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Aim:Whether accelerated aging, reflected by sirtuin 1 (SIRT1) expression, is implicated in

bronchiectasis remains largely unknown. We sought to determine the patterns of SIRT1

and other aging markers in systemic circulation and airways and their expression levels

associated with bronchiectasis severity and exacerbation.

Methods: We enrolled 132 patients with bronchiectasis and 50 healthy subjects in a

prospective cohort study to profile aging markers in systemic circulation and recruited

36 patients with bronchiectasis and 32 disease controls (idiopathic pulmonary fibrosis or

tumors) in a cross-sectional study to profile aging markers in bronchial epithelium of both

large-to-medium and small airways. We profiled aging marker expression from peripheral

blood mononuclear cells and enumerated the positively stained cells for detection of

aging marker expression in bronchial epithelium.

Results: Compared with healthy controls, the relative telomere length (median: 0.88

vs. 0.99, p = 0.009), SIRT1 (median: 0.89 vs. 0.99, p = 0.002), and Ku80 (median:

0.87 vs. 0.96, p < 0.001) expression levels were consistently lower in the peripheral

bloodmononuclear cells among patients with bronchiectasis andmodestly discriminated

patients with bronchiectasis from healthy controls. No remarkable changes in SIRT1,

telomere length, or Ku70 were identified at onset of exacerbation. Within the bronchial

epithelium, the percentage of positively stained cells was lower for SIRT1 (median: 25.1

vs. 57.2%, p < 0.05) and numerically lower for p16 (median: 40.0 vs. 45.1%) and

p21 (median: 28.9 vs. 35.9%) in patients with bronchiectasis than in disease controls

(p > 0.05).

Conclusion: SIRT1 was downregulated in systemic circulation and bronchiectatic

airways, which was independent of disease severity and lung function impairment.
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INTRODUCTION

Bronchiectasis is a common chronic airway inflammatory
disease characterized by irreversible bronchial dilatation (1). The
prevalence was 67–566.1 per 100,000 inhabitants in Europe and
North America and 1,200 per 100,000 inhabitants among people
aged 40 years or greater in China (2, 3). The vicious cycle
hypothesis (airway infection, inflammation, and destruction)
remains central to guide clinical management (4), which typically
consists of airway clearance and antibiotics (5).

Cells normally regenerate to repair the airway
microenvironment in response to infections and inflammation.
However, the defective repair associated with accelerated aging
(i.e., telomere attrition, epigenetic modifications) reportedly
predisposed to chronic obstructive pulmonary disease (COPD)
and idiopathic pulmonary fibrosis (IPF) (6, 7). Accelerated aging,
evidenced by telomere shortening, increased p21, and decreased
sirtuin 1 (SIRT1) expression, has also been identified in large
airways of patients with bronchiectasis (8).

Various markers reflect different aspects of aging. These
generally include nicotinamide adenine dinucleotide-dependent
deacetylase (i.e., SIRT1) and klotho, which confer antiaging
effects and cyclin-dependent kinase inhibitor 1A (p21) and 2A
(p16), which are cell cycle inhibitors (9–11). SIRT1 is a crucial
member of the nicotinamide adenine dinucleotide-dependent
deacetylase family via antiaging effects (12, 13). Inmurinemodels
of COPD, upregulation of SIRT1 alleviated inflammation and
altered the expression of markers reflecting various pathways
of aging, including decreased SIRT1 expression, compared with
healthy controls (14). These signals could be readily detected in
peripheral blood mononuclear cells (PBMCs) (6, 7), which are
a relatively non-invasive sample source that has rendered the
evaluation of aging marker expression in patients with chronic
airway diseases technically feasible in clinical practice.

The heterogeneity of bronchiectasis indicates that the
prevailing vicious cycle hypothesis might not have fully
accounted for the mechanisms underlying the pathogenesis.
Given the abovementioned pilot findings, assessment of aging
marker expression in adults with bronchiectasis might help
to provide additional insights into the pathogenesis and
therapeutic interventions.

Currently, aging marker expression has only been profiled
in one single small study without delineating the association
with the clinical meaningful metrics (8). In this regard,
an integrated analysis of the aging marker expression in
different compartments (e.g., systemic circulation, different
anatomical locations of the lower airways) would be clinically
more informative. We hypothesized that accelerated aging was
implicated in bronchiectasis and correlated with bronchiectasis
severity. In this study, we profiled SIRT1 and a panel of other
aging markers in PBMCs and the bronchiectatic epithelium in
adults with bronchiectasis.

METHODS

Study Participants
We recruited participants aged 18–75 years for two substudies
between June 2017 and January 2021. To profile marker

expression in PBMCs (Study 1), we included symptomatic (i.e.,
cough, sputum production) patients with bronchiectasis whose
diagnosis was based on chest high-resolution CT in the past
12 months. We excluded patients with bronchiectasis who
had exacerbation (the 2017 European Respiratory Society expert
consensus criteria) (15) or antibiotic use within 4 weeks before
enrollment. We recruited healthy controls via advertisement who
had normal chest X-ray and spirometry and were free from
lower airway symptoms or severe systemic diseases. We excluded
participants who were pregnant or breastfeeding and those who
had limited understandings.

To characterize aging marker expression in bronchial
epithelium (Study 2), we enrolled another cohort of patients with
bronchiectasis (bronchiectasis group) and those with IPF or lung
malignancy as disease controls. All the study participants in Study
2 were scheduled for segmentectomy or lobectomy.

The Ethics Committee of The First Affiliated Hospital of
Guangzhou Medical University (Medical Ethics 2016, the 32th)
approved for the study protocol. All the participants gave a
written informed consent.

Study Design
In Study 1, we collected the clinical history, exacerbation
frequencies, smoking status, and concomitant medications
from medical charts at the initial visits. Other data included
the assessment of bronchiectasis etiology, radiological severity
(modified Reiff score), spirometry, sputum bacteriology, and
disease severity [the Bronchiectasis Severity Index (BSI) and
the E-FACED score] (16–18). Meanwhile, patients donated
8ml peripheral blood for marker profiling. To determine the
variations in marker expression, we collected peripheral blood
in a subgroup when clinically stable (scheduled at least 1 month
apart) and in patients at onset of exacerbation (before antibiotics
administration). Healthy controls attended the first single visit
that consisted of clinical history and smoking status inquiry, chest
X-ray, spirometry, and peripheral blood withdrawal only.

In Study 2 (cross-sectional), we sampled the paired bronchial
epithelium from large-to-medium (the 3rd to 6th generation)
and small airways (the 7th generation and beyond), via forceps
excision, from hospitalized patients with bronchiectasis and
disease controls. We did not sample large airway epithelium
among patients who underwent segmentectomy. For disease
controls who had malignancy, we sampled the bronchial
epithelium at least 1 cm away from the border of tumor to
minimize the impact on marker expression.

Peripheral Blood Processing and
Senescence Marker Profiling
We collected the fresh peripheral blood into an anticoagulant
tube and processed within 12 h. We diluted the whole blood
with an aliquot of phosphate buffer solution and mixed with the
Human Leukocyte Separation Medium (Dakewe Incorporation,
Shenzhen, China) for isolating the buffy coat (containing
PBMCs), which was meticulously aspirated for storage in −80◦

freezers before analysis. We extracted the DNA for assessing
the relative leukocyte telomere length (T/S ratio) and extracted
the RNA and reverse transcribed for profiling other markers:
(a) markers modulating telomere length [telomerase reverse
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transcriptase (TERT)]; (b) antiaging markers [SIRT1, soluble
klotho (s-klotho), and total klotho (t-klotho)]; (c) cell senescence
markers (p16 and p21); and (d) DNA repair markers (Ku70,
Ku80, and TRF2). We profiled superoxide dismutase 2 (SOD2)
and catalase expression because aging has been associated
with oxidative stress responses. We used PCR to determine
the expression levels of different markers and normalized
with those of hypoxanthine phosphoribosyltransferase 1. Except
for the relative telomere length, we calculated the ratio of
the cycle threshold in patients with bronchiectasis (when
clinically stable and at exacerbation) and in healthy controls to
represent the relative expression for each marker. See Online
Supplementary Material for details.

Tissue Preparation and
Immunohistochemistry Staining
We further verified SIRT1 (antiaging), p16, and p21 (cell
senescence markers) expression in bronchial epithelium in light
that they closely reflected the aging pathways and that staining
could be achieved via immunohistochemistry. We incubated
the pretreated sections with primary polyclonal antibodies of
p21 (1:100, anti-p21, Abcam, Waltham, Massachusetts, USA),
p16 (1:100, anti-p16, Abcam, Waltham, Massachusetts, USA),
and SIRT1 (1:200, anti-SIRT1, Abcam, Waltham, Massachusetts,
USA). We stained the slides with diaminobenzidine (1:50, Dako
A/S, Denmark) at 37◦C and washed thrice in Tris buffer solution.
We processed negative controls without the primary antibody.
We then counterstained the slides with hematoxylin. See Online
Supplementary Material for details.

Immunohistochemistry Outcome
Assessment
We obtained images at 400X magnifications with the light
microscopy (Olympus CKX53, Osaka, Japan). We randomly
evaluated five high-power fields (by two independent reviewers
blinded to the profiles of patient) through calculating the
percentage of positively stained cells (with the cell nuclei
expressing the marker) (8). We then averaged the mean reading
of five fields. We adjudicated by means of consensus for any
major disagreement (>10% difference) in the cell counts between
two reviewers.

Statistical Analysis
Although we cannot directly estimate the sample size due to
the lack of literature report among patients with bronchiectasis,
this sample size was comparable to a study characterizing
patients with COPD (14). We performed analyses using the SPSS
software version 22.0 (SPSS Incorporation, Chicago, Illinois,
USA), the GraphPad Prism (GraphPad Incorporation, SanDiego,
California, USA), and the R software package. We verified
normality for continuous variables and expressed as mean ±

SD or median (interquartile range). We summarized categorical
variables as count (percentage). We compared continuous
variables with the Student’s t-test or the non-parametric Mann–
Whitney U-test and categorical variables with the chi-squared
test or the Fisher’s exact test as appropriate. To minimize
confounding effects of the age, we adjusted with the lung age (19).

We adopted the receiver operating characteristic curve to analyze
the diagnostic performance of different markers (including
their combination), which calculated the area under the curve
(AUC) and 95% CI. We used the paired t-test to compare
marker expression when clinically stable and at exacerbation.
We applied the Bland–Altman plot to evaluate the concordance
for two clinically stable visits. We conducted correlation analysis
using the Pearson’s or Spearman’s model. We determined the
association between marker expression and clinical variables
with the univariate linear regression model, followed by the
adjustment of age, the percentage predicted of forced expiratory
volume in one second (FEV1 pred%), and the ratio of FEV1 and
forced vital capacity (FEV1/FVC). Variables with p-value of 0.20
or less were entered into the multivariate regression model. To
estimate whether baseline levels predicted risks of exacerbation,
we calculated the hazards ratio by stratifying marker expression
into the median.

RESULTS

Study 1
Study Participants and Baseline Characteristics
Of the 188 participants who underwent screening between April
2019 and January 2021, two participants were pregnant, three
participants were subjected to technical error in isolating PBMCs,
and one participant failed quality check for spirometry. Finally,
we included 132 patients with bronchiectasis and 50 healthy
controls for analyses (Figure 1A). These patients donated 177
clinically stable PBMCs samples (mean: 1.3 per patient). A total
of 22 patients donated dual samples, 8 patients donated triple
samples, and one patient donated each quadruple and quintuple
samples. In healthy controls, we collected a single PBMCs sample
only. In total, 32 patients with bronchiectasis who attended
exacerbation visits donated 36 samples.

The baseline characteristics are shown in Table 1. The
median age was 49.0 years in patients with bronchiectasis
and half were females. The most common etiologies were
idiopathic (45.4%) and postinfectious (22.0%). 41.7% had mild
bronchiectasis based on the BSI. Patients with bronchiectasis did
not differ significantly from healthy controls in demographic
characteristics, except for the lower body mass index. The
baseline characteristics of 132 patients did not differ from
the exacerbation cohort, except for the lower previous
exacerbation frequency.

Marker Profiling of PBMCs in Cross-Sectional

Substudy
Compared with healthy controls, the relative telomere length
(median: 0.88 vs. 0.99, p = 0.009), SIRT1 (median: 0.89 vs.
0.99, p = 0.002), and Ku80 (median: 0.87 vs. 0.96, p <

0.001) expression levels were consistently lower in patients with
bronchiectasis (Figure 2, Supplementary Table 1). However,
there was no between-group difference for other markers.
These findings remained valid after adjustment with the lung
age (which consisted of age, height, and FEV1). Sensitivity
analysis that restricted the comparison with the 132 patients
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FIGURE 1 | Recruitment flowchart of the study participants. (A) presents recruitment flowchart of the study participants for Study 1, where patients with clinically

stable and exacerbation (in a subgroup of patients) of bronchiectasis as well as the healthy controls were included. (B) displays recruitment flowchart of the study

participants for Study 2, where patients with bronchiectasis and the disease controls who were scheduled for elective lobectomy or segmentectomy were included.

with bronchiectasis still demonstrated a significant between-
group difference in SIRT1 and Ku80 expression (p < 0.05,
Supplementary Figure 1). Furthermore, the relative telomere
length [AUC: 0.62 (95% CI: 0.54–0.71)], SIRT1 [0.64 (95%

CI: 0.56–0.72)], and Ku80 [0.68 (95% CI: 0.59–0.76)] modestly
discriminates patients with bronchiectasis from healthy controls.
Combining their expression levels, it nominally improved the
diagnostic performance [0.69 (95% CI: 0.62–0.77)] (Figure 2).
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TABLE 1 | Baseline characteristics of patients with bronchiectasis and healthy controls.

Variables Bronchiectasis patients Healthy controls

(n = 50)

P-value**

Stable visit

(n = 132)

Exacerbation visit

(n = 32)

P-value*

Age (yrs) 49.0 (40.0–61.0) 53.5 (40.3–63.5) 0.674 43.5 (27.8–56.0) 0.061

Sex (% females) 66 (50.0%) 17 (53.1%) 0.751 24 (48.0%) 0.810

Body–mass index (Kg/m2) 20.8 ± 3.1 20.3 ± 3.2 0.498 23.1 ± 3.5 <0.001

FEV1% pred 58.3 (43.0–75.2) 48.0 (37.4–70.5) 0.058 92.5 (88.0–102.0) <0.001

FEV1/FVC% 67.3 ± 13.9 64.5 ± 13.4 0.299 84.1 ± 4.8 <0.001

Never–smokers (No., %) 122 (92.4%) 30 (93.8%) 0.999 50 (100.0%) 0.101

Exacerbation frequency in the previous year 1.0 (0.0–1.8) 1.0 (1.0–2.0) 0.004 NA NA

Etiology 0.939 NA

Idiopathic (No., %) 60 (45.4%) 16 (50.0%) NA NA

Post-infectious (No., %) 29 (22.0%) 7 (21.9%) NA NA

Immunodeficiency (No., %) 10 (7.6%) 1 (3.1%) NA NA

Post-tuberculous (No., %) 12 (9.1%) 2 (6.2%) NA NA

Others (No., %) 21 (15.9) 6 (18.8%) NA NA

Bronchiectasis severity 0.168

Mild (No., %) 55 (41.7%) 8 (25.0%) NA NA

Moderate (No., %) 42 (31.8%) 15 (46.9%) NA NA

Severe (No., %) 35 (26.5%) 9 (28.1%) NA NA

Modified Reiff score 10.0 (7.0–14.0) 11 (7.3–15.0) 0.260 NA NA

FEV1, forced expiratory volume in 1 s; pred%, the percentage predicted; FVC, forced vital capacity; NA, not applicable.

Continuous variables were initially checked for normality and expressed as mean ± SD or median (interquartile range) as appropriate. Categorical variables were summarized as

count (percentage).

The exacerbation column denoted patients with bronchiectasis with an outpatient visit due to having an exacerbation during the longitudinal follow-up.

Other etiologies of clinically stable bronchiectasis consisted of primary ciliary dyskineisa (n = 10), asthma (n = 3), diffuse panbronchiolitis (n = 2), gastroesophageal reflux (n = 2), allergic

bronchopulmonary aspergillosis (n = 1), congenital lung maldevelopment (n = 1), cystic fibrosis transmembrane conductance regulator-associated disorder (n = 1), and connective

tissue disease (n= 1); other etiologies of patients who had an exacerbation consisted of primary ciliary dyskineisa (n= 4), gastroesophageal reflux (n= 1), and connective tissue disease

(n = 1).

The Bronchiectasis Severity Index was adopted for bronchiectasis severity rating in this table.

*p-value for the comparison between patients with clinically stable bronchiectasis and those who had an exacerbation during follow-up.

**p-value for the comparison between patients with clinically stable bronchiectasis and healthy controls.

Data in bold indicated the statistical comparisons with significance.

We also analyzed the difference in marker expression in 32
randomly selected patients with bronchiectasis who had dual
clinically stable samples (mean interval: 255 days) and the
difference for all the markers, except for Ku70 fell within 1.96
times of the SD (Supplementary Figure 2). Both SIRT1 and
K80, but not others aging markers, differed among patients with
different etiologies (data not shown). There existed no significant
sex differences for all the aging markers, except for TERT (91.5%
in females vs. 78.0% in males, p < 0.05).

We next analyzed the correlation among different markers
and between aging marker expression and bronchiectasis severity
(Figure 3). The strength of correlation was nominally weak-to-
modest. The relative telomere length, but not SIRT1 or other
markers, correlated with the BSI (r = −0.162, p = 0.031) and
the E-FACED score (r = −0.172, p = 0.023). Stratification
of patients into mild-to-moderate and severe bronchiectasis
revealed the differential expression in the relative telomere
length, Ku70, and TERT (p < 0.05), but not SIRT1. SIRT1
failed to discriminate patients with mild-to-moderate from
severe bronchiectasis (Supplementary Figures 3, 4). Patients
colonized with Pseudomonas aeruginosa yielded attenuated

expression of TERT (p = 0.047), but not with other markers,
including SIRT1, than those without SIRT1. Furthermore, we
analyzed the association between aging marker expression and
individual clinical variables. In Spearman’s model, the levels
of SIRT1, Ku80, and TERT correlated significantly with the
age (Supplementary Table 2). The multivariate linear regression
analysis showed that the relative telomere length, but not SIRT1
or Ku80, correlated with FEV1 pred% (Table 2).

Marker Profiling of PBMCs in Longitudinal Substudy
At onset of exacerbation (mean interval from clinically stable
visit: 239 days), there was a significant decrease in Ku80 and
TRF2 expression and a marked increase in T-klotho, S-klotho,
and TERT expression (p < 0.05). However, no remarkable
changes in SIRT1, telomere length, or Ku70 were identified
(Figure 4).

Study 2
Study Participants and Baseline Characteristics
In this cross-sectional substudy, we screened 104 participants
between June 2017 and November 2020, 36 of whom were
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FIGURE 2 | Expression and diagnostic performance of three differentially expressed aging markers in peripheral blood mononuclear cells of patients with clinically

stable bronchiectasis and healthy controls. (A–F) The expression levels of different aging markers in peripheral blood mononuclear cells of patients with clinically stable

bronchiectasis and healthy controls. (A) The relative telomere length, expressed as the T/S ratio; (B) Sirtuin 1 (SIRT1) expression levels; (C) Ku80 expression levels;

(D) Relative telomere length adjusted with the lung age; (E) SIRT1 expression levels adjusted with the lung age; and (F) Ku80 expression levels adjusted with the lung

age. (G) The diagnostic performance of aging markers and their combination to discriminate patients with bronchiectasis from healthy controls. Shown are the three

differentially expressed markers between patients with bronchiectasis and healthy controls. The expression level of markers was expressed as the fold change by

using the 2−11t cycle threshold algorithm, with exception of the T/S ratio for the relative telomere length. Combination denoted the receiver operating characteristic

curve of the sum of the three markers (relative telomere length, SIRT1, and Ku80). A total of 45 patients with bronchiectasis had more than one clinically stable visit,

whose data were pooled in the clinically stable visit dataset (n = 177). AUC, area under the curve; Bx, bronchiectasis.

excluded because bronchial epithelium was not identified.
Finally, we included 36 patients with bronchiectasis and 32
disease controls (Figure 1B). We sampled the paired large-
to-medium and small airway epithelium in 19 patients with
bronchiectasis and epithelium specimens from single anatomical
location in 17 patients with bronchiectasis (large-to-medium
airways in 11 patients and small airways in 6 patients). We

also biopsied paired epithelium from 16 disease controls,
large-to-medium airways in 6 controls, and small airways only
in 10 controls.

The mean age of patients with bronchiectasis was 44.1
years and 52.8% were females. Disease controls were markedly
older, although the sex distribution did not markedly differ.
The site of biopsy was not significantly different, although
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FIGURE 3 | Correlation between the expression levels of aging markers in peripheral blood and the clinical variables in patients with clinically stable bronchiectasis.

(A) demonstrates the correlation coefficients (shown in different colors reflecting various magnitudes of correlation) for the expression levels of 10 aging markers in

clinically stable bronchiectasis. (B) displays the correlation coefficients for the association between the clinical variables and the three aging markers, which were

differentially expressed between patients with clinically stable bronchiectasis and healthy controls (relative telomere length, SIRT1, and Ku80). Blue dots represent

positive correlation whereas red dots reflect negative correlation. Darker colors represent a greater magnitude of correlation. The cross-sign indicates the comparison

with no statistical significance.

TABLE 2 | The multivariate association between aging marker expression in

PBMCs and the clinical variables in bronchiectasis.

Variable β P-value

Relative telomere length (T/S ratio)

Age −0.007 <0.001

FEV1 pred% 0.003 0.049

CRP −0.023 0.260

The same model with FEV1/FVC vs. FEV1 pred%

FEV1/FVC 0.003 0.071

Sirtuin1 mRNA expression level

Age −0.003 0.198

FEV1 pred% 0.001 0.713

Catalase mRNA expression level 0.373 0.018

Ku80 mRNA expression level

Age −0.197 0.009

FEV1, forced expiratory volume in 1 s; pred%, the percentage predicted; CRP, C-reactive

protein; FVC, forced vital capacity; PBMCs, peripheral blood mononuclear cells.

The Pearson’s or Spearman’s correlation coefficient was calculated to determine the

univariate correlations between aging marker expression levels and the clinical data, after

which they were included in the linear multivariate regression analysis, if there was a trend

toward significance (p < 0.2).

Data in bold indicated the statistical comparisons with significance.

sampling of lower lobes favored patients with bronchiectasis
(Supplementary Table 3).

Aging Marker Profiling of Bronchial Epithelium
Sirtuin 1, p16, and p21 were consistently expressed within
cytoplasm and nuclei of the bronchial epithelial cells in both

the groups (Figure 5). The percentage of positively stained cells
was markedly lower for SIRT1 (median: 25.1 vs. 57.2%, p <

0.05) and nominally lower for p16 (median: 40.0 vs. 45.1%) and
p21 (median: 28.9 vs. 35.9%) in patients with bronchiectasis
than in disease controls (p > 0.05) (Supplementary Table 4).
We also compared the percentage of positively stained cells for
each marker, revealing no significant differences between the
large-to-medium airways and small airways in both the groups
(Figure 6).

The percentage of positively stained cells for SIRT1 correlated
positively with that of p16 and p21 (p > 0.05, Figure 5), but
not between SIRT1 and p16 in patients with bronchiectasis.
Furthermore, the percentage of positively stained cells for SIRT1
correlated weakly with age (r = 0.231, p = 0.035) and FEV1

pred% (r = 0.294, p = 0.014). There was also a weak correlation
between the percentage of positively stained cells for p21 and
FEV1 pred% (r = 0.312, p= 0.011) (Supplementary Table 5).

DISCUSSION

Sirtuin 1 plays a key role in modulating the magnitude of
ageing. This cross-sectional substudy showed that patients with
bronchiectasis yielded a downregulation of SIRT1 in both the
systemic circulation and different sites of bronchial epithelium in
bronchiectasis, which remained valid after adjustment with the
lung age. SIRT1 expression in the systemic circulation correlated
with neither lung function impairment nor the integrated
severity metrics. Moreover, the longitudinal substudy also
showed that SIRT1 expression did not vary at exacerbation onset.
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FIGURE 4 | Changes in the expression levels of aging markers from clinically stable to the onset of exacerbation among patients with bronchiectasis.

(A) demonstrates the comparison of the expression levels of the relative telomere length (telomere), SIRT1, Ku80, p16, and p21 for the paired clinically stable and

exacerbation visit samples. (B) displays the comparison of the expression levels of Ku70, total klotho (t-klotho), soluble klotho (s-klotho), telomeric repeat-binding

factor 2 (TRF2), and telomerase reverse transcriptase (TERT) for the paired clinically stable and exacerbation visit samples. *Denotes the comparisons with statistical

significance (p < 0.05).

Accelerated aging has been increasingly recognized
responsible for the defective cell repair, and hence, altered
microenvironment in chronic airway diseases. Signals reflecting
accelerated aging have been detected in PBMCs and airway
epithelium among patients with COPD and IPF (6, 20–22).
A pilot study has revealed reduced SIRT1 expression in the
bronchiectatic airways (8). In this study, we profiled SIRT1
and other aging marker in both the PBMCs and bronchiectatic
epithelium. Aging marker profiling in PBMCs has been validated
in COPD (14). For instance, there was a good correlation
between the telomere length derived from PBMCs and that from
lung tissues (23). Therefore, PBMCs served as a proxy of aging
within lung tissues.

Sirtuins are a family of deacetylase, which have phototropic
effects. SIRT1 reflected the antiaging capacity and longevity
(24). This findings partly echoed those by Rutten and
colleagues, who demonstrated reduced SIRT1 expression in
COPD, which correlated positively with the expression of
catalase (14). This might be because oxidative stress attenuated
SIRT1 expression via activating the phosphatidylinositol 3Kα

signaling pathway (25). Indeed, antioxidants had a role in
modulating the lifespan in several animal models such as
Caenorhabditis elegans (26). However, this findings did not justify
the correlation between SIRT1 expression and bronchiectasis
severity. By comparison, SIRT1 expression in PBMCs did
not differ between mild asthma and severe asthma (27) and
SIRT1 expression in both the sputum supernatant and serum
did not correlate with asthma severity (28). The BSI and
the E-FACED score consisted of several domains such as
exacerbation frequency and bacterial colonization, which did
not correlate with SIRT1 expression independently. These

indicated the dissociation between SIRT1 expression and
bronchiectasis severity.

Overall, the correlation between SIRT1 and other marker
expression was weak to modest. The other two markers that
correlated positively with SIRT1 consisted of the relative telomere
length and Ku80. The relative telomere length and Ku80
were differentially expressed in PBMCs and correlated with
bronchiectasis severity, which echoed the findings in patients
with COPD (29). These markers reflected different pathways
modulating cell aging. However, we did not identify differential
expression of other markers within PBMCs in bronchiectasis.
These findings differed from the observations in COPD, possibly
reflecting distinct pathophysiology of accelerated aging.

The variation in aging marker expression was minimal
when clinically stable and became significant at onset of
exacerbation compared with baseline levels. These notable
changes might have been associated with the aggravated
infections or inflammatory responses. Further studies are needed
to verify these observations.

We have revealed markedly reduced SIRT1 but not p16 or
p21 in bronchial epithelium, which partially differed from the
findings of reduced SIRT1 expression but higher p21 expression
in patients with bronchiectasis (8). The differences in the control
population (IPF or lung tumors vs. healthy controls) might
have contributed to the disparity because IPF (especially patients
scheduled for lung transplantation) and lung tumors have been
associated with accelerated aging (11), although we have made
efforts to minimize the impact by sampling epithelium at least
1 cm apart from the tumor lesions. Moreover, the reduced SIRT1
expression was not tempered significantly by the inclusion of
disease controls and the markedly greater age in patients with
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FIGURE 5 | Expression patterns of SIRT1, p16, and p21 within the bronchial epithelium in patients with bronchiectasis and disease controls. (A–C) Representative

images showing the expression patterns of p16, SIRT1, and p21 within the bronchial epithelium in patients with bronchiectasis and disease controls scheduled for

segmentectomy or lobectomy. (A) Immunohistochemistry staining of p16; (B) Immunohistochemistry staining of SIRT1; and (C) Immunohistochemistry staining of

p21. The upper right quadrant of each panel demonstrates a magnified image of the positively stained cells, which are indicated with the arrow heads. Positive

staining is defined as the presence of staining of the senescence marker within the cell nuclei. (D–F) Comparison of the percentage of positively stained cells (vertical

axis) for p16, SIRT1, and p21. (D) The percentage of cells positively stained with p16; (E) The percentage of cells positively stained with SIRT1; and (F) The

percentage of cells positively stained with p21. (G–I) Correlation of the percentage of positively stained cells for p16, SIRT1, and p21; (G) Correlation between p16

and p21; (H) Correlation between SIRT1 and p21; and (I) Correlation between SIRT1 and p16. Bx, bronchiectasis; SIRT1, sirtuin 1; Con, disease control.

bronchiectasis. Reassuringly, aging marker expression in large-
to-medium and small airways was comparable, which would help
to minimize the need to sample distal airways which cannot be
readily derived with conventional biopsy techniques.

Studies of the aging marker expression have been performed
in many chronic respiratory diseases such as COPD and
asthma. The published study documented a reduction in SIRT1
expression in bronchiectasis, but the association with the clinical
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FIGURE 6 | Expression of p16, SIRT1, and p21 between large-to-medium and small airways within the same study participant. (A–D) Representative images showing

the expression patterns of p16, SIRT1, and p21 within the bronchial epithelium in patients with bronchiectasis and disease controls scheduled for segmentectomy or

lobectomy. (A) Immunohistochemistry staining within the large-to-medium airway in a patient with bronchiectasis (a 31-year-old female); (B) Immunohistochemistry

staining within the small airway in a patient with bronchiectasis (a 31-year-old female); (C) Immunohistochemistry staining within the large-to-medium airway in a

disease control (a 59-year-old male); and (D) Immunohistochemistry staining within the small airway in a disease control (a 59-year-old male). Positive staining is

defined as the presence of staining of the senescence marker within the cell nuclei. (E–G) Dot plots demonstrating the percentage of positively stained cells

corresponding to the three senescence markers and different anatomical sites. (E) The percentage of positively stained cells for p16; (F) The percentage of positively

stained cells for SIRT1; and (G) The percentage of positively stained cells for p21. All, all study participants; BX, bronchiectasis; Con, disease control; L,

large-to-medium airways; S, small airways; SIRT1, sirtuin 1.

characteristics has not been outlined. In this study, we have not
only profiled the expression level of a panel of aging markers
associated with different pathways, but also demonstrated the
diagnostic value, the correlation with important clinical metrics
(e.g., BSI, HRCT score, and lung function), and the changes
at onset of exacerbation as compared with the baseline levels.
Furthermore, we have also shown the significant correlation
of some, but not all of the aging marker expression levels.
These findings have provided further insights into the role of
accelerated aging in bronchiectasis.

This findings might have some clinical implications. SIRT1
expression could be measured in adults with bronchiectasis as

a marker of accelerated aging. The decreased SIRT1 expression
might be clinically relevant to therapeutic interventions because
resveratrol could ameliorate oxidative stress and inflammation
via activating SIRT1 in murine COPD models (30). It would be
interesting to ascertain whether measures that aim to counter
the accelerated aging might have a role in improving the
clinical outcomes of bronchiectasis. Furthermore, because of
the difficulty in directly biopsying small airways, assessment of
aging could either be achieved via isolating PBMCs or sampling
large-to-medium airways.

This data interpretation was constrained by the limited
PBMCs samples captured at exacerbation. Outpatient services
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have been suspended during the outbreak of coronavirus disease
2019 and because of the policy to mitigate nosocomial cross-
contamination, the follow-up scheme has been withheld between
January and June 2020. We cannot comment on the impact of
smoking on aging. However, the small number of ever-smokers
suggested minor confounding effects. One of our important
goals was to determine whether the expression levels of aging
markers would differ dramatically in different portions of the
tracheobronchial tree. Therefore, we have biopsied the surgically
excised epithelium among patients who were scheduled for
lung resection and transplantation instead of sampling via
bronchoscopy. Hence, sampling from the completely healthy
controls or patients with peripheral lung nodules who underwent
bronchoscopy would not be possible. In this study, patients
with IPF or lung tumors have constituted the disease controls,
which could have partly obscured the difference in p16 and
p21 expressions. In spite of this, the markedly reduced SIRT1
expression in patients with bronchiectasis as compared with the
disease controls suggested that this findings pertaining to the
role of SIRT1 in mediating accelerated aging in bronchiectasis
remained valid. We did not enroll age-matched patients with
bronchiectasis in Study 2, which might have confounded the
expression levels of aging markers. However, the greater age
in the disease controls would have maximized rather than
diluted the between-group difference in the percentage of cells
staining positive for the aging markers, which was clearly
not the case in this study. In spite of these limitations, this
study demonstrated lower percentage of cells staining positive
for SIRT1 in patients with bronchiectasis, suggesting that the
reduction in SIRT1 expression would have beenmore prominent.
We did not analyze the consistency of aging marker expression
levels in the PBMCs and bronchial epithelium derived from
the same individual patients because the paired blood samples
were not collected for this study in patients undergoing surgical
resections. Although SIRT1 expression was independent of the
disease severity and lung function impairment in this cohort,
it would be vital and reasonable to assess the relationship
between aging marker expression levels and clinically important
outcomes such as mortality in future large-scale longitudinal
studies given the lack of objective surrogate markers for survival
prediction in patients with bronchiectasis at present. Validation
of this findings in other patient populations is also needed.
Finally, not all the markers were validated in the bronchial
epithelium study and we selected three markers given their

relationship with the aging pathways and the technical feasibility
of staining.

In conclusion, we have unraveled the marked reduction
in SIRT1 expression in both the systemic circulation and
bronchiectatic airways, which is independent of lung function
impairment. Further studies are needed to provide mechanistic
insights into the functional implications of these findings.
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