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High-power short-duration (HPSD) setting during radiofrequency ablation has become an attempt to improve atrial fibrillation
(AF) treatment outcomes. This study ought to compare the efficacy, safety, and effectiveness between HPSD and conventional
settings. PubMed, Embase, and Cochrane Library were searched. Studies that compared HPSD and conventional
radiofrequency ablation settings in AF patients were included while studies performed additional ablations on nonpulmonary
vein targets without clear recording were excluded. Data were pooled with random-effect model. Efficacy endpoints include
first-pass pulmonary vein isolation (PVI), acute pulmonary vein (PV) reconnection, free from AF, and free from atrial
tachycardia (AT) during follow-up. Safety endpoints include esophagus injury rate and major complication rate. Effectiveness
endpoints include complete PVI rate, total procedure time, PVI time, and PVI radiofrequency ablation (PVI RF) time. We
included 22 studies with 3867 atrial fibrillation patients in total (2393 patients received HPSD radiofrequency ablation).
Perioperatively, the HPSD group showed a higher first-pass PVI rate (risk ratio, RR = 1:10, P = 0:0001) and less acute PV
reconnection rate (RR = 0:56, P = 0:0004) than the conventional group. During follow-up, free from AF (RR = 1:11, P = 0:16)
or AT (RR = 1:06, P = 0:24) rate did not differ between HPSD and conventional groups 6-month postsurgery. However, the
HPSD group showed both higher free from AF (RR = 1:17, P = 0:0003) and AT (RR = 1:11, P < 0:0001) rate than the
conventional group 12-month postsurgery. The esophagus injury (RR = 0:99, P = 0:98) and major complications (RR = 0:76, P
= 0:70) rates did not differ between the two groups. The HPSD group took shorter total procedure time (MD= −33:71 95%
CI: -43.10 to -24.33, P < 0:00001), PVI time (MD= −21:60 95% CI: -25.00 to -18.21, P < 0:00001), and PVI RF time
(MD= −13:72, 95% CI: -14.45 to -13.00, P < 0:00001) than conventional groups while complete procedure rate did not differ
between two groups (RR = 1:00, P = 0:93). HPSD setting during AF radiofrequency ablation has better effectiveness, efficacy,
and similar safety compared with the conventional setting.

1. Introduction

Radiofrequency catheter ablation has been proven to be an
effective treatment for atrial fibrillation (AF). Pulmonary
vein isolation (PVI), aiming at blocking pulmonary veins
(PVs) generated ectopic current conduction into the left
atrial, is the most important radiofrequency ablation (RFA)
technique for treating AF [1, 2]. PV reconnection was recog-

nized as the major cause of AF recurrence after PVI and the
failure of AF catheter ablation, which makes durable and
transmural lesions formed during ablation critical to long-
term successful PVI. Multiple factors were correlated with
high-quality RFA lesions, including power, contact force
(CF), radiofrequency ablation time to form each lesion,
impedance drop, and ablation site temperature. Novel indi-
ces were brought out by coordinating the abovementioned
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factors, like ablation index (AI) or lesion size index (LSI),
aiming at achieving better AF radiofrequency ablation out-
comes [3–6].

Power, as one of the most easily manipulatable
parameters during the procedure, drew the interest of
researchers for a while. The first attempt of increasing
RFA power to 45W and shortening ablation time was
launched in 2006 by Nilsson and his colleagues [7]. Since
then, high-power short-duration (HPSD) as a novel RFA
strategy has been broadly studied in both animal models
and clinical cases. By increasing resistive heating in the
lesion core and reducing the lesion area caused by con-
ductive heating, HPSD strategy creates shallower but
wider lesions in both in silico and animal models com-
pared with the conventional technique or so-called
lower-power longer-duration (LPLD) strategy [8, 9]. Sev-
eral meta-analyses about the efficacy of HPSD strategy
have been conducted but provided different results.
Higher free from or less recurrence of atrial tachycardia
(AT)/atrial flutter in HPSD group has been reported in
some literature, while others disagreed [10–13]. Addi-
tional ablations than PVI during RFA procedure were
performed at operators’ discretion for different patients,
which usually included left atrial posterior wall box isola-
tion, linear isolation, and tricuspid isthmus ablation.
These additional ablations on non-PV targets could be
one of the sources of heterogeneity but have been ignored
by most existing researches. For this reason, we con-
ducted this updated meta-analysis comparing the efficacy,
safety, and effectiveness between the HPSD and conven-
tional strategies. We added the most updated studies with
more precise sorting approaches, like distinguishing PVI
from additional ablations and pooling AF or AT recur-
rence data according to whether additional ablations were
performed or not. Different subgroup analyses were also
performed in this study to further explore the effect of
power, integral parameters, and antiarrhythmic drugs on
AF rhythm management.

2. Methods

2.1. Studies Selection. Search has been conducted in PubMed,
Embase, and Cochrane Library from inception to January
2022 with language limited to English. The keywords for
searching included “atrial fibrillation,” “radiofrequency abla-
tion,” “catheter ablation,” and “power” with their MeSH
terms or Emtree checked corresponding to different data-
bases. Detailed searching strategies are available in Supple-
mentary Table S1-S3. Further literature retrieval was
performed by screening the reference list of included
articles. Two authors independently performed searches,
screened titles, abstracts, and full texts when needed.
Disagreements were solved through consensus.

The inclusion criteria for this study are as follows: (1)
patients have been diagnosed with nonvalvular AF and
underwent RFA for the first time; (2) PVI was performed
by catheter radiofrequency ablation; (3) randomized con-
trolled trials, nonrandomized trials, and observational stud-
ies included both HPSD and conventional (or low-power

long-duration) treatment groups; (4) studies with at least
3-month follow-up after RFA. The exclusion criteria for this
study are as follows: (1) additional RFA than PVI was per-
formed without detailed reports for each independent abla-
tion procedure; (2) studies with equivocal design or results
reported; (3) single-armed studies; and (4) animal studies,
case reports, conference abstracts, or literature lacking end-
points of interest.

The endpoints of interest in this study are efficacy end-
points, safety endpoints, and effectiveness endpoints. Effi-
cacy endpoints included first-pass PVI, acute PV
reconnection, free from AF or AT 6, or 12 months postsur-
gery. Safety endpoints included esophageal injury and
procedure-related major complications. More specifically,
we defined major complications as a composite endpoint
including phrenic nerve paralysis, cerebrovascular accident,
transient ischemic attacks (TIA), cardiac perforations, peri-
cardial tamponade, pericardial effusion, and death. Effective-
ness endpoints included complete PV isolation rate, total
procedure time, PVI time, and radiofrequency ablations
time to complete PVI (PVI RF time). Notably, total proce-
dure time was not extracted from studies that conducted
both classical PVI and other ablations but without a clear
record for each process.

Data referring study characteristics and endpoints of
interest were extracted by two authors independently from
included studies. Study characteristics include study design,
patient baseline information, catheters used for ablation,
indexes that guided ablation procedure like power, time,
and contact force.

The quality of included studies was assessed with the
Newcastle-Ottawa scale (NOS), and the quality of RCTs
was assessed by RoB2 additionally [14]. This study was
reported following the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) statement
[15]. The protocol for this systematic review and meta-
analysis was registered on PROSPERO (CRD42021266106).

2.2. Statistical Analysis. Continuous variables were presented
as mean and standard deviation (SD) and pooled by the
inverse variance method. Median and interquartile range
(IQR) were converted into SD for further pooled analysis
by estimation with the method presented by Luo et al.
and Wan et al. [16, 17]. Dichotomous variables were pre-
sented as risk ratios (RR) and pooled by the Mantel-
Haenszel method. The 95% confidence interval (CI) was
used in both continuous and dichotomous data while
two-sided P value of <0.05 was considered as statistically
significant. The random-effect model instead of the fixed-
effect model was applied in all pooled analyses in this
study in consideration of the heterogeneity in study
design, including patient population, ablation equipment,
and power setting.

The Cochran Q test and I2 test were performed to assess
the heterogeneity of the pooled effects. Heterogeneity was
considered to exist when the P value of CochranQ test <
0:10 and I2 > 50%. Publication biases were assessed with
funnel plot, and the symmetric distribution of effect sizes
was assessed visually.
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Pooled analysis was performed with Review Manager
(RevMan, Version 5.4. The Cochrane Collaboration, 2020).
Jackknife Sensitivity analyses were performed for each out-
come by systematically leaving out each study from pooled
analyses to estimate the effect of every single study on overall
estimate and track the origin of heterogeneity. Funnel,
Egger’s test, and meta-regression were performed with Stata
(Version 14.0).

3. Results

3.1. Included Studies and Their Quality Assessment. Accord-
ing to the established searching strategy, 1240 potential rela-
tive literatures were identified from PubMed, Embase, and
Cochrane Library and from which 22 studies were included
in this meta-analysis after full-text review of 47 articles as
shown in Figure 1 [7, 8, 18–37]. There were 9 retrospective
studies, 10 prospective studies, 1 randomized nonblinded
study, and 2 randomized controlled trials (RCTs).

In total, 3867 atrial fibrillation patients were included;
among them, 2393 patients received high-power-based

RFA. The percentage of paroxysmal AF in all included
patients ranged from 39% to 100%. The ablation power set-
ting ranged from 30W to 90W in high-power and very-
high-power groups and 25W to 40W in low-power or con-
ventional groups. Notably, the settings of 20W to 25W were
also applied in several high-power groups when dealing with
pulmonary vein segments adjacent to esophagus. Character-
istics of included studies and their radiofrequency ablation
procedure-related settings are shown in Tables 1 and 2,
respectively. The endpoints of each origin study and their
available definitions and the application of antiarrhythmic
drugs were shown in Supplementary Table S4.

The quality of included studies was assessed according to
NOS from the aspects of selection, comparability, and out-
come, as shown in Supplementary Table S5. Moreover, we
assessed the risk of bias in three included randomized
control trials with RoB2 (Cochrane risk-of-bias tool for
randomized trials) from five domains including
randomization process, intended interventions, missing
outcome data, measurement of the outcome, and selection
of the reported result (Supplementary Figure S1).

Databases (PubMed n = 346,
embase n = 785, cochrane
library n = 109)

Records removed before
screening:
Duplicate records removed
(n = 345)

Records screened
(n = 895)

Records excluded by screening
title and abstract (n = 754)
Reviews (n = 29)
Study designs (n = 3)
Conference abstracts (n = 59)
Case reports (n = 3)

Reports sought for retrieval
(n = 47)

Reports not retrieved
(n = 0)

Reports assessed for eligibility
(n = 47)

Reports excluded:
Additional ablation applied without clear records (n = 4)
Single-arm study (n = 15)

n = 3)
Reporting duplicate dataset (n = 1)
Lack of endpoints of interest (n = 2)

Studies included in review
(n = 22)
Reports of included studies
(n = 22)
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Figure 1: Flow chart demonstration literature screen process.
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3.2. Results of Meta-Analysis

3.2.1. Efficacy Endpoints of High-Power Short-Duration
Ablation Strategies. First-pass PVI rate was pooled from 13
studies [19, 21, 24–33, 37]. Patients underwent HPSD ablation
showed higher first-pass PVI rate during procedure compared
with conventional group (RR = 1:10, 95% CI: 1.05-1.15, I2 =
56%, and P = 0:0001) (Figure 2(a)). Acute reconnection rate
during surgery was reported in 14 studies [8, 18, 19, 21, 25,
27–31, 33, 35–37]. More acute PV reconnection during sur-
gery was reported in the conventional setting group compared
with the HPSD setting group (RR = 0:56, 95% CI: 0.40-0.77,
I2 = 70%, and P = 0:0004) (Figure 2(b)).

During follow-up, the rates of free from AF and free
from AT 6-month and 12-month postsurgery were col-
lected and pooled from 18 studies [7, 8, 19–23, 25–31,
33–35, 37]. Six months after procedure, neither the rate
of free from AF nor free from AT reached statistically sig-
nificant difference between HPSD groups and conventional
groups (for free from AF, RR = 1:11, 95% CI: 0.96-1.28,
I2 = 45%, and P = 0:16. For free from AT, RR = 1:06,
95% CI: 0.96-1.17, I2 = 30%, and P = 0:24) (Supplementary
Figure S2a and S2b). When the follow-up period was
elongated to 12 months, HPSD groups showed both
higher free from AF and free from AT rates compared

with conventional groups (for free from AF, RR = 1:17, 95%
CI: 1.07-1.27, I2 = 32%, and P = 0:0003. For free from AT,
RR = 1:11, 95% CI: 1.05-1.17, I2 = 32%, and P < 0:0001)
(Figures 3(a) and 3(b)).

We performed subgroup analyses for 12 months free from
AF and AT according to the ablation power setting and
whether the ablation was guided by integral indexes or not.
Either when the ablation power was set ≤45W or between
45W and 60W for left atrial walls except for posterior walls,
HPSD groups showed better free from AF rate (for power ≤
45W, RR = 1:28, 95% CI: 1.02-1.61, I2 = 58%, and P = 0:03;
for 45W < power < 60W, RR = 1:10, 95% CI: 1.01-1.19, I2 =
0%, and P = 0:03, Supplementary Figure S3a). Although RR
did not achieve a statistically significant difference between
the two subgroups (P = 0:21), the 45W < power < 60W
subgroup did not show heterogeneity inside the group while
the other group remained high heterogeneity. Higher free
from AT rate was also observed in both subgroups (for
power ≤ 45W, RR = 1:17, 95% CI: 1.01-1.36, I2 = 63%, and P
= 0:04; for 45W < power < 60W, RR = 1:09, 95% CI: 1.04-
1.14, I2 = 3%, and P = 0:0006, Supplementary Figure S3b)
compared with conventional groups. Similarly, the 45W <
power < 60W subgroup showed minor heterogeneity while
the ≤45W group remained high heterogeneity.
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Figure 2: Forest plot of pooled effect demonstrating (a) the first-pass pulmonary vein isolation rate and (b) the acute pulmonary vein
reconnection rate of high-power short-duration (HPSD) and conventional ablation settings. 95% CI: 95% confidence interval.
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Subgroup analyses for free from AF or AT 12-month
after surgery were also performed according to whether
ablations were guided by integral indexes including force-
time integral (FTI), AI, and LSI or with fixed ablation time
per point. HPSD groups always showed better outcomes of
free from AF (for integral indexes guided, RR = 1:28, 95%
CI: 1.02-1.60, I2 = 61%, and P = 0:03; for fixed ablation time,
RR = 1:13, 95% CI: 1.07-1.27, I2 = 0%, and P = 0:001. Sup-
plementary Figure S4a) while the AF free rate did not
differ between two subgroups (P = 0:31). HPSD also
showed better free from AT rate in both subgroups (for
integral indexes guided, RR = 1:11, 95% CI: 1.02-1.20, I2 =
49%, and P = 0:01; for fixed ablation time, RR = 1:12, 95%
CI: 1.05-1.19, I2 = 7%, and P = 0:0009. Supplementary
Figure S4b) compared with conventional groups while the
AT free rated between two subgroups did not achieve
statistically significant difference P = 0:87).

Additional subgroup analyses according to the applica-
tion of antiarrhythmic drugs (AADs) postsurgery after the
three-month blank period were performed because the sta-
tus of AADs could be another source of heterogeneity. Since
the length of blank period differed in origin studies, we set
the longest blank period among included studies, 3 months,
as our defined blank period. The HPSD group showed
higher 12 months free from AF rate in subgroups without

AADs after blank period (RR = 1:27, 95% CI: 1.08-1.49, I2

= 0%, and P = 0:004) and with unclear AAD status
(RR = 1:15, 95% CI: 1.05-1.26, I2 = 7%, and P = 0:004).
However, the free from AF rate did not show statistically sig-
nificant difference between the HPSD and the conventional
groups in the subgroup with unknown AAD status after
the blank period (RR = 1:05, 95% CI: 0.92-1.20, I2 = 0%,
and P = 0:49). All subgroups showed low heterogeneity
inside each group, and the pooled effects did not show differ-
ence among subgroups (P = 0:19) (Supplementary
Figure S5a). The free from AF or AT rate 12 months
postsurgery showed a similar trend. The HPSD group had
higher 12 months free from AF or AT rate in subgroups
without ADDs or with unclear ADD status after blank
period (for subgroup without AADs, RR = 1:17, 95% CI:
1.07-1.27, I2 = 24%, and P = 0:0004; for subgroup with
unknown AAD status, RR = 1:06, 95% CI: 1.00-1.13, I2 = 0
%, and P = 0:04). In the subgroup with continued AADs
after the blank period, the difference of 12 months free
from AF or AT rate between HPSD and conventional
groups did not reach statistical significance (RR = 1:05,
95% CI: 0.92-1.20, I2 = 0%, and P = 0:49). The
heterogeneity inside each subgroup was low, and the
pooled effects did not show difference among subgroups
(P = 0:17) (Supplementary Figure S5b).
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Figure 3: Forest plot of pooled effect demonstrating (a) free from atrial fibrillation (AF) for 12 months and (b) free from atrial
tachyarrhythmia (AT) for 12 months in high-power short-duration (HPSD) and conventional ablation settings. 95% CI: 95% confidence
interval.
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3.2.2. Safety of High-Power Short-Duration Ablation
Strategies. Esophageal injuries correlated with PVI RFA
occurred in 3 studies [21, 32, 37], while other 7 studies did
not report any PVI-related esophageal injury during or after
surgery [7, 8, 20, 22, 25, 30, 34]. The overall effect did not show
statistically differences between HPSD and conventional abla-
tion setting groups on esophageal injuries (RR = 0:99, 95% CI:
0.31-3.13, I2 = 0%, and P = 0:98) (Figure 4(a)).

Major complications other than esophageal injury were
reported in 12 studies [7, 8, 19–23, 25, 30, 32, 35, 37].
RFA-related major complications in this study were
defined as phrenic nerve paralysis, CVA, TIA, cardiac per-
forations, pericardial tamponade, pericardial effusion, and
death during periprocedural period and were clearly attrib-
uted to the radiofrequency ablation. Thus, 1 case with
comorbidity of pericardial effusion existed at baseline was
excluded from Yavin’s study in this analysis [18]. Vascular
complications like groin hematoma were excluded since
the hematoma formation was irrelevant to ablation itself
but with femoral venous puncture. Among 12 included
studies, we did not detect statistically significant difference
of major complications between the HPSD group and the
conventional group (RR = 0:82, 95% CI: 0.30-2.26, I2 = 0%,
and P = 0:70) (Figure 4(b)).

3.2.3. Ablation Effectiveness of High-Power Short-Duration
Ablation Strategies. The rate of complete PVI was pooled
from 9 studies, and there was no statistically significant dif-
ference between HPSD and conventional groups on success-
fully complete PVI (RR = 1:00, 95% CI: 0.99-1.01, I2 = 0%,
and P = 0:93) (Figure 5(a)) [7, 20, 21, 24, 31–33, 36, 37].
We only performed pooled analysis on total procedure time
in 7 studies because of additional ablations were widely
applied but were not recorded or presented separately, like
roof linear ablation, LA posterior wall box isolation, superior
vena cava (SVC) isolation, and cavotricuspid isthmus ablation
[7, 8, 20, 22, 23, 25, 37]. The HPSD group showed significant
shorter total procedure time compared with the conventional
group (MD= −33:71 95% CI: -43.10 to -24.33, I2 = 85%, and
P < 0:00001) (Figure 5(b)). PVI time was reported in 10 stud-
ies [18, 19, 21, 27, 29, 30, 32–35]. PVI time was shorter in the
HPSD group than the conventional group (MD= −21:60 95%
CI: -25.00 to -18.21, I2 = 79%, and P < 0:00001) (Figure 5(c)).
The RFA time during PVI procedure (PVI RF time) was
reported in 14 studies [7, 8, 19, 21, 23–25, 27, 28, 30, 34–37].
Coincide with total procedure time, it took the HPSD group
significantly shorter PVI RF time than the conventional group
(MD= −13:72, 95% CI: -14.45 to -13.00, I2 = 91%, and P <
0:00001) (Figure 5(d)). Subgroup analyses were performed
according to the power setting as mentioned above to seek
the source of the heterogeneity.

The 45W < power < 60W subgroup showed significant
shorter PVI RF time compared with the ≤45W subgroup
(P < 0:00001). Nevertheless, the 45W < power < 60W sub-
group had minor heterogeneity (MD= −15:60, 95% CI:
-16.91 to -14.29, I2 = 0%, and P < 0:00001) while the ≤45W
subgroup remained high heterogeneity (MD= −10:49, 95%
CI: -13.13 to -8.75, I2 = 70%, and P < 0:00001, Supplementary
Figure S6).

3.3. Publication Bias. Funnel plots were applied to outcomes
pooled from more than 9 studies, and symmetrical distribu-
tion of the funnel plot was measured with Egger’s test. Acute
PV reconnection (P = 0:247), esophageal injury (P = 0:402),
major complications (P = 0:136), PVI time (P = 0:602), and
PVI RF time (P = 0:246) were considered not having publi-
cation bias while the publication bias existed in first-pass
PVI (P = 0:007) and free from AT 12 months after surgery
(P = 0:014) (Supplementary Figures S7-S13) [38, 39].

3.4. Metaregression. Both observational studies and RCTs
were included in this meta-analysis. To investigate whether
the type of study introduced heterogeneity into pooled
effects, we performed metaregression by defining the study
design as the independent variable effect size of each out-
come as the dependent variable. As shown in Supplementary
Table S6, the independent variable would not significantly
affect the effect size (P > 0:05 in all endpoints), indicating
that it is rational to pool data from included observational
studies and RCTs.

4. Discussion

This study is an updated meta-analysis on the efficacy,
safety, and effectiveness of HPSD vs. conventional strategies
in AF patients, and more importantly, the first meta-analysis
made effort on distinguishing different RFA procedures of
AF and focused on the classic and effective PVI procedure.
We found that HPSD RFA for AF patients showed better
efficacy compared with conventional group, reflected in
higher first-pass PVI rate, less acute PV reconnection rate,
and higher free from AF or AT rate 12 months postsurgery.
This study proved a promising safety profile for HPSD set-
ting since there was no difference between esophagus injury
or other major complications between HPSD and conven-
tional setting groups. From the aspect of effectiveness, the
HPSD group showed significantly reduced total procedure
time, PVI time, and PVI RF time while the rate of complete
PVI did not differ between HPSD and conventional groups.

PVI has been a fundamental RFA technique for AF.
However, operators may choose additional ablations on
non-PV targets based on the characteristic of each patient.
For instance, cavotricuspid isthmus ablation has been a
well-established ablation strategy for typical atrial flutter
and was typically applied to patients who have comorbidity
of atrial flutter, while box isolation has become a new
attempt dealing with permanent atrial fibrillation as a com-
plement of PVI [40–42]. These abovementioned additional
ablations reflected the heterology of each patient and intro-
duced different extra procedure time, left atrial dwelling
time, and radiofrequency time to each patient’s procedure
and consequent different recurrent rate of AF or AT during
follow-up. Therefore, these data should not be pooled with
the clear existence of the procedure heterology. Studies
included additional ablations reported that HPSD groups
had superior effectiveness and parallel safety profile to con-
ventional groups which coincided with our pooled results,
while the efficacy outcomes including recurrence of atrial
tachycardia were disparate. Baher et al. reported that HPSD
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(50W/5 s) ablation resulted in shorter procedure time, sim-
ilar esophagus injury pattern, and similar long-term AF
recurrence rate [43]. Bunch et al. reported HPSD group
was associated with reduced procedure times, similar free
from AF rate but increased rate of recurrent atrial flutter
[44]. Counting the heterology and potential bias would be
brought by additional ablations, and some studies though
with large patients scales were excluded in this analysis if
the data of additional ablations was not reported. To further
evaluate the efficacy, safety, and effectiveness of HPSD-based
radiofrequency ablation, more studies including rigorous
design, grouping, and recording are needed.

Radiofrequency ablation, by forming permanent trans-
mural heating lesions in left atrium tissue, blocks the ectopic
current transduction to attenuate atrial fibrillation genera-
tion. During radiofrequency ablation, durable lesion forma-
tion is critical for long-term effectiveness. Power, as the
parameter that impacts lesion characteristics and can be eas-
ily manipulated, has become one of the research interests to
improve the quality of radiofrequency ablation. Bourier et al.
demonstrated with in silico model that HPSD ablation
(50W/11 s to 13 s) had produced the equivalent lesion com-
pared with conventional setting (30W/30s) [9]. Another in
silico model showed that higher power and shorter duration
ablation settings were correlated with wider but shallower
depth of lesions [45]. With an in vitro experiment, Bhas-
karan et al. reported that HPSD RFA (50W/5 s or 60W/

5 s) induced comparable lesion width and depth on myocar-
dial phantom compared with standard-setting (40W/30 s),
while higher power setting (70W/5 s and 80W/5 s) resulted
in larger lesion width [46]. Yavin et al. further proved with
swine’s atria that HPSD ablation (90W/4 s) created shal-
lower but wider lesions on ablation sites [19]. All literature
mentioned above considered that higher power indeed was
correlated with shallow while wide lesions with certain
radiofrequency ablation settings. Therefore, HPSD setting
could be a feasible and more efficient radiofrequency abla-
tion choice in AF ablation theoretically and was supported
by our pooled analysis which did not show difference in
complete pulmonary vein isolation between the HPSD and
conventional groups. Better efficacy outcomes were also
proved by this meta-analysis; in specific, the HPSD group
showed a higher first-pass PVI rate, less acute PV reconnec-
tion, and a higher rate of free from AF 12 months postpro-
cedure. With subgroup analyses, when power ≤ 45W or
45W < power < 60W, HPSD groups both showed better
outcomes of 12 months free from AF or AT. Moreover, het-
erogeneity was minimized in the 45W < power < 60W sub-
group in both free from AF and AT outcomes, which
indicated that ablation power ≤ 45W in the HPSD group
was the source of heterogeneity. The prescription of ADDs
may also introduce heterogeneity between studies so we per-
formed subgroup analyses according to the status of ADDs
application. The HPSD groups presented higher free from
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Figure 4: Forest plot of pooled effect demonstrating (a) esophageal injury and (b) major complications in high-power short-duration
(HPSD) and conventional ablation settings. 95% CI: 95% confidence interval.
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AF and free from AT 12-month postsurgery in subgroups
both with discontinued ADDs after the blank period and
subgroups with unclear ADDs status. However, in the sub-
group with continued ADDs, the HPSD strategy did not
show superiority over the conventional group in 12 months
free from AF or AT, which may indicate that the better effi-
cacy of the HPSD strategy can be partially complemented by
ADDs. Nevertheless, selection bias brought by the different
severity of AF, type of AF, etc., in origin studies may also
cause this comparable result. Whether the superiority of
HPSD efficacy is correlated with the shallow and wide lesion
or other special characteristics, the reason HPSD creates
more durable lesions requires further study. Very-high-
power short duration radiofrequency ablation setting had
become another attempt to improve ablation outcomes by
altering the power setting recently but with limited research
[8, 24]. Further studies are necessary to understand the effi-
cacy, safety, and effectiveness of higher power setting during
radiofrequency ablation.

Durable lesion formation is critical for long term free
from AF after radiofrequency ablation. Several integral
parameters cooperating factors that matter for high-quality
lesions such as FTI, ablation index (AI), lesion size index
(LSI), and CLOSE protocol have been introduced into prac-
tice to improve the quality of lesions. FTI was the initial
attempt to combine CF, and ablation and has been proven
correlated with transmurality of RFA lesions [47]. FTI was
later replaced by AI and other indexes attributed to several
flaws like not counting power and the assumption of the lin-
ear relationship between CF and time. AI, a weighted non-
linear formula of contact force, power, and ablation
duration, has been proven more favorable than FTI by pro-
viding more information and was able to predict PV connec-
tion [5, 48]. Lesion size index (LSI), another index calculated
by formula of time, power, CF, and impedance, was reported
a better predictor for ablation lesion dimensions than power
or CF only [3, 4]. We performed subgroup analyses accord-
ing to whether integral indexes or used during the procedure
or not and found that either integral index-guided ablation
or time-fixed ablation resulted in better free from AF or
AT outcomes 12 months postsurgery. Integral index-
guided ablation subgroups seemed to show a more potent
outcome of free from AF than time fixed subgroup though
not reached statistically significant yet. Integral index-
guided ablation showed high heterogeneity while time-
fixed ablation did not show heterogeneity, which could attri-
bute to pooling different index-guided ablations.

A potential advantage of HPSD radiofrequency ablation
for AF is the procedure safety, especially from the prospec-
tion of esophagus thermal injury. A segment of esophagus
is in direct contact with posterior wall of left atrium, and
the atria portions adjacent to esophagus differed from most
pulmonary vein openings to the left atrial antrum. Corre-
sponding to the relative orientation between esophagus
and left atrial, the distance from esophagus wall to endocar-
dium range from 3.3 to 13.5mm while the tissue thickness
between pulmonary vein ostia and esophagus ranged from
7.7 to 32.8mm [49, 50]. Esophagus injury has been a spec-
trum of devastating complications during AF ablation. Being

thinner than most parts of left atrial wall and situated nearby
esophagus, ablation performed on posterior wall made the
esophagus more prone to thermal injury so radiofrequency
ablation has a narrow efficacy and safety window [51]. Our
pooled study did not show differences in esophagus injury
between HPSD and conventional groups. However, when
taking the severity or classification of individual esophagus
injury into account, HPSD strategy seems to show a trend
of superiority. Francke et al. reported 2 of 20 (10%) and 13
of 97 (13.4%) thermal esophageal lesions in standard (con-
ventional, 20-40W/AI: 400-500) or HPSD (50W/AI: 400-
500) groups, respectively (P = 0:72). Both lesions in the stan-
dard group were deep ulcers and resolved slowly in 2 weeks
while most lesions in the HPSD group were smaller and
more superficial with only one patient developed a large
ulcer [32]. Leo et al. monitored esophagus temperature with
a probe and recorded statistically significant increased
esophagus temperature alert number per patient in the
low-power group (20W/LSI = 4 or 5) compared with high-
power (40W/LSI = 4 or 5) groups (P = 0:026) [28]. Opposite
evidence was reported as well, for example, Yavin et al.
reported a higher temperature recorded in the high-power
group (45-50W/8 or 15 s) as 39:2 ± 2:2°C compared with
the medium-power group (20-40W/20 to 30s) as 38:1 ±
1:1°C (P = 0:032) [19]. Notably, operators usually choose to
lower the power when handling structures located on the left
atrial posterior wall for safety reasons. For example, Leo
et al. applied 20W at the posterior part of the pulmonary
vein during PVI for both HPSD and conventional groups,
and Lee et al. chose 25W at posterior wall for both groups
[28, 29]. In other included studies, the power applied to pos-
terior wall was also reduced compared with other locations
in the antrum. These lowered power ablations at posterior
wall could contribute to the comparative rate of esophagus
thermal injury rate between HPSD and conventional groups.
However, this attempt also made the safety profile of HPSD
ablation at posterior wall sites remain unclear. As mentioned
before, HPSD radiofrequency creates shallower lesions in
silico and in vivo, which could theoretically lessen the ther-
mal injury rate during the procedure. Whether a higher
power setting is truly safe for esophagus still requires studies
carefully coordinating the distance between endocardium
and esophagus, the power applied during ablation, and the
esophagus injury patterns in the future.

In this study, the HPSD group showed better effective-
ness over the conventional group, including total procedure
time, PVI time, and PVI RF time. Shortening the procedure
time, especially for those patients who underwent only local
anaesthesia instead general anaesthesia, helps comfort
patients and therefore improves their adherence. With
reduced PVI time and PVI RF time, less saline would be irri-
gated into circulation and may mitigate the burden of heart
pump brought by overwhelmed liquid. Shorter fluoroscopic
time was also reported in several studies though we did not
include these data because it was hard to tell whether the
fluoroscopic time was consumed by PVI or additional abla-
tions [8, 23, 30]. In any case, compressing the fluoroscopic
time benefits both patient and operator by reducing radia-
tion exposure no matter the ablation type.
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HPSD and very high-power short-duration (vHPSD)
strategies have shown satisfying efficacy, safety, and effective-
ness in radiofrequency ablation treatment for AF patients in
this meta-analysis. Theoretically, HPSD and vHPSD strategies
can also be applied in other radiofrequency ablation treat-
ments aiming at arrhythmia like atrial flutter, atrial tachycar-
dia, and premature ventricular contraction. Recently, a case
of successful very high-power short-duration radiofrequency
ablation without periprocedural complications for frequent
premature ventricular contraction with was reported [52].
Whether HPSD or vHPSD is superior to conventional radio-
frequency ablation strategies requires further studies.

Although the HPSD strategy brought cardiologists a
more efficient and safer way to perform transcatheter radio-
frequency ablation, one should always keep in mind that AF
clinical management is complex and more than ablation.
Radiofrequency ablation treatment serves as rhythm control
to achieve better symptom control, while anticoagulation
remains the dominant therapy that lessens the thromboem-
bolic stroke risk [53, 54]. The decision of whether continue
anticoagulation therapy postablation or not should be made
based on stroke risk factors, e.g. CHA2DS2-VASc, instead of
the AF recurrence status [54].

There were several limitations in this study. Firstly, all the
studies included were nonrandomized observational studies
except for only two RCTs and one randomized nonblinded
study, which made the results need to be interpreted and
translated cautiously. More RCTs focus on the relationship
between radiofrequency power and procedure efficacy and
safety should be expected and will provide more persuasive
evidence. Secondary, the power settings, ablation time, contact
force, AI settings, LSI settings, and the experience of individual
operators differed between included studies, and the pooled
analysis was not adjusted by the above variables. Although
subgroup analysis is based on whether guided by AI or not
and the power settings, these categorizing algorithms were still
not precise enough to eliminate the heterogeneity. Thirdly, as
emphasized multiple times above, the existence of additional
ablation targets other than PVI impeded comprehensive anal-
ysis of the effect of power setting on AF radiofrequency treat-
ment outcomes. Though we tried to subtract additional
ablation-related procedure time or PVI time when there were
detailed records and got a decent quantity of studies included
for procedure parameter outcomes, the studies qualified for
efficacy outcomes, i.e., free from AF and/or AT, were still lim-
ited. Future studies with more meticulous recording and anal-
ysis for each ablation target and their potential related efficacy
and safety outcomes will be demanded to understand how
power setting affects procedure outcomes. Last but not the
least, publication bias existed in several outcomes, which
may be caused by difficulties in publishing negative results.
The potential publication results also require careful interpre-
tation of corresponding results.

5. Conclusion

The high-power short-duration strategy showed better
radiofrequency ablation procedure efficacy and effectiveness
compared with the conventional ablation setting. Moreover,

HPSD strategy is a safe approach with a similar complica-
tion rate for AF radiofrequency ablation procedure.
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