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Abstract: Candida albicans is one of the major pathogens that cause the serious infectious condition
known as candidiasis. C. albicans was investigated by proteome analysis to systematically examine
its virulence factors and to promote the development of novel pharmaceuticals against candidiasis.
Here, we review quantitative time-course proteomics data related to C. albicans adaptation to fetal
bovine serum, which were obtained using a nano-liquid chromatography/tandem mass spectrometry
system equipped with a long monolithic silica capillary column. It was revealed that C. albicans
induced proteins involved in iron acquisition, detoxification of oxidative species, energy production,
and pleiotropic stress tolerance. Native interactions of C. albicans with macrophages were also
investigated with the same proteome-analysis system. Simultaneous analysis of C. albicans and
macrophages without isolating individual living cells revealed an attractive strategy for studying
the survival of C. albicans. Although those data were obtained by performing proteome analyses,
the molecular physiology of C. albicans is discussed and trials related to pharmaceutical applications
are also examined.
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1. Introduction

Candida albicans is a commensal yeast of humans that is found in the microflora of the oral cavity,
skin, gastrointestinal tract, and vagina [1–3]. C. albicans can cause opportunistic systemic or superficial
candidiasis when the host immunity is compromised by cancer chemotherapies, administration of
immunosuppressants, or acquired immune deficiency syndrome (AIDS). The mortality rate of systemic
candidiasis is approximately 50% because few effective pharmacotherapeutic options or diagnostic
methods exist [4]. Attaining a comprehensive understanding of the molecular and physiological
aspects of C. albicans is key for developing novel drugs.

In recent years, proteome analysis progressed as an effective approach for characterizing dynamic
variations of biological systems. C. albicans was also studied using proteomics to measure changes
during adaptation to a variety of conditions. Typically, those proteome changes were characterized by
endpoint analyses based on two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) [5–7].
Those reports showed many valuable findings depicting reference maps of two different conditions.
However, 2D-PAGE has several problems including limitations in terms of separation factors, molecular
masses, and isoelectric points. Furthermore, the low-throughput aspect of 2D-PAGE is disadvantageous
in time-course analysis studies involving numerous samples from target cells. The shotgun approach
is recognized as an alternative method of proteome analysis. The shotgun approach consists of
liquid chromatography and tandem mass spectrometry (LC–MS/MS), and enables identification of
many proteins in a high-throughput manner, including low-abundance proteins. Additionally, a
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system developed with ultra-performance in terms of chromatographic separation showed excellent
performance [8]. Monolithic silica provides highly efficient separation as a long column because of its
high permeability [9], and it was applied for separating tryptic fragments in mixed samples with a
shallow gradient. For instance, an LC–MS/MS system with a long monolithic silica capillary column
(500 cm) was used to identify approximately 2600 proteins produced in the human arthritic cell line
MH7A in a single run [10]. Based on these advantages, proteome analyses of C. albicans progressed in
recent years. Here, we mention the molecular and physiological characteristics of C. albicans virulence
and pharmaceutical applications using proteome data.

2. Time-Course Proteomics Analysis of C. albicans Adaptation to Serum

C. albicans virulence is based on the secreted aspartic protease family [11–13], the yeast-to-hyphal
transition [14,15], and the agglutinin-like sequence family [16–18]. Utilizing these molecules or
functions, C. albicans adheres to human tissues, invades epithelial cells, and disseminates into the
bloodstream. Although serum adaptation is an indispensable function for C. albicans, the factors
described above do not clearly account for the overall adaptation mechanism. Thus, time-course
proteome analyses of C. albicans adaptation to fetal bovine serum (FBS) was investigated using
LC–MS/MS and a long monolithic silica capillary column [19].

With the aim of focusing on early-stage adaptation to serum, the C. albicans strain SC5341 was
first grown in yeast extract, peptone, dextrose (YPD) media and then transferred to yeast nitrogen
base (YNB) media containing 10% (v/v) FBS (YNB + FBS), or YNB without FBS (YNB − FBS) as a
control. Incubating C. albicans in YNB ± FBS is a simple model for studying early systemic candidiasis.
C. albicans cells were recovered at sequential timepoints (0, 10, 20, 40, and 60 min). Cell morphology
was determined by phase-contrast microscopy to confirm the serum-dependent hyphal extension [20].
As a result, it was confirmed that C. albicans maintained its yeast form at 0–10 min and started hyphal
development at 20 min. The average hyphal lengths were 0, 0.06, 0.61, 3.22, or 7.23 mm at 0, 10,
20, 40, or 60 min, respectively. In another study, where C. albicans was in contact with Caco-2 cells
for 120 min, the hyphae extensions were longer (36.9 mm) [21]. Therefore, incubating C. albicans in
YNB + FBS for 60 min was an appropriate model for studying proteome dynamics during early-stage
serum adaptation.

Next, peptides prepared from C. albicans grown in YNB ± FBS (YNB with or without FBS) were
subjected to LC–MS/MS analysis using a monolithic silica capillary column (200 cm) [22]. A total of
1418 unique proteins were identified, including 1130, 1012, and 701 proteins from the 0- and 60-min
YNB − FBS cultures, and the 60-min YNB + FBS culture, respectively (Figure 1) [19]. Additionally,
between 868 and 1034 proteins were identified from the YNB + FBS samples taken at 10, 20, and 40 min
after adding FBS.
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Proteins that (i) were not detected in the 60-min YNB − FBS or 0-min control samples, and that
(ii) were continuously expressed (once identified) until 60 min in the YNB + FBS samples were defined
as “newly produced proteins”. The newly produced proteins were regarded as major effectors that
positively contributed to the cell integrity by their presence in the serum. Four proteins (ATP16,
RHR2, HGT1, and orf19.3767) were first identified after a 10-min FBS exposure, and these were
continuously detected at the later time points. Three of them, HGT1, orf19.3767, and ATP16, are
known as transport-related molecules involved in the acquisition of glucose and ATP. C. albicans might
prioritize the acquisition of essential elements after 10 min during the adaptation process. Indeed,
HGT1, a high-affinity glucose transporter, was previously reported to be an essential molecule [23,24].

Four newly produced proteins were each found at 20, 40, and 60 min (Figure 2A) [19]. Thus,
16 proteins total (ATP16, RHR2, HGT1, SPT14, ERG6, PEX12, orf19.3767, orf19.713, orf19.3686,
orf19.4825, orf19.4594, orf19.4620, orf19.5342.2, orf19.2439, orf19.4123, and orf19.6211) were categorized
as newly produced proteins.
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Conversely, proteins that (i) were continuously detected from 0 min to a subsequent time point,
that (ii) were not detected at any time point after their expression first disappeared, and that (iii) were
not detected in the 60 min YNB − FBS sample were defined as “disappearing proteins”. In total,
217 proteins were identified as disappearing proteins (Figure 2B). These proteins are thought to
provide advantages under nutrient-rich conditions, whereas they may have disadvantages in a severe
environment or may be unnecessary.

3. Quantitative Time-Course Proteomics Analysis of C. albicans Serum Adaptation

Previous investigators also conducted a quantitative time-course proteomics study of C. albicans
during the early stages of serum adaptation, from 0–180 min [25]. Quantitative time-course proteome
analysis requires a high-throughput method when measuring numerous samples. In that study [25], an
LC–MS/MS system was equipped with a monolithic silica capillary column longer (470 cm) than that
described in the previous section [19]. Comprehensive characterization of the adaptation process using
quantitative time-course proteome analysis is expected to enhance the understanding of C. albicans
virulence. Previously uncharacterized C. albicans proteins were identified as possible virulence factors.
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Firstly, C. albicans strain SC5314 was incubated for 2 h at 37 ◦C to maintain it in exponential
growth phase, after which the cells were harvested and transferred to YPD medium (YPD series)
or YPD + FBS (FBS series). Extracted cellular proteins were labeled using tandem mass tagging
(TMT). Continuous LC–MS/MS analysis was conducted with a long monolithic silica capillary column
(470 cm) (Figure 3) [25].
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Proteome analyses were conducted using an LC (Ultimate 3000)/MS (LTQ Velos Orbitrap mass
spectrometer, Waltham, MA, USA) system. The system separated prepared tryptic digests at a flow
rate of 500 nL·min−1. The mass spectrometry data were used for identification, and quantification
was performed using the Proteome Discoverer 1.2 software. Protein identification was performed
using MASCOT against the Assembly 21 protein database in the Candida genome database (CGD) [26].
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The Cluster 3.0 software [27] was used for hierarchical cluster analysis of the regulatory patterns
of protein abundance. Proteins were hierarchically clustered (on the vertical axis) and associated
with 12 characteristic categories, labeled A to L (Figure 5) [25]. Four types of groups were identified,
i.e., groups with an increasing trend both in the YPD and FBS series (A–D), a cluster that showed
increased expression in the YPD series (E), groups that showed increased expression in the FBS
series (F and G), and other groups (H–L). To functionally categorize these groups, the proteins were
examined by gene ontology (GO) enrichment analysis using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) [28]. As a result, it was found
that groups A–D were enriched in proteins related to cellular homeostasis, redox regulation, and
glycoprotein metabolism. Proteins in cluster E (YPD-specific) were associated with aminoacyl transfer
RNA (tRNA) biosynthesis. Cluster G (FBS-specific) was enriched with proteins involved in intracellular
processes such as catabolic acetyl coenzyme A (CoA) catabolism and coenzyme catabolic processes
related to the tricarboxylic acid (TCA) cycle (also known as the citrate cycle). Proteins in the TCA cycle
were upregulated in the FBS series compared to those in the YPD series; many proteins involved in the
TCA cycle (for example, Aco1, Aco2, Idp1, Idp2, Fum12, Kgd1, Mdh1, Pck1, and Sdh12) were enriched
in cluster G. In human blood, C. albicans might optimize its proteome by upregulating the TCA cycle to
efficiently acquire energy. This observation was in accord with an earlier study using a microarray that
showed that human blood and a polymorphonuclear cell fraction could transcriptionally activate the
TCA cycle [29,30]. Furthermore, other investigations demonstrated that Gcn4 [31,32], a transcriptional
activator, was important in upregulating the TCA cycle [33,34].Proteomes 2018, 6, x 6 of 15 
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To investigate treatment-specific proteome patterns, time-course profiles of the FBS and YPD series
were categorized using non-hierarchical k-means clustering. Two protein clusters with considerable
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upregulation in the FBS series (group 1: tenfold, group 2: fivefold) were confirmed (Figure 6A) [25],
whereas proteins in the YPD series only showed slow changes, with a maximum upregulation
of approximately twofold (Figure 6B) [25]. In the FBS series, only two (Sod5 and Blp1) of the
1024 identified proteins were clustered in group 1, and four proteins (Ece1, Hgt1, Stf2 and Ucf1)
were clustered in group 2. Other proteins in the FBS series showed slow changes in abundance
(approximately twofold). Based on these results, it was suggested that C. albicans employed the
following adaptation strategy: firstly, C. albicans tuned its proteome to adapt to a new environment, in
which several proteins were upregulated twofold more than suggested by previous reports [5,35,36].
Secondly, a few proteins were upregulated by over fivefold or 1tenfold, which might suggest that
these proteins are important for adaptation to the different environment. These findings conflict
with some data presented in earlier transcriptome reports, which showed that dozens of proteins
were upregulated by over fivefold after blood treatment [29,30], indicative of a low correlation
between transcriptome and proteome analyses of C. albicans, owing to differences in the stability
of transcripts and proteins. A low correlation between transcriptome and proteome was also
reported by Edfors et al. [37]. Use of the RNA-to-protein conversion factor is suggested to normalize
their correlation.Proteomes 2018, 6, x 7 of 15 
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For the FBS series, the detailed profiles of groups 3–5 are depicted in the magnified panel.

Proteins uniquely identified or specifically upregulated in the FBS series can potentially take part
in serum adaptation. Twenty-two proteins were found that were specifically upregulated in the FBS
series [25]. In addition, 28 proteins were uniquely identified in the FBS series. These 50 proteins were
designated “FBS-induced proteins”. Several previously reported virulence factors (for example, Alo1,
Nag6, Phr1, Rpf2, and Sod5 [38–42]), were included in this group, indicating that these proteins found
by proteome analysis are potential virulence factors.

Several proteins among the 50 FBS-induced proteins were related to detoxification of oxidative
species, high-affinity glucose transport, the TCA cycle, oxidative phosphorylation, and iron uptake
(Figure 7) [25]. Recently, Ahmed et al. [43] also suggested that, in addition to rhw TCA cycle, amino-acid
and fatty-acid metabolism were upregulated under FBS-induced condition. In addition, a possible
virulence factor orf19.4914.1 (Blp1) showing pleiotropic stress-tolerance in Saccharomyces cerevisiae
was identified.
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energy production, the elimination of oxidative species, iron acquisition, virulence, pleiotropic stress
tolerance, and uncharacterized processes.

4. Finding an Antigen for a Potential Vaccine

Constitutively expressed C. albicans associated with the cell wall or an important metabolic
pathway are thought to be suitable antigen candidates for producing a vaccine. In an earlier proteomics
study of hyphal induction in C. albicans, several cell-wall proteins were proposed as candidate
vaccine antigens [44]. The C. albicans malate dehydrogenase enzyme (Mdh1p, EC1.1.1.37) [45] was
identified in the time-course proteome studies discussed above (group 4, Figure 6). Mdh1p is essential
for completing the TCA cycle. This protein was regarded as a candidate vaccine antigen against
candidiasis because it was detected at all time points studied without large variations in its relative
abundance. Previously, Mdh1p was also identified in a proteome analysis using a two-dimensional gel
electrophoresis/MS system [46] to screen for immunogenic C. albicans proteins.

Based on these circumstances, a His-tagged Mdh1p variant was initially produced in
Escherichia coli and investigated for its immunogenicity as a candidate vaccine antigen against
candidiasis [47]. Next, Mdh1p was purified using an endotoxin column and administered to mice via
subcutaneous injection or intranasal administration before they were given a lethal dose of C. albicans.
After vaccination, immunoglobulin G (IgG) antibody responses were evaluated by performing
enzyme-linked immunosorbent assays (ELISAs). Furthermore, survival tests were performed to
evaluate the efficacy of C. albicans Mdh1p as a vaccine.

All control mice died within 25 days, whereas 100% and 80% of mice treated with subcutaneous
and intranasal administration of Mdh1p, respectively, survived (Figure 8) [47]. This investigation
suggested that, among the C. albicans antigens examined thus far, such as hyphal wall protein
(Hwp1p) [48], phosphoglycerate kinase (Pgk1p) [49], and glyceraldehyde-3-phosphate dehydrogenase
(Gap1p) [50], Mdh1p is currently the most effective antigen for use as a vaccine for C. albicans.
Further studies of time-course variation in C. albicans under serum-containing conditions to identify
virulence-related molecules would also provide other effective antigenic proteins. Those potential
antigens should be presented to the host using an effective tool, such as a molecular display
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system [51,52]. Presently, we can choose different types of display systems for producing oral vaccines
with potential antigens [53,54].
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Figure 8. Survival ratio after challenging of lethal dose of C. albicans. The antigen, malate dehydrogenase
enzyme (Mdh1p), was administered with cholera toxin as an adjuvant to mice prior to the C. albicans
challenging. (A) Subcutaneous injection of Mdh1p; (B) intranasal administration of Mdh1p. Triangles,
administration of phosphate-buffered saline (PBS); closed triangles, administration of Mdh1p. Vaccinated
mice infected with a lethal dose of C. albicans (at day 0) had a significantly prolonged survival time
compared with mice administered the control (p < 0.01).

5. Mixed and Quantitative Proteome Analysis

Immunological protection of the host against C. albicans is based on, at first, internalization of this
pathogen by macrophages [55]. Macrophages can destroy microorganisms by phagocytosis and recruit
several immune cells by cytokine signaling [56,57]. Unfortunately, following phagocytosis, C. albicans
kills macrophages and eventually escapes from them [58,59]. Little is known about the mechanisms
used by C. albicans to escape from macrophages. Therefore, mixed and quantitative proteome analysis
may be useful, and it is performed to understand comprehensive proteome responses occurring
during natural interactions between C. albicans and macrophages. To conduct mixed and quantitative
proteome analysis, samples prepared from C. albicans and macrophages were directly analyzed
by nano-LC–MS/MS without isolating the C. albicans and macrophage cells during co-cultivation
(Figure 9) [60].
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Figure 9. The process of mixed and quantitative proteome analysis. (A) Protein identification is
performed with C. albicans and Mus musculus genome databases without isolation of two organisms.
(B) The same identification is performed after isolation of two organisms.

The measurement accuracy of mixed and quantitative proteome analysis was first evaluated.
The standard sample was separated into three aliquots at a 0.5:1:2 ratio by volume. After labeling with
TMT reagents with different reporters, the three samples were mixed in a single tube and injected into
a nano-LC–MS/MS system. Each peptide showed the approximate expected proportional intensity
of reporter ions based on the ratio of 0.5:1:2. This experiment suggested that each peptide could
be quantified at high accuracy, even if the peptides were in a mixture derived from two different
cell types. Next, the amount of tumor necrosis factor (TNF)-α released from macrophages into the
culture medium was investigated by ELISA, because macrophages infected by pathogens produce
TNF-α [61,62]. The amount of TNF-α produced from macrophages interacting with C. albicans was
greater than non-interacting controls and increased in a time-dependent manner, with the amount
of TNF-α increasing after 3 h of interaction. To identify proteins related to the mechanism whereby
C. albicans escapes from macrophages, an early time point (3 h) was selected for the proteome analysis.

After protein isolation, the investigators performed reduction, alkylation, digestion, TMT-labeling,
and LC–MS/MS measurements, using the same system described in the above section. The MS data for
each biological replicate was used for protein identification and quantification. Protein identification
was performed using MASCOT against the Assembly 21 CGD for C. albicans and against the Mus
musculus database in the National Center for Biotechnological Information (http://www.ncbi.nlm.nih.
gov/) and the International Protein Index. As a result, 483 C. albicans proteins and 1253 macrophage
proteins were identified by performing mixed and quantitative proteome analysis (Figure 9). Using the
C. albicans database, 976, 18, and 0 proteins were identified from the C. albicans monoculture, the
macrophage monoculture, and complete culture medium used as background, respectively.

Apparently up- and downregulated C. albicans proteins were categorized based on their functions
by pathway analysis using the KEGG pathway of DAVID (threshold: enrichment score > 1.5) [60].
Ninety-five of the upregulated proteins were mainly involved in pathways associated with glucose
synthesis, amino-acid degradation, proteasome functions, and stress responses. The 132 downregulated
proteins were categorized mainly in the “ribosome”. Three conclusions were suggested from this

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
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pathway analysis: (1) with respect to central metabolic pathways, C. albicans degrades proteins through
proteasomes and generates glucose from the degradation products to prevent glucose starvation;
(2) C. albicans produces stress-tolerance proteins that help it survive inside macrophages; (3) C. albicans
produces candidate pathogenic proteins that facilitate escape from macrophages.

Several upregulated proteins identified in the investigation serve roles in adhesion (Als3, Mp65)
(Figure 10) [60]. Als3 promotes C. albicans invasion into endothelial cells by binding to cadherin
and promoting its own endocytosis [63,64]. The C. albicans adhesion protein might further help with
adhesion and escape from macrophages. Upregulation of some proteases (Ape2 [65], orf19.1891, and
orf19.7263) suggested that proteolysis and peptide utilization were necessary for C. albicans survival.
Some upregulated proteins (orf19.4914.1, orf19.4441, orf19.5201.1, orf19.6035, orf19.357, orf19.3053,
and orf19.5078) related to unknown proteins or hyphal formation were not functionally characterized
in detail. These proteins could be important virulent factors, and further studies could provide
important insights.
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The macrophage proteins whose levels changed during the interaction with C. albicans were also
confirmed. Most of the dysregulated proteins were downregulated, not upregulated. In particular,
downregulation of macrophage apoptosis-associated protein, nitric-oxide-associated protein 1 (NOA1),
syntheses [66–69] and chaperone HSPA1A syntheses [70,71] suggested that C. albicans could evade
macrophages, in part, by inhibiting the production of these macrophage proteins. These results
found in the mixed and quantitative proteome provide novel insights into the relationship between
C. albicans and macrophages, and should lead to a better understanding of systemic candidiasis and
the development of novel pharmaceutical inhibitors of candidiasis.

6. Conclusions

In this review, quantitative proteomic studies of the virulent microorganism C. albicans were
described. All quantitative proteome analyses described here were conducted using an LC–MS/MS
system with a long monolithic silica capillary column. As an application of proteomics studies, the
C. albicans antigen used for vaccine development was investigated here. The nano-LC–MS/MS system
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could contribute to understanding the physiology of C. albicans, as well as diagnostic or therapeutic
drug development for candidiasis [72,73].
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