Actual
incidence rates are probably not strictly linear. A less than linear response in viruses and infected
cells could occur due to saturation at high virus or infected cell concentrations [35]. Therefore, it is
reasonable for us to assume that the infection rate of modeling viral infection is given by saturated
mass action. In this section, we study a vial infection model with saturation:

Ġ = θ − µG− ξ1GJ
1 + α1 J

− ξ2GI
1 + α2 I

, (27)

L̇ = (1− ν)

(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
− (d + b)L, (28)

İ = ν

(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I)

)
− $I + bL− βIK, (29)

J̇ = ϑI − cJ, (30)

K̇ = ρI − εK− hIK, (31)

where α1, α2 are saturation constants. All parameters and variables have the same meaning as (9)–(13).

3.1. Basic Properties

The next lemma shows the nonnegativity and boundedness of the solutions of system (27)–(31)
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Lemma 3. The compact set Ω is positively invariant for system (27)–(31).

The proof is similar to that of Lemma 1.
The basic reproduction number of system (27)–(31) is the same as given by Equation (15).

Lemma 4. Consider models (27)–(31), then

(i) A disease-free steady state ∆0 exists whenR0 ≤ 1,
(ii) An endemic steady state ∆1 exists whenR0 > 1.

Proof. Let

0 = θ − µG− ξ1GJ
1 + α1 J

− ξ2GI
1 + α2 I

, (32)

0 = (1− ν)

(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
− (d + b)L, (33)

0 = ν

(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
+ bL− $I − βIK, (34)

0 = ϑI − cJ, (35)

0 = ρI − εK− hIK. (36)

By solving the algebraic Equations (32)–(36) we obtain a disease-free steady state ∆0 = (G0, 0, 0, 0, 0).
Moreover we have

A2 I3 + B2 I2 + C2 I + D2 = 0,

A2 = ϑ(h$ + βρ)(µα1α2 + ξ1α2 + ξ2α1)(b + d),

B2 = (ϑ(µα1 + ξ1)(εα2$ + h$ + βρ) + (ϑεα1$ + ch$ + cβρ)ξ2 + cµα2(h$ + βρ))(b + d)

− (ξ1α2 + ξ2α1)θhϑ(dν + b),

C2 = ((ϑµα1 + cµα2 + ϑξ1 + cξ2)$ε + (h$ + ρβ)cµ)(b + d)− ((ξ1α2 + ξ2α1)εϑ + (ϑξ1 + cξ2)h)θ(dν + b),

D2 =
ε

cµ$
(1−R0),

whereR0 is defined by Equation (15). Define

ψ3(I) = A2 I3 + B2 I2 + C2 I + D2 = 0.

We have

ψ3(0) =
ε

cµ$
(1−R0),

lim
I→∞

ψ3(I) = ∞.

SinceR0 >1, then ψ3(0) < 0 and there exists I1 ∈ (0, ∞) such that ψ3(I1) = 0. Hence

G1 =
θ(α1ϑI1 + c)(α2 I1 + 1)

(α1α2µ + ξ1α2 + ξ2α1)ϑI2
1 + (α1µϑ + α2cµ + ξ1ϑ + ξ2c)I1 + cµ

> 0, (37)

L1 =
(1− ν)(ϑ(ξ1α2 + ξ2α1)I1 + ξ2c + ξ1ϑ))θ I1

((α1α2µ + ξ1α2 + ξ2α1)ϑI2
1 + (α1µϑ + α2cµ + ξ1ϑ + ξ2c)I1 + cµ)(d + b)

> 0, (38)

J1 =
ϑI1

c
> 0, K1 =

ρI1

hI1 + ε
> 0. (39)

Hence, the endemic steady state ∆1(G1, L1, I1, J1, K1) exists whenR0 > 1.
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3.2. Global Properties

Theorem 3. Let R0 < 1, then ∆0 of system (27)–(31) is globally asymptotically stable and it is unstable if
R0 > 1.

Proof. Define ΛG
0 (G, L, I, J, K) as the following

ΛG
0 (G, L, I, J, K) = G0Γ

(
G
G0

)
+

(
b

νd + b

)
L +

(
b + d

νd + b

)
I +

ξ1G0

c
J +

$(1−R0)

ρ

(
b + d
νd + J

)
K.

It is seen that ΛG
0 (G, L, I, J, K) > 0 for all G, L, I, J, K > 0 while ΛG

0 (G, L, I, J, K) reaches its global

minimum at ∆0. We calculate
dΛG

0
dt

as:

dΛG
0

dt
=

(
1− G0

G

)(
θ − µG− ξ1GJ

1 + α1 J
− ξ2GI

1 + α2 I

)
+

(
b

νd + b

)(
(1− ν)

(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
− (d + b)L

)
+

(
b + d

νd + b

)(
ν

(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
+ bL− $I − βIK

)
+

ξ1G0

c
(ϑI − cJ)

+
$(1−R0)

ρ

(
b + d

νd + b

)
(ρI − εK− hIK)

= µ

(
1− G0

G

)
(G0 − G) +

ξ1G0 J
1 + α1 J

+
ξ2G0 I

1 + α2 I
+ $

(
b + d

νd + b

)
(1− 1−R0)I +

ξ1G0

c
(ϑI − cJ)

−
(

b + d
νd + b

)((
β +

$h(1−R0)

ρ

)
IK +

$(1−R0)ε

ρ
K
)

= −
(

µ
(G− G0)

2

G
+

α1ξ1G0 J2

1 + α1 J
+

α2ξ2G0 I2

1 + α2 I

)
+ $

(
b + d

νd + b

)(
ξ1G0ϑ(νd + b)

$c(b + d)
+

ξ2G0(νd + b)
$(b + d)

−R0

)
I

−
(

b + d
νd + b

)((
β +

$h(1−R0)

ρ

)
IK +

$(1−R0)ε

ρ
K
)

= −µ
(G− G0)

2

G
− α1ξ1G0 J2

1 + α1 J
− α2ξ2G0 J2

1 + α2 J
−
(

b + d
νd + b

)(
(β +

$h(1−R0)

ρ
)IK +

$(1−R0)ε

ρ
K
)

. (40)

Clearly if R0 < 1, then for all G, L, I, J, K > 0, we have
dΛG

0
dt
≤ 0, and

dΛG
0

dt
= 0 when G =

G0, L = 0, I = 0, J = 0 and K = 0. Applying LIP implies we get that if R0 < 1, then ∆0 is globally
asymptotically stable. Similar to the previous section we can easily show that if R0 > 1, then ∆0

is unstable.

Theorem 4. LetR0 > 1 then ∆1 of system (27)–(31) is globally asymptotically stable.

Proof. Define a function ΛG
1 (G, L, I, J, K) as:

ΛG
1 (G, L, I, J, K) = G1Γ

(
G
G1

)
+

(
b

νd + b

)
L1Γ

(
L
L1

)
+

(
b + d

νd + b

)
I1Γ
(

I
I1

)
+

ξ1G1

c(1 + α1 J1)
J1Γ
(

J
J1

)
+

β

2(ρ− hK1)

(
b + d

νd + b

)
(K− K1)

2.

It is seen that ΛG
1 (G, L, I, J, K) > 0 for all G, L, I, J, K > 0 while ΛG

1 (G, L, I, J, K) reaches its global

minimum at ∆1. Calculating dΛG
1

dt as:
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dΛG
1

dt
=

(
1− G1

G

)(
θ − µG− ξ1GJ

1 + α1 J
− ξ2GI

1 + α2 I

)
+

(
b

νd + b

)(
1− L1

L

)(
(1− ν)

(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
− (d + b)L

)
+

(
b + d

νd + b

)(
1− I1

I

)(
ν

(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
+ bL− $I − βIK

)
+

ξ1G1

c(1 + α1 J1)

(
1− J1

J

)
(ϑI − cJ) +

β

ρ− hK1

(
b + d

νd + b

)
(K− K1) (ρI − εK− hIK)

=

(
1− G1

G

)
(θ − µG) +

ξ1G1 J
1 + α1 J

+
ξ2G1 I

1 + α2 I
−
(
(1− ν)b
νd + b

)(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
L1

L

+
b(d + b)
νd + b

L1 − ν

(
b + d

νd + b

)(
ξ1GJ

1 + α1 J
+

ξ2GI
1 + α2 I

)
I1

I
− $

(
b + d

νd + b

)
(I − I1)

− β

(
b + d

νd + b

)
(I − I1)K−

(
b(b + d)
νd + b

)
I1

I
L +

ϑξ1G1

c(1 + α1 J1)
I − ξ1G1 J

1 + α1 J1

− ϑξ1G1

c(1 + α1 J1)

J1

J
I +

ξ1G1 J1

1 + α1 J1
+

β

ρ− hK1

(
b + d

νd + b

)
(K− K1) (ρI − εK− hIK) . (41)

The steady state conditions of ∆1 implies that:

θ − µG1 =
ξ1G1 J1

1 + α1 J1
+

ξ2G1 I1

1 + α2 I1
, (b + d)L1 = (1− ν)

(
ξ1G1 J1

1 + α1 J1
+

ξ2G1 I1

1 + α2 I1

)
,

$I1 + βI1K1 = ν

(
ξ1G1 J1

1 + α1 J1
+

ξ2G1 I1

1 + α2 I1

)
+ bL1, ϑI1 = cJ1, ρI1 = εK1 + hI1K1,(

b + d
νd + b

)
($I1 + βI1K1) =

ξ1G1 J1

1 + α1 J1

+
ξ2G1 I1

1 + α2 I1
,

we get

dΛG
1

dt
= −µ

(G− G1)
2

G
− ξ1G1 J1

1 + α1 J1

(
α1(J − J1)

2

J1(1 + α1 J)(1 + α1 J1)

)
− ξ2G1 I1

1 + α2 I1

(
α2(I − I1)

2

I1(1 + α2 I)(1 + α2 I1)

)
+

ξ1G1 J1
1 + α1 J1

(
b(1− ν)

νd + b

)(
5− G1

G
− L1GJ(1 + α1 J1)

LG1 J1(1 + α1 J)
− I1L

IL1
− J1 I

J I1
− 1 + α1 J

1 + α1 J1

)
+

ξ1G1 J1
1 + α1 J1

(
(b + d)ν
νd + b

)(
4− G1

G
− I1GJ(1 + α1 J1)

IG1 J1(1 + α1 J)
− I J1

I1 J
− 1 + α1 J

1 + α1 J1

)
+

ξ2G1 I1
1 + α2 I1

(
b(1− ν)

νd + b

)(
4− G1

G
− L1GI(1 + α2 I1)

LG1 I1(1 + α2 I)
− I1L

IL1
− 1 + α2 I

1 + α2 I1

)
+

ξ2G1 I1
1 + α2 I1

(
(b + d)ν
νd + b

)(
3− G1

G
− G(1 + α2 I1)

G1(1 + α2 I)
− 1 + α2 I

1 + α2 I1

)
− β

(
ε + hI

ρ− hK1

)(
b + d

νd + b

)
(K− K1)

2.

The geometrical and arithmetical means relationship implies that

5 ≤ G1

G
+

L1GJ(1 + α1 J1)

LG1 J1(1 + α1 J)
+

I1L
IL1

+
J1 I
J I1

+
1 + α1 J
1 + α1 J1

,

4 ≤ G1

G
+

I1GJ(1 + α1 J1)

IG1 J1(1 + α1 J)
+

I J1

I1 J
+

1 + α1 J
1 + α1 J1

,

4 ≤ G1

G
+

L1GI(1 + α2 I1)

LG1 I1(1 + α2 I)
+

I1L
IL1

+
1 + α2 I
1 + α2 I1

,

3 ≤ G1

G
+

G(1 + α2 I1)

G1(1 + α2 I)
+

1 + α2 I
1 + α2 I1

.

Thus dΛG
1

dt ≤ 0 for all G, L, I, J, K > 0 and dΛG
1

dt = 0 at ∆1. Using LIP one can easily show that ∆1 is
globally asymptotically stable.
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4. Numerical Simulations

In this section, we solve system (27)–(31) numerically with values of the parameters given as:
θ = 270, µ = 0.2, ξ2 = 0.005, b = 0.1, d = 0.2, $ = ϑ = 5.5, c = 3, ρ = 0.5, ε = 0.1 and ν = 0.5.
The parameters ξ1, α1, α2, β and h will be varied. We take α = α1 = α2 and choose different initial
conditions as:

IC1: G(0) = 900, L(0) = 200, I(0) = 15, J(0) = 30, K(0) = 4,
IC2: G(0) = 600, L(0) = 150, I(0) = 10, J(0) = 20, K(0) = 3,
IC3: G(0) = 400, L(0) = 75, I(0) = 5, J(0) = 10, K(0) = 2,
IC4: G(0) = 900, L(0) = 200, I(0) = 140, J(0) = 100, K(0) = 4.2,
IC5: G(0) = 900, L(0) = 140, I(0) = 15, J(0) = 100, K(0) = 4.

Case(1) Stability of steady states:

We take α = 0, h = 0.1, β = 0.04 and ξ1 is varied as:
(i) ξ1 = 0.0005, then R0 = 0.9682 < 1. Figure 1 shows that, the solution of the system with

different initial conditions IC1–IC3 tends to ∆0. This result implies that ∆0 is globally asymptotically
stable which confirms Theorem 3.

(ii) ξ1 = 0.005 then, R0 = 2.3182 > 1. The numerical results show that the solutions of the
system tends to the steady state ∆1 = (602.3861, 249.2046, 17.5212, 32.1223, 4.7300) for all IC1–IC3. This
supports the global stability result of Theorem 4.

Case(2) Virus dynamics with variation of α:

In this case, we fix ξ1 = 0.005, h = 0.1, β = 0.4 and α is changed. We solve the system numerically
with the initial condition IC4. In Figure 2, we show the effect of saturated incidence parameter α. We
can see that the concentration of the uninfected cells is increased as α is increased. Moreover, the
concentration of latently infected cells, productively infected, viruses and CTLs are decreased as α

is increased.

Case(3) Effect of h on the virus dynamics:

Here, we fix ξ1 = 0.005, α = 0.05, β = 0.4 and h is changed. The system is solved with initial
condition IC5, Figure 3 shows that the increasing of h will increase both G(t) and K(t) and decrease all
of L(t), I(t) and J(t).
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Figure 1. The simulation of trajectories of system (27)–(31) with IC1–IC3.
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Figure 2. The simulation of trajectories of system (27)–(31) with different values of α.
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Figure 3. The simulation of trajectories of system (27)–(31) with different value h.

5. Discussion and Conclusions

In this paper, we have proposed two virus dynamics models with impairment of CTL functions.
We consider that the healthy cells are infected by two ways, viral and cellular infections. We have
considered both latently and productively infected cells. The incidence rate is represented by bilinear
and saturation in the first and second models, respectively. We have established the well-posedness
of the model. We have derived the basic reproduction numbers R0 which determine the existence
and stability of the disease-free steady state ∆0 and endemic steady state ∆1 of the model. We have
investigated the global stability of the steady states of the model by using the Lyapunov method and
LaSalle’s invariance principle. We have proven that (i) ifR0 < 1, then ∆0 is globally asymptotically
stable and the viruses is cleared (ii) ifR0 > 1, then ∆1 exists then it is globally asymptotically stable.
This case corresponds to the persistence of the viruses. The effects of saturation and CTL impairment
have been studied. We have supported the theoretical results by numerical simulations.

Models (1)–(4) have three steady states; disease-free steady state ∆C
0 , endemic steady state without

a CTL immune response ∆C
1 and endemic steady state with a CTL immune response ∆C

2 . Moreover,
the existence and stability of the steady states are determined by two threshold parameters, the basic
reproduction number RC

0 (which determines whether or not the disease will progress) and the CTL
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immune response activation number RC
1 (which determines whether or not a persistent CTL immune

response can be established), where

RC
0 =

θϑξ

$cµ
, RC

1 =
RC

0

1 + εϑξ
cµρ

.

In contrast, models (5)–(8) as well as our proposed models (9)–(13) and (27)–(31) have two steady states
(∆0 and ∆1) and their existence and stability are determined by only the basic reproduction number R0.

It has been reported in several works (see e.g., [10,13,36]) that viruses mutate fast and there is
a generation of quasi species that may vary in infectivity. In fact, mutations are one of the ways of
immune evasion whereby viruses can evade CTL activity. The high mutation rate of viruses naturally
leads to the study of the interplay between immune response and virus diversity for a number of
different strains [36]. A viral infection model with CTL immune response and mutations has been
proposed in [10] as:

Ġ(t) = θ − µG(t)−
n

∑
i=1

ξiG(t)Ji(t), (42)

İi(t) =
n

∑
i=1

ξiG(t)Ji(t)− $i Ii(t)− βi Ii(t)Ki(t), i = 1, 2, ..., n (43)

J̇i(t) = ϑi Ii(t)− ci Ji(t), i = 1, 2, ..., n (44)

K̇i(t) = ρi Ii(t)Ki(t)− εiKi(t), i = 1, 2, ..., n (45)

where, Ii is the concentration of actively infected cells with virus strain i, Ji denotes the concentration of
different strains of virus particles and Ki denotes the concentration of strain specific immune responses.
It has been assumed that there are n diffierent strains of virus. Models (42)–(45) can be extended to
take into account (i) cell-to-cell transmision, (ii) latently infected cells, (iii) immune impairment, and
(iv) time delay as:

Ġ(t) = θ − µG(t)−
n

∑
i=1

G(t)
[
ξ1,i Ji(t) + ξ2,i Ii(t)

]
, (46)

L̇i(t) = (1− νi)
n

∑
i=1

e−γiτi G(t− τi)
[
ξ1,i Ji(t− τi) + ξ2,i Ii(t− τi)

]
− (bi + di)Li(t), i = 1, 2, ..., n (47)

İi(t) = νi

n

∑
i=1

e−κiωi G(t−ωi)
[
ξ1,i Ji(t−ωi) + ξ2,i Ii(t−ωi)

]
− ρi Ii(t)− βi Ii(t)Ki(t) + bi Li(t), i = 1, 2, ..., n (48)

J̇i(t) = θie−φiκi Ii(t− κi)− ci Ji(t), i = 1, 2, ..., n (49)

K̇i(t) = ρi Ii(t)− εiKi(t)− hi Ii(t)Ki(t), i = 1, 2, ..., n (50)

where Li is the concentration of latently infected cells with virus strain i. Here, τi is the time between a
virus strain i entering an uninfected cell to become latently infected cell with virus strain i, and ωi is
the time between a virus strain i entering an uninfected cell and the production of immature viruses of
type i. The immature viruses of type i need time κi to be mature. The factors e−γiτi , e−κiωi and e−φiκi

represent the probability of surviving to the age of τi, ωi and κi, respectively, where γi, κi and, φi are
positive constants. It is worth stressing that the role of the delay term does not only take into account
the delay in the dynamical response of the interacting entities, but also their heterogeneity. This can be
accounted for by modeling interactions as shown in [37].
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Effects of Latent Infection on the Virus Dynamics

In this subsection, we show the effect of the presence of latently infected cells on virus dynamics.
Let us incorporate an antiviral drug with efficacy η where η ∈ [0, 1). The virus dynamics model (9)–(13)
under the effect of treatment is given by:

Ġ(t) = θ − µG(t)− (1− η) [ξ1 J(t) + ξ2 I(t)] G(t), (51)

L̇(t) = (1− ν)(1− η) [ξ1 J(t) + ξ2 I(t)] G(t)− (b + d)L(t), (52)

İ(t) = ν(1− η) [ξ1 J(t) + ξ2 I(t)] G(t)− $I(t)− βI(t)K(t) + bL(t), (53)

J̇(t) = ϑI(t)− cJ(t), (54)

K̇(t) = ρI(t)− εK(t)− hI(t)K(t). (55)

The basic reproduction number RL
0 for system (51)–(55) is given by

RL
0 (η) = (1− η)

θ (dν + b) (ϑξ1 + cξ2)

$cµ(b + d)
.

When the population of the latently infected cells are not modeled then models (51)–(55)
will become:

RL
0 (η) < 1, for all ηL

crit < η < 1,

RW
0 (η) < 1, for all ηW

crit < η < 1,

and stabilize the disease-free steady state for systems (51)–(55) and (56)–(59). Now, we calculate ηW
crit

and ηL
crit as:

Ġ(t) = θ − µG(t)− (1− η) [ξ1 J(t) + ξ2 I(t)] G(t), (56)

İ(t) = (1− η) [ξ1 J(t) + ξ2 I(t)] G(t)− $I(t)− βI(t)K(t), (57)

J̇(t) = ϑI(t)− cJ(t), (58)

K̇(t) = ρI(t)− εK(t)− hI(t)K(t). (59)

The basic reproduction number RW
0 for system (56)–(59) is given by

RW
0 (η) = (1− η)

θ (ϑξ1 + cξ2)

$cµ
.

Since 0 < ν < 1, then

RL
0 (η) = (1− η)

θ (dν + b) (ϑξ1 + cξ2)

$cµ(b + d)
< (1− η)

θ (ϑξ1 + cξ2)

$cµ
= RW

0 (η).

Clearly, the presence of latently infected cells deceases the basic reproduction number of the
system. Now, we aim to determine the minimum drug efficacy that can clear the viruses from the body.
We determine ηL

crit and ηW
crit that make

ηL
crit = max

{
0,
RL

0 (0)− 1
RL

0 (0)

}
,

ηW
crit = max

{
0,
RW

0 (0)− 1
RW

0 (0)

}
.
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Clearly, RL
0 (0) < RW

0 (0) and thus ηL
crit < ηW

crit. Therefore, the drug efficacy necessary to steer the
states of the system to the disease-free steady state is actually less for system (51)–(55) than that for
system (56)–(59).
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