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A B S T R A C T

Adult survivors of pediatric brain tumors exhibit deficits in executive functioning. Given that brain tumors and
medical treatments for brain tumors result in disruptions to white matter, a network analysis was used to explore
the topological properties of white matter networks. This study used diffusion tensor imaging and deterministic
tractography in 38 adult survivors of pediatric brain tumors (mean age in years= 23.11 (SD=4.96), 54%
female, mean years post diagnosis= 14.09 (SD=6.19)) and 38 healthy peers matched by age, gender, hand-
edness, and socioeconomic status. Nodes were defined using the Automated Anatomical Labeling (AAL) par-
cellation scheme, and edges were defined as the mean fractional anisotropy of streamlines that connected each
node pair. Global efficiency and average clustering coefficient were reduced in survivors compared to healthy
peers with preferential impact to hub regions. Global efficiency mediated differences in cognitive flexibility
between survivors and healthy peers, as well as the relationship between cumulative neurological risk and
cognitive flexibility. These results suggest that adult survivors of pediatric brain tumors, on average one and a
half decades post brain tumor diagnosis and treatment, exhibit altered white matter topology in the form of
suboptimal integration and segregation of large scale networks, and that disrupted topology may underlie ex-
ecutive functioning impairments. Network based studies provided important topographic insights on network
organization in long-term survivors of pediatric brain tumor.

1. Introduction

Cancers of the brain and central nervous system are the second most
prevalent type of cancer in children (Ostrom et al., 2017). Medical and
technological advances in cancer treatments have resulted in improved
survival rates for children with brain tumors, and research has shifted
to emphasize quality of survival, identify psychosocial and neurobio-
logical factors that predict poor outcomes, identify protective factors
that promote resilience, and develop effective interventions to address
the problems that arise as survivors age and reach adulthood (Lassaletta
et al., 2015; Mulhern et al., 2004; Murdaugh et al., 2017).

Research on long-term outcomes of adult survivors of pediatric
brain tumors has demonstrated significant detrimental cognitive effects
especially in the domain of executive functioning (Edelstein et al.,

2011; Hocking et al., 2015; McCurdy et al., 2016a; McCurdy et al.,
2016b; Spiegler et al., 2004; Wolfe et al., 2012). Studies have also found
that deficits in executive functioning underlie deficits in social and
adaptive functioning (King et al., 2015a; Wolfe et al., 2013). As a po-
tentially modifiable domain with consequences to adaptive skills and
functional outcomes, executive functioning is an important area of in-
quiry in the study of long term outcomes in adult survivors of pediatric
brain tumors.

Neuroimaging studies in survivors of pediatric brain tumor have
found reduced white matter integrity in specific tracts (Aukema et al.,
2009; King et al., 2015b; Mabbott et al., 2006; Palmer et al., 2012;
Riggs et al., 2014; Rueckriegel et al., 2010; Smith et al., 2014) and that
the integrity of these tracts is associated with performance on neuro-
cognitive measures of processing speed, motor speed, full scale IQ, fine
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motor function, working memory, memory, and executive functioning
(Aukema et al., 2009; Brinkman et al., 2012; Law et al., 2011; Palmer
et al., 2012; Riggs et al., 2014; Rueckriegel et al., 2015). These studies
suggest that structural changes to white matter may represent the
neurobiological underpinnings of outcomes. These structural neuroi-
maging studies in survivors so far have used a univariate framework to
identify regions of the brain that differ between survivors and healthy
peers, based on the assumption that discrete regions of the brain are
responsible for specific functions.

The brain, however, functions as interconnected networks of neu-
ronal information from distributed areas. Knowledge on such complex
networks cannot be achieved solely by studying individual components
of the networks, as was done in prior literature. Frameworks that em-
phasize connectivity between brain regions can provide complementary
information to traditional neuroimaging techniques, especially when
examining higher-order behaviors such as executive functions that de-
pend on the integration of information from spatially distributed re-
gions of the brain. Complex network analysis, such as graph theory,
emphasizes how each brain region is connected to others as a system
and how ensembles of brain regions work together in a unified network
(Rubinov and Sporns, 2010; Sporns, 2012). In graph theory, graphs are
composed of nodes and edges; when applied to analyze neuroimaging
data, each node is defined as a specific region of the brain, while edges
are defined as the existence or strength of the connections between each
node to every other node. Graph theory is then used to obtain quanti-
tative metrics describing system level properties. These metrics can be
divided into measures of segregation (i.e., the extent to which in-
formation is processed locally within a small region), measures of in-
tegration (i.e., the extent to which information is processed across
spatially distributed regions), and measures of nodal importance via
centrality (i.e., properties of nodes that describes its importance within
the network based on the spatial locations of the nodes) or vulnerability
(i.e., properties of nodes that describes its importance within the net-
work based on perturbations).

Research studies of clinical populations of patients with stroke,
schizophrenia, Alzheimer's Disease, traumatic brain injury (TBI), epi-
lepsy, and multiple sclerosis have primarily found alterations in mea-
sures of segregation, integration, centrality, and disruptions in small-
world properties in chronic stages of injury (Aerts et al., 2016; Bullmore
and Sporns, 2009; Crofts et al., 2011; Reijmer et al., 2015; Tang et al.,
2015). Moreover, clinical presentations and the degree of executive
functioning impairment in various disorders are related to the integrity
of brain networks (Bullmore and Sporns, 2009; Caeyenberghs et al.,
2014; Panigrahy et al., 2015; Yuan et al., 2015). Disruptions to hub
regions also are an important feature of many clinical conditions. Hubs,
which have exceptionally high connections to other nodes in the net-
work, are a feature of healthy human brains and are essential for in-
tegrative processing (Hagmann et al., 2008; Li et al., 2013; van den
Heuvel and Sporns, 2011; van Straaten and Stam, 2013). Disruption of
hub regions have been demonstrated in network studies of clinical
populations and may represent a final common pathway in the disease
process of all neurological disorders (van den Heuvel and Sporns,
2013). In chronic stages of injury, these regions often show significant
decreases in measures of centrality across a variety of different brain
disorders (Crossley et al., 2014). Further, the level of disruption in hub
regions are related to behavioral outcomes (Caeyenberghs et al., 2012;
Fagerholm et al., 2015; Kim et al., 2014; Yuan et al., 2015). Taken
together, these results suggest that graph theory metrics are sensitive to
structural changes that occur as a result of neurological insult, and that
they demonstrate concurrent validity with behavioral measures.

Graph theory methods have yet to be used to examine white matter
network properties of survivors of childhood brain tumors but are well
suited for exploring this population, as there are a multitude of disease
and treatment factors that result in white matter disruption (de Ruiter
et al., 2013; Edelstein et al., 2011; Gragert and Ris, 2011; Ris and Noll,
1994). For instance, radiation treatment results in dose-dependent and

progressive white matter damage (Connor et al., 2016). Chemotherapy
is associated with reductions in white matter volume (Ren et al., 2017).
Hydrocephalus, a common neurological condition in brain tumor sur-
vivors, results in increased intraventricular pressure, damage to peri-
ventricular white matter and possible axonal degeneration
(Krishnamurthy and Li, 2014). Surgical resection of the tumor beyond
the tumor margin as often required causes a loss of brain tissue in areas
of the brain that are in the same neural pathway but distal to the site of
the lesion (Ailion et al., 2016). Tractography studies in adult patients
have found displacement and tumor infiltration in white matter tracts
as a result of fast-growing tumors (Nilsson et al., 2008; Wei et al., 2014)
with persistent effects of thinning, interruptions and reductions in the
tract size after surgery (Lazar et al., 2005). As these treatment and brain
tumor related factors contribute to white matter disruption, and since
these white matter disruptions are hypothesized to underpin cognitive
and functional impairments, a network analysis framework is particu-
larly apt when studying adult survivors of childhood brain tumors.

Two aims were proposed to examine white matter network prop-
erties of adult survivors of pediatric brain tumors. The first aim was to
establish whether white matter topology is altered in adult survivors
compared to healthy controls. It was hypothesized that measures of
integration and measures of segregation would be lower in survivors
when compared to controls. It was also hypothesized that hub regions
would exhibit reductions in measures of centrality and would be pre-
ferentially impacted. Finally, it was hypothesized that risk factors such
as younger age at diagnosis, longer time since diagnosis, and higher
levels of neurological/treatment risk would be associated with more
changes to measures of integration, segregation and hub centrality.
These variables have been identified as risk factors for worse cognitive
outcomes in the domains of intelligence, executive functions, attention,
and working memory (Briere et al., 2008; Edelstein et al., 2011;
Spiegler et al., 2004). Notably, these risk factors are also related to
lower overall white matter integrity and lower white matter integrity in
specific tracts (King et al., 2015b; Law et al., 2011; Reddick et al.,
2014). The second aim was to establish whether white matter network
topology related to behavioral performance on executive functioning
(specifically cognitive flexibility) measures. Research supports that
executive functioning relies on frontal-subcortical systems, rather than
any one region (Bonelli and Cummings, 2007; Koziol and Budding,
2009; Koziol and Lutz, 2013; Mega and Cummings, 1994). Its reliance
on the integrity of the system makes using graph theory approaches
particularly relevant when relating to behavior. It was hypothesized
that lower levels of integration, segregation, and higher levels of overall
hub disruption would be correlated with worse cognitive flexibility. It
was also hypothesized that differences in cognitive flexibility between
survivors and controls would be mediated by global network properties.
Finally, it was hypothesized that the relationship between cumulative
neurological risk factors and cognitive flexibility would be mediated by
topological properties of the white matter network.

2. Methods

2.1. Parent study and procedures

Participants for this study were recruited as a part of a parent study
investigating long-term functional outcomes in survivors. The parent
study was reviewed and approved by the local institutional review
board, and all participants provided written informed consent.
Participants were recruited through opt-in letters and newsletters and
screened over the phone to ensure they were over the age of 17 and at
least 4.5 years post diagnosis. Participants were excluded if English was
not their first language, if they met criteria for pervasive developmental
disorders, if they were diagnosed with neurofibromatosis, or if they had
experienced any other significant neurological insult unrelated to the
brain tumor. Eighty-eight survivors met initial criteria for the study and
were invited to participate.
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On the first day, participants were interviewed to obtain medical
history. Written permission was obtained to access medical records to
corroborate diagnosis and treatment. Participants underwent a com-
prehensive neuropsychological evaluation and were provided breaks
throughout the day to minimize fatigue. Finally, they were screened to
determine whether they could safely participate in the neuroimaging
part of the study on a different day. Fifty-one individuals participated in
the imaging part of the study, while the other 37 survivors either could
not participate due to MRI safety exclusions, indicated that they were
not interested, or were lost to follow-up. Manual inspection of the raw
diffusion data indicated that three survivors exhibited excessive (i.e.,
visible and prolonged) head motion across imaging slices and ten had
imaging artifacts from surgical implants that led to high levels of signal
loss and image distortion. The remaining 38 survivors with good quality
of diffusion imaging data represented the sample for this study.

Healthy adults were recruited to serve as the comparison group for
analyses through the research pool of Department of Psychology at
Georgia State University as well as fliers and advertisements in the
community. Participants completed screening for MRI safety and were
administered the SCID-II (First et al., 1997) to ensure that they did not
currently meet criteria for psychological or substance abuse disorders.
A total of 58 healthy controls were scanned, of which three were ex-
cluded due to severe head motion. Of the remaining 55 control parti-
cipants, 38 participants were selected to comprise the control sample
with age, gender and handedness matched with those in the survivor
group. All controls had no history of a neurological illness. Control
participants were administered the same comprehensive neuropsycho-
logical battery on the first visit and completed the one-hour imaging
portion of the study on a different day following the same procedure
used in controls. The average interval between the evaluation and the
MRI scan for the entire sample was 90 days. The average interval for
survivors was 86 days (SD=195), while the average interval for the
controls was 93 days (SD=179). The two groups did not significantly
differ in the average amount of time from the evaluation to the MRI
scan, t(74)= 0.16, p= .88.

Survivors were paid $100 for the time and travel associated with
partaking in the neuropsychological and imaging part of the study.
Community participants were paid the same amount, while participants
recruited from the psychology department pool received class credit for
the neuropsychological testing part of the study and $50 for the ima-
ging part of the study.

2.2. Participants

Demographic and treatment characteristics of the samples are de-
scribed in Table 1. Mean age, gender, and socioeconomic status were
not significantly different between the two groups (p > .05). The
control group had higher levels of education, higher IQs, and were more
ethnically diverse than the survivor group.

2.3. Measures

2.3.1. Measure of cognitive flexibility
The Color Word Interference Test from the DKEFS was used as the

measure of cognitive flexibility. This measure consists of four different
trials that differentiate between word reading, color naming, inhibitory
control and cognitive flexibility (Delis et al., 2001). The participants
were asked to name the colors of square blocks on a page (Trial 1, Color
Naming), read color words that are printed in black (Trial 2, Word
Reading), name the color of the ink that the word is printed in (Trial 3,
Inhibition), and to switch between naming the color of the ink that the
word is printed in and read the actual word based on a rule (Trial 4,
Inhibition/Switching). Each trial was preceded by a sample trial to
ensure that the examinee understood instructions. Trial 4 measures
cognitive flexibility, as the examinee is required to switch between
inhibitory and non-inhibitory responses. The amount of time that it

took to complete the task was transformed into z-scores based on nor-
mative data. Notably, two other cognitive flexibility measures (i.e.,
Number-Letter Sequencing Trial of the Trail Making Test, Category

Table 1
Demographic, diagnostic and treatment characteristics.

Controls
n=38

Survivors
n= 38

Group Difference
Statistic

Demographic information
Females (n, %) 21 (55%) 21 (55%) χ2(1, N=76)= 0,

p=1.0
Ethnicity (n, %) χ2(2,

N=76)= 10.18,
p < .01⁎

Caucasian 13 (34%) 29 (76%)
African-American 14 (37%) 4 (11%)
Latino/a 4 (11%) 2 (5%)
Asian 5 (13%) 1 (3%)
Mixed 2 (5%) 2 (5%)

Socioeconomic statusa χ2 (1,
N=76)= 3.45,
p=.06

High 21 (55%) 28 (74%)
Middle/low 17 (45%) 9 (24%)

Mean age at examination
(SD)

22.54 (4.83) 23.11 (4.96) t(74)= 0.50, p= .62

Mean years of education
(SD)

14.47 (1.98) 13.39 (2.39) t(74)= 2.14, p= .04

IQ scaled score (SD) 111 (9) 98 (18) t(74)= 3.33, p < .01

Diagnostic information
Mean age at diagnosis

(SD)
9.03 (5.03)

Mean years since diagnosis
(SD)

14.09 (6.19)

Range (years) 4.5 to 30
Tumor type (n, %)
Medulloblastoma 12 (32%)
Low-grade astrocytoma 13 (34%)
High-grade astrocytoma 1 (3%)
Craniopharyngioma 2 (5%)
Ganglioglioma 3 (8%)
Ependymoma 2 (5%)
Otherb 5 (13%)

Tumor location (n, %)
Posterior fossa 26 (68%)
Temporal lobe 4 (11%)
Occipital lobe 1 (3%)
Fronto-parietal lobe 2 (5%)
Temporal-parietal lobe 1 (3%)
Hypothalamus 1 (3%)
Medulla 1 (3%)
Third ventricle/sellar/
suprasellar

2 (5%)

Treatment information
Hydrocephalus (n, %) 25 (66%)
Radiation treatment (n, %) 20 (53%)
Chemotherapy (n, %) 15 (40%)
Endocrine disorder (n, %) 20 (53%)
Neurosurgery (n, %) 37 (97%)
Total resection 26 (68%)
Subtotal resection 11 (29%)

Seizure medications 3 (8%)

Note. Intelligence was measured by the first version of the Wechsler
Abbreviated Scale of Intelligence (Wechsler, 1999).

⁎ Given the small cell sizes in some of the ethnicity categories, the chi square
test was carried out using three levels for the Ethnicity variable: Caucasian,
African-American and Other (the combined participants in the Latino/a, Asian,
and Mixed categories).

a SES=Current socioeconomic status was calculated using the Hollingshead
Four factor Index of Social Status (Hollingshead, 1975). High SES consisted of
scores 1 and 2 on the scale, while Middle/Low SES consisted of scores 3, 4, and
5 on the scale.

b 1 Oligodendroglioma, 1 choroid plexus papilloma, 2 PNET Not Otherwise
Specified, 1 Mixed astrocytoma/ganglioglioma.
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Switching trial of the Verbal Fluency Test) were given as part of the
comprehensive neuropsychological battery. The Inhibition/Switching
trial from the Color Word Inference Test was chosen to represent cog-
nitive flexibility in this study based on its superior psychometric
properties out of all three measures. The test-retest correlation for the
Inhibition/Switching trial of the Color-Word Interference Test is in the
moderate range (r=0.65), whereas the test-retest correlation for the
other two subtests are substantially weaker (r=0.38 for the Number-
Letter Sequencing trial of the Trail Making Test, r=0.36 for the Ca-
tegory Switching trial of the Verbal Fluency test). In addition, the in-
ternal consistency of the Inhibition/Switching trial is moderate to high
across age groups (range=0.52 to 0.8) (Delis et al., 2001).

2.3.2. Measure of cumulative treatment and neurological risk factors
The Neurological Predictor Scale (NPS) incorporates different tumor

treatments and neurological risk factors into one score. This measure is
used to examine how cumulative risk factors affect outcomes particu-
larly in heterogeneous samples in which survivors vary with respect to
treatments and other neurological risk factors (Micklewright et al.,
2008). The NPS incorporates information about radiotherapy, che-
motherapy, neurosurgery treatments, and the presence of other
common neurological risk factors such as endocrine dysfunction, hy-
drocephalus, and seizure medications into a score that ranges from 0
(lowest level of risk) to 11 (highest level of risk) (Micklewright et al.,
2008). Studies have documented the reliability and validity in child-
hood survivors (McCurdy et al., 2016a; Micklewright et al., 2008;
Papazoglou et al., 2008). This measure is significantly associated with
intelligence, adaptive functioning, processing speed, working memory
and attention over and above each individual risk factor (King and Na,
2016; Taiwo et al., 2017).

2.4. Neuroimaging measurement

Neuroimaging data was acquired using a 3 T Siemens Trio MRI
scanner using a 12-channel head coil. Participants were outfitted with
protective earplugs to reduce scanner noise. Diffusion tensor imaging
data was acquired using a single-shot spin echo echo-planar imaging
(EPI) sequence with 30 gradient directions and the following acquisi-
tion parameters: repetition time (TR)= 7700ms; echo time
(TE)= 90ms; b= 1000 s/mm2; acquisition matrix= 204×204; voxel
size= 2.0×2.0× 2.0 mm, 60 contiguous axial slices and scan
time=8min 22 s. High-resolution T1-weighted structural images were
also acquired by collecting 176 contiguous sagittal slices using a three-
dimensional magnetization prepared rapid gradient echo imaging (3D
MPRAGE) sequence with the following parameters: repetition time
(TR)= 2250ms; inversion time (TI)= 850ms; echo time
(TE)= 3.98ms; field of view (FOV)=256mm; acquisition ma-
trix= 256×256; voxel size= 1.0× 1.0× 1.0mm; slice thick-
ness= 1.0 mm; flip angle= 9°. A field map was also recorded with a
gradient echo sequence with the parameters of repetition time
(TR)= 488ms; echo time 1 (TE 1)= 4.92ms; echo time 2 (TE
2)= 7.38ms; voxel size= 3.0×3.0× 3.0mm; field of view
(FOV)= 204mm; slice thickness= 3.0mm; 40 slices; flip angle= 60°
to measure field inhomogeneities and compensate for geometrical dis-
tortions that result from standard EPI sequences.

2.5. Procedure for image analysis

The pipeline for the study included a series of steps for preproces-
sing, tractography and network construction, detailed below and in
Fig. 1.

2.5.1. Preprocessing
Diffusion-weighted images underwent visual inspection for distor-

tion, artifact, or clear movement that may render the image unusable
for analysis. The images that passed inspection underwent correction

for eddy current distortion and subject movement using the “eddy” tool
from FSL (Andersson and Sotiropoulos, 2016) and were skull-stripped
using the Brain Extraction Tool (Smith, 2002). Results of skull-stripping
were manually assessed for quality for all participants.

The estimated translational and rotational displacement for each
frame (compared to the frame that immediately preceded it) was quan-
tified in the x, y, and z axes and summarized into one motion metric for
each individual as outlined in Power et al. (2012) with the following
empirical formula: FDi=|Δdix|+ |Δdiy|+ |Δdiz|+ |Δαi|+ |Δβi|+ |Δγi|,
where Δdix= d(i−1)x− dix (i.e., the level of translational displacement
from one frame to the previous frame in the x-axis) and so on for each of
the other parameters. Given that differing levels of motion between
groups can have a systematic impact on results, independent samples t-
tests and correlations were conducted to determine whether motion re-
presented a confound in the analyses. It was determined a priori to use
motion as a covariate for analyses that compared between the two groups
if the level of motion differed significantly between groups and corre-
lated significantly with the outcome measure.

The “epi_reg” tool was used to co-register diffusion images to T1-
weighted images while correcting for EPI distortions using the fieldmap
using the “fsl_prepare_fieldmap” tool in FSL (Jenkinson et al., 2002;
Jenkinson and Smith, 2001). The co-registered image was registered to
a high resolution standard space using the “auto_warp” command in
AFNI which pairs an affine transform (with 12 degrees of freedom) and
a volume-based nonlinear transform. The nonlinear registration in-
volved dividing the source image into shrinking and overlapping 3D
patches and warping the source image to the template image in incre-
mental steps based on Hermite cubic basic functions. Results of the
registration were manually assessed for quality for all participants. Fi-
nally, diffusion tensors were calculated and FA maps were generated
using FSL's “dtifit” tool.

2.5.2. Tractography and network construction
Deterministic tractography was performed using the Diffusion

Toolkit in PANDA, a MATLAB toolbox for pipeline processing of dif-
fusion MRI images (Wang et al., 2007). Whole brain tractography was
conducted by placing a seed in all white matter voxels and linearly
propagating lines from each seed based on the principal direction of the
tensor in that voxel. Each line was propagated by 0.25mm to the next
point in space, at which point the process was repeated. Each of these
streamlines was terminated when FA < 0.15 or when the angular de-
viation from paths was>55° to prevent streamlines from looping back.
All possible streamlines were constructed from each seed region. The
FA threshold of 0.15 was used as one of the termination criterion as
prior research has shown that survivors have overall lower white matter
integrity when compared to age-matched controls. The cingulum in the
cingulate gyrus part was visualized for several participants using
Trackvis based on ROI protocols from prior research (Wakana et al.,
2007) to ensure that the whole brain tractography followed the tra-
jectory of a long distance white matter tract (Supplementary).

The Automated Anatomical Labeling Atlas (AAL) was used as the
parcellation scheme to indicate nodes of interest for this study (Tzourio-
Mazoyer et al., 2002). The AAL atlas divides the brain into 47 cortical
volumes of interest in each hemisphere and 26 subcortical regions. Each
region in the atlas defined a node in the network analyses, while the
average FA between each node pair represented edges in the network
analysis. The AAL atlas was transformed to yield a parcellation scheme
in native diffusion space; parcellation results were manually assessed
for quality for each participant.

The transformed AAL atlas was used to filter the whole brain file to
only include streamlines that passed through each node pair.
Streamlines with two end-points within the masks of each given node
pair were considered to link the two nodes. The average FA of all the
voxels along streamlines linking two nodes were defined as the edge
weight value for that node pair. An adjacency matrix was constructed
where each node was represented in rows and columns and edge values
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were entered into cells of the intersecting row and column of the cor-
responding node pair. Finally, the connectivity matrix was averaged
across the entire sample and used to generate a binarized mask that
included all cells with non-zero values. This mask was then applied to
each individual (regardless of group membership), to control for the
differences due to the differences in connectivity patterns.

2.5.3. Network properties
The Brain Connectivity Toolbox was used to calculate the topolo-

gical properties of each network. Measures of properties of nodes and
properties representing network integration and segregation were cal-
culated. A short description of the relevant metrics is provided below;
more detailed mathematical definitions can be found in Rubinov and
Sporns (2010).

Density: Density is a basic characteristic of the network and de-
scribes how many existing edges there are in the network out of the
number of total possible edges. Methodological studies have de-
monstrated that other network metrics change as a result of density
rather than the topological properties of the network (van Straaten
and Stam, 2013). As such, proportional thresholding procedures
were used to account for differences in network densities before
further analyses. This procedure preserves the same proportion of
the strongest edge weights across all individuals.
Global efficiency: Global efficiency is a measure of integration that
reflects a characteristic of the overall network. It is calculated as the
inverse of the path length, which is defined as the average of the
fewest number of edges between all node pairs in the network. A
network with a high global efficiency suggests high capacity for
parallel processing and thus higher levels of global processing.

Fig. 1. Data processing pipeline. A. Diffusion tensors were calculated, FA maps were generated and deterministic tractography was conducted. B. Diffusion and T1
images were co-registered, and the co-registered image was registered to standard space. C. These transformation matrices were combined, inversed and applied to
the AAL to yield a parcellation in native diffusion space for each participant. D. A weighted adjacency matrix was created where edges were defined as the average FA
of all the voxels along streamlines linking two nodes. E. The Brain Connectivity Toolbox was used to calculate topological properties.
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Clustering coefficient: The clustering coefficient is a measure of
segregation that represents the probability that the neighbors of a
node are also connected to each other in the form of a triangle. A
node with high clustering coefficient suggests high levels of local
processing in that node. The clustering coefficient across all nodes is
averaged for an overall measure of segregation in the structural
network.
Modularity: Modularity is another measure of segregation and is
defined as the existence of communities that have more connections
with one another (i.e., high number of within-group links) than is
expected in a random model. High modularity values suggest the
existence of communities of nodes that have specialized functions.
Betweenness Centrality (BC): BC is a measure of centrality that is
calculated as the number of shortest paths that must pass through
that node. A node with a high BC suggests that the node is important
in the overall network and has a large influence on the transfer of
information throughout the overall network.
Hub Disruption Index (HDI): The hub disruption index was calcu-
lated from the BC values of all nodes in the network (Termenon
et al., 2016). The HDI is defined as the slope of the best-fit line
through a plot where the x-axis represents the average BC for each
node in the healthy control group, and the y axis represents the
difference between the BC for each node between the survivor and
the average healthy group. A high negative slope that passes
through the x-axis suggests significant and preferential damage to
the hubs.

2.6. Statistical analyses

Adjustments were made for multiple comparisons to reduce the
potential for Type I error. Since there were a priori hypotheses and
planned comparisons derived from prior existing literature for each
aim, each aim was considered a unique and independent question.
Accordingly, we limited our adjustment for multiple comparisons to the
number of graph theory metrics that were tested for each aim. As there
were four metrics analyzed for each hypothesis, results were considered
significant at a p-level equal to or below 0.0125 (i.e., p≤ .05/4). For
the first aim, independent two-sample t-tests were conducted on global
efficiency, average clustering coefficient, and modularity to test whe-
ther the two groups differed on these metrics. A one-sample t-test was
conducted on the average hub disruption values among the survivors to
test whether the index was significantly lower than zero. Bivariate
Pearson correlations were conducted to test whether younger age at
diagnosis, longer time since diagnosis and cumulative neurological risk
were associated with more disruptions to white matter network to-
pology. Pearson correlations were used as all variables used for corre-
lation analyses were collected on a continuous or interval scale, and
passed assumptions (i.e., no outliers, approximately normal distribu-
tion).

To test whether properties of the network related to cognitive
flexibility for the second aim, bivariate Pearson correlations were
conducted on metrics from the network with age-normed z-scores from
the Inhibition/Switching Trial of the Color-Word Interference Test. The
second hypothesis of aim 2 was that the differences in white matter
network topology would mediate the cognitive differences between
survivor and control groups. Given that prior literature has demon-
strated that the global efficiency of structural brain networks is most
robustly related to executive functions in several different clinical po-
pulations including patients with traumatic brain injury, adolescents
with congenital heart disease, and adults with mild cognitive impair-
ment, global efficiency was proposed to represent the mediator variable
in the mediation analyses (Berlot et al., 2016; Caeyenberghs et al.,
2014; Panigrahy et al., 2015).

The SPSS “indirect” script was used to test the mediation model
with group membership (survivors vs. controls) as the independent
variable, the Inhibition/Switching Trial performance as the dependent

variable, and the graph theory metric as the hypothesized mediator.
Given the relatively small sample size and the concerns of the Baron
and Kenny (1986) model and Sobel test for detecting effect sizes in
small samples, bootstrapping was employed with 10,000 samples
(Preacher and Hayes, 2004). An effect was deemed significant if the
resulting 95% confidence interval of the indirect effect of the in-
dependent variable on the dependent variable did not include zero. As
this approach can increase the likelihood of Type I error, a test of joint
significance was also conducted; if the paths of the regression between
the independent variable and the hypothesized mediator (path ‘a’), as
well as the regression between the hypothesized mediator and the de-
pendent variable (path ‘b’) were significant, then the indirect effect was
also considered statistically significant.

For the third hypothesis, the SPSS “indirect” script and test of joint
significance methods were used to test whether the relationship be-
tween the NPS score and cognitive flexibility would be mediated by the
global efficiency in survivors.

3. Results

3.1. Motion

The mean average displacement for each frame was 0.60mm
(SD=0.16) for controls and 0.65mm (SD=0.16) for survivors.
Average displacement did not differ significantly between the two
groups, t(74)= 1.25, p= .22, d=0.29. Motion did not correlate sig-
nificantly with any of the graph theory metrics or cognitive flexibility
performance (p > .05, see Supplemental). Given that motion did not
vary between the two groups and did not relate to the dependent
variables in the study, motion was not considered a confound and was
not used as a covariate for analyses.

3.2. Density

The means and standard deviations of the raw, unmasked and mean
connectivity matrices are presented in Fig. 2.

Two-sample t-tests were conducted to determine whether network
density differed between the two groups. Average density in the healthy
controls (M=0.29, SD=0.03) was significantly higher than the
average density in survivors (M=0.27, SD=0.03), t(74)= 2.44,
p= .02, d=0.7. Given that differences in density can drive differences
in graph theory metrics that may not reflect differences in topology,
proportional thresholding was used based on the average density across
the entire sample (density= 0.28), where the strongest 28% of the
connections in each network were preserved for both groups. To test
whether proportional thresholding may have unduly affected results,
the same analyses were run on networks without any thresholding and
with stricter proportional thresholding (density= 0.20); see
Supplemental for results from different thresholding schemes. As the
results did not appreciably change, results presented are based on
proportional thresholding using the average density across the sample.

3.3. Differences in graph theory metrics between groups

Consistent with hypotheses, global efficiency and average clustering
coefficient were higher in controls compared to survivors (see Table 2).
Modularity did not differ significantly between the two groups. The HDI
was significantly different from zero, which was also consistent with
hypotheses, and indicated preferential damage to hub regions. A gra-
phical representation of the mean BC values for controls and survivors,
as well as the graphs used to derive the hub disruption index are re-
presented in Fig. 3. Survivors showed lower BC values in regions that
are hubs for healthy controls, indicating compromise of regions that are
of high importance to brain networks. Further, the negative slope in
Fig. 3B confirms that there are larger differences in measures of cen-
trality in hub regions as compared to other nodes.
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3.4. Correlations with risk factors and cognitive flexibility

Higher scores on the NPS were associated with lower global effi-
ciency and lower average clustering coefficient (Table 3, Fig. 4) after
correcting for multiple comparisons.

After Bonferroni corrections for multiple comparisons, global effi-
ciency was significantly correlated with cognitive flexibility, as mea-
sured by performance on the Inhibition/Switching trial of the Color
Word Interference Test, r(74)= 0.40, p < .05. Average clustering
coefficient was also significantly associated with cognitive flexibility, r
(74)= 0.35, p < .05 (corrected). Modularity and HDI were not sta-
tistically correlated with cognitive flexibility.

We hypothesized that differences in brain network properties would
mediate the difference in cognitive flexibility between survivor and
control groups. Given that global efficiency was most correlated with
scores on the Inhibition/Switching Trial of the Color-Word Interference
Test and had the highest effect sizes for group differences, global effi-
ciency was used as the mediator in the model. The confidence interval
for the indirect path (path c’) did not include 0 and both paths a and b
in the model were significant, indicating that global efficiency mediated

the differences in cognitive flexibility performance between the two
groups (Fig. 5). Notably, the direct effect of the independent variable
group membership on cognitive flexibility was not statistically sig-
nificant. Although traditional approaches to mediation analyses require
a significant direct effect of the independent variable on the outcome
variable to test for mediation, more modern statistical perspectives
posit that significant indirect effects through mediators do not depend
on the presence of statistically significant direct effects, especially
within the context of a theoretically meaningful model (Hayes, 2009).

Similarly, the confidence interval for the indirect effect of NPS score
on cognitive flexibility (path c’) did not include zero, and both paths
and b of the model were statistically significant (Fig. 6). These results
suggest that the association between cumulative neurological risk and
cognitive flexibility was explained by the global efficiency of the
structural network.

4. Discussion

The results of this study indicated that global efficiency and average
clustering coefficient of white matter networks were reduced in

Fig. 2. A. Mean and standard deviations of the raw weighted connectivity matrices in control (left) and survivor (right) groups. B. Binarized matrix based on the
combined matrices across the entire sample (non-zero mean FAs are indicated in white) C. Scatterplot of mean FA in controls and mean FA in survivors for each edge.
The black line indicates a perfect linear correlation between mean FA in controls and survivors for each edge; dots above the black line indicate connections in which
controls have higher FAs than survivors. Controls have higher FAs than survivors in 71% of the edges at connections of medium to high FAs, defined as FA > 0.3
(arrows in the center and upper right of the figure), whereas controls have higher FAs than survivors in 56% of the edges at connections of low FA.

Table 2
Graph theory metrics in survivors and healthy controls.

Measure Controls (n=38) Survivors (n= 38) df t p Cohen's d

M SD M SD

Global efficiency 0.31 0.014 0.29 0.019 74 3.67 0.000 1.20
Avg. clustering coefficient 0.27 0.013 0.26 0.015 74 2.82 0.006 0.71
Modularity 0.25 0.04 0.26 0.05 74 −0.30 0.762 0.22
Hub disruption index −0.07 0.14 37 −3.18 0.003 0.50
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Fig. 3. A. Betweenness centrality (BC) bar plots derived from the control (top) and survivors (bottom) groups. The order for both maps was based on the BC values in
controls. The solid vertical bars and error bars represent group BC means and standard deviations, respectively. The solid horizontal lines represent the mean BC
across all brain regions in each group, while the dashed horizontal lines correspond to the mean BC plus one standard deviation. The light grey bars in both maps
represent regions where BC is higher than the mean plus one standard deviation across all brain regions. B. Graph of the best fit lines for each survivor, where the x-
axis represents the mean BC of nodes in the control group, and the y-axis represents the subtraction of the mean BC in the control group from the BC in each survivor
for each node. The hub disruption index for each survivor is equal to the slope of the best fit line; a negative slope indicates preferential damage to hub regions.
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survivors of pediatric brain tumors compared to healthy peers matched
by age, gender, handedness, and socioeconomic status. There was also
evidence for preferential impact to hub regions. Further, lower global
efficiency and lower average clustering coefficient were associated with
higher cumulative neurological risk and poorer performance on beha-
vioral measures of cognitive flexibility. Indeed, global efficiency
mediated differences in cognitive flexibility performance between sur-
vivors and healthy peers, as well as the relationship between cumula-
tive neurological risk and cognitive flexibility performance. These re-
sults suggest that structural networks are altered in adult survivors of
pediatric brain tumors and that topological features of these networks
explain differences in cognitive flexibility performance. These results
are highly consistent with findings from studies conducted in other
clinical groups such as TBI, stroke, epilepsy, and congenital heart dis-
ease, which have shown disruptions in measures of segregation, in-
tegration, and centrality when compared to healthy adults. Prior studies
also have consistently shown that metrics describing the integrity of the
network significantly relate to behavior and the degree of impairment.

Global efficiency, a measure of global integration, is hypothesized to
reflect the capacity of networks to allow efficient processing of in-
formation from distributed regions of the brain. The clustering coeffi-
cient is a measure of segregation that represents high levels of local
processing. Brain networks of healthy individuals are associated with a
balance of segregation and integration in the brain so that information
can be efficiently transferred across and between brain networks while
still maintaining low biological costs. Studies of healthy developing
brains indicate that brain networks undergo highly dynamic changes
from infanthood to late adolescence; these networks change from

relatively random configurations to networks that optimize the balance
between information segregation and integration. These changes sup-
port cognitive and behavioral developments (Baum et al., 2017; Cao
et al., 2017; Chen et al., 2013). The rapid changes occurring in brain
networks during development also render the brain more vulnerable to
neurological insults. Survivors of pediatric brain tumors experience
disruptions during these critical timeframes when structural and func-
tional networks are actively being optimized for efficiency. The results
of this study suggest that these network alterations persist when sur-
vivors have grown into adulthood. These alterations also may represent
the neural underpinnings of behavioral outcomes, as reduced global
efficiency and reduced average clustering coefficients are associated
with poorer cognitive flexibility.

Inconsistent with hypotheses, modularity of the structural networks
was not different between groups and was not significantly related to
measures of cognitive flexibility. Lack of expected findings may be due
to the parcellation scheme. As the AAL's nodes are defined by anato-
mical boundaries, it is possible that nodes contain subregions that are
heterogeneous with regard to function and cytoarchitecture and thus
the parcellation may not have the spatial resolution to be sensitive to
differences in modularity. Alternatively, recovery may prioritize mod-
ularity of structural networks over other types of global and local
connectivity. Computational modeling studies that incorporate plasti-
city into their network recovery models have reported that modularity
recovers over time after a lesion in the network (Stam et al., 2010). The
cross-sectional design of this study precludes examining how mod-
ularity changes over time on an individual level. As such, longitudinal
studies will be crucial to establish whether acute and subacute stages of
injury are associated with changes in modularity and whether mod-
ularity recovers as a function of time. It is also possible that differences
in modularity might exist in functional networks during the chronic
phase of injury that are not reflected in the structural measures used for
this study. Although functional networks are constrained by underlying
structural architecture, functional networks also exhibit more flexibility
and can adapt quickly to environmental demands by reorganizing, co-
ordinating and mobilizing different regions across the brain (Fischer
et al., 2014). Multi-modal network approaches will be helpful in un-
derstanding how the brain recovers over time and how these changes
contribute to behavior in adult survivors of pediatric brain tumors.

Our results also showed that survivors had lower BC values in re-
gions that are hubs for healthy controls, indicating compromise of re-
gions that are of high importance to brain networks. Further, the HDI
was significantly different from zero, further confirming that there were
larger differences in measures of centrality in hub regions as compared
to other nodes. This is consistent with prior literature indicating

Table 3
Correlations between risk factors and graph theory metrics (n= 38).

Measure Graph theory metric

Global
efficiency

Avg.
clustering
coefficient

Modularity Hub
disruption
index

Age of survivor at
diagnosis

−0.029 0.06 0.11 0.12

Time between
diagnosis and
exam

−0.22 −0.27 0.008 −0.13

Neurological
Predictor Scale

−0.61* −0.65* 0.23 −0.08

Note. *p < .0125 (significant after Bonferroni corrections for multiple com-
parisons).

Fig. 4. Scatterplots of correlations between NPS Score and graph theory metrics in survivors.
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preferential effects to hub regions across a variety of brain disorders
(Crossley et al., 2014). Indeed, it should be noted that preferential ef-
fects to hub regions were found in a sample of survivors who were
heterogeneous with regard to tumor type and location. This suggests
that there may be a level of specificity to the regions in the brain that
are most at risk across long term survivors of varying types and loca-
tions of brain tumors.

It is important to interpret the findings of this study within the
context of the methods used, as graph theory approaches to study the
brain are still in development and the biological significance of these
metrics is still under investigation (He and Evans, 2010). The lack of a
gold standard for processing or conducting complex network analyses
in clinical populations have potential implications for findings, as
methodological choices on parcellation schemes, edge definitions and
thresholding procedures can significantly impact the network metrics
under investigation (van Wijk et al., 2010). Given the lack of a gold
standard, this study used similar methods, parcellation schemes, edge
definitions, and thresholding procedures as other research studies in-
vestigating structural network properties in clinical populations. No-
tably, research has shown that graphs with different densities are dif-
ficult to compare directly because density differences in networks can
result in significant differences in graph theory metrics even when
networks share the same topological organization. This makes it chal-
lenging to compare networks between clinical groups and healthy
same-aged peers when density may naturally change as the function of
the disorder itself. There are different methods that have been proposed
to deal with comparing networks of different densities but there is no
one satisfactory way to control for this issue completely, due to the fact
that modeling the exact impact of density on different graph theory
metrics depends on knowing the underlying topology a priori, which is
not possible in empirical studies of clinical populations (van Wijk et al.,
2010). For instance, some studies use density as a covariate to test
whether graph theory metrics remain different between groups after
removing the variance associated with density. This approach, how-
ever, does not fully control for the issue when density does not share
linear relationships with graph theory metrics (Caeyenberghs et al.,
2012). Proportional thresholding, which was the method used in this
study, uses a cutoff such that the same percentage of edges are enforced
for everyone's networks. This method, however, may lead to mod-
ifications of the network by ignoring significant connections in controls
or by enforcing weaker connections in the clinical group (Drakesmith

et al., 2015). In addition, given that controls had higher densities, using
any cutoff automatically affects the control group more than the sur-
vivor group. To test whether proportional thresholding may have un-
duly affected the results, the same analyses were run on networks
without any thresholding. The results were very similar (see Supple-
mental); global efficiency and clustering coefficients remained lower in
survivors compared to controls, were significantly correlated with
cognitive flexibility and cumulative risk, and mediated the difference in
cognitive flexibility performance between the two groups. The same
sets of analyses were also conducted on a stricter thresholding level
(density= 0.2). Group differences in global efficiency remained, and
both the average clustering coefficient and global efficiency correlated
significantly with cognitive flexibility and cumulative neurological risk.
One notable difference in the analyses with the strictest thresholding
procedure was that the clustering coefficient was no longer significantly
different due to a larger decrease in clustering coefficient values in
controls compared to survivors. This possibly suggests that the
“weaker” edges removed due to the strict thresholding procedure
contributes more heavily to a clustered and segregated network in
healthy individuals. Notably, much of the research on the topological
features of brains in healthy and clinical groups have largely assumed
that “stronger connections are better” and have concentrated their ef-
forts on understanding the nature of these strongest connections by
using thresholding procedures across that preserve the strongest con-
nections and remove the weakest connections when examining net-
works. However, recent research has recognized the importance of
these weaker connections in explaining individual variability and
symptom presentation in clinical disorders (Bassett et al., 2012;
Santarnecchi et al., 2014). These additional analyses suggest that the
results of this study are not fully attributable to densities of networks
but does warrant continued investigation of the impact of density on
topological features of networks in adult survivors of pediatric brain
tumor.

The findings from this study should be considered within the con-
text of the limitations. First, both survivor and control groups were self-
selected, which may have skewed the sample to higher functioning
survivors who may have had the time and means to transport them-
selves to the study site or lower functioning survivors with more cog-
nitive concerns. Due to these factors, selection bias may limit the gen-
eralizability of the conclusions. In addition, the control group was more
ethnically diverse than the survivor group. Post hoc analyses, however,

Fig. 5. Global efficiency mediates cognitive flexibility differences between groups.

Fig. 6. Global efficiency mediates the relationship between NPS and cognitive flexibility in survivors.
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confirmed that group differences in topology remained after adjusting
for ethnicity. Furthermore, the correlations between the network
characteristics and neurological risk, as well as cognitive flexibility,
remained after adjusting for ethnicity. Related to neuroimaging meth-
odology, there are established limitations with the diffusion weighted
imaging parameters and deterministic tractography methods used in
this study. Research has established that false positive and false nega-
tive streamlines can occur due to signal noise, partial volume effects
and complex fiber architecture within voxels (Jbabdi et al., 2015) and
that these methods can lead to bias in FA estimates especially in long
white matter tracts (Oouchi et al., 2007). Future studies will need to
employ more advanced diffusion imaging models, such as high angular
resolution diffusion imaging or diffusion spectrum magnetic resonance
imaging to more accurately track complex fiber architecture in regions
where more complex fiber architectures exist.

There are also several strengths that are worthy of note. Like re-
search studies of other clinical populations, the sample studied in this
group is heterogeneous with regard to tumor type, tumor location, and
level of neurological risk. This heterogeneity allowed for increased
variance to explore the relationship between variables of interest and
functional outcomes. Nevertheless, to test whether the heterogeneity of
the study sample may have obscured or artificially created a relation-
ship between variables, a subgroup analysis was conducted in the
subsample of survivors with tumors located in the posterior fossa
(n=26, see Supplemental for results of analyses). The findings from
the subsample were highly consistent with the findings from the entire
group; global efficiency and average clustering coefficient of white
matter networks were reduced in survivors compared to healthy con-
trols, with preferential impact to hub regions. Further, lower global
efficiency continued to be associated with higher cumulative neurolo-
gical risk and poorer performance on behavioral measures of cognitive
flexibility. This subgroup analysis suggests that the findings from the
study are not strictly due to the heterogeneity in tumor locations and
further strengthens the conclusions drawn from the study.

Other strengths of the study include a respectable sample size of an
understudied population, as well as the use of an age- and gender-
matched control group that allowed for comparisons between the
clinical group and healthy same aged peers and to determine whether
structural topology was altered in the survivor group and underpinned
differences in cognitive performance between groups.

To our knowledge, this is the first study to use graph theory to ex-
plore the topological properties of white matter networks in survivors
of brain tumors. Understanding structural topology lays the ground-
work for exploring functional network organization, as functional net-
works are shaped and constrained to a certain extent by the underlying
structure (Cao et al., 2017). Understanding the flexibility and diversity
of functional network organizations within the constraints of anato-
mical connectivity can provide important insights into the nature of
brain repair, recovery, and function following a neurological insult.
Metrics derived from structural and functional brain networks have
been used as a biomarker in clinical groups such as patients with
temporal lobe epilepsy to predict patients who will have better out-
comes after surgery (Bonilha et al., 2015; Ji et al., 2015). Studies of this
kind suggest that graph theory may even have some utility in clinical
settings to guide neurosurgical planning to avoid neurological deficit,
predict the efficacy of treatments, and identify patients who are at risk
for poor outcomes (Castellanos et al., 2013; Petrella, 2011). As this
study was cross sectional and thus could not provide information about
causation, or about changes that occur over time, longitudinal and
prospective studies will be crucial to establish time frames and causes of
change. For instance, to demonstrate that structural network topology
truly plays a causative role in explaining cognitive flexibility perfor-
mance outcomes, it will be important to establish that structural net-
work changes precede behavioral changes. Although longitudinal work
is necessary in larger samples to establish that graph theory metrics
have clinical value in survivors, the findings from this study suggest the

potential clinical relevance of understanding white matter network
properties of the brain. The current study demonstrated the efficacy of
graph theory when examining cognitive flexibility and white matter
networks in adult survivors of childhood brain tumors and highlighted
the importance of future longitudinal studies to characterize long-term
outcomes in personalized medicine.
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