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It has been widely shown that chronic alcohol use leads to cognitive dysfunctions,

especially inhibitory control. In an extension of the traditional approach, this research

field has benefited from the emergence of innovative measures, among which is an

anti-saccade, allowing direct and sensitive measure of the eye movements indexing

attention bias to alcohol-related cues and the capability of inhibiting the reflexive

saccades to the cues. During the past decade, there are numerous reports showing that

drinkers make more unwanted reflexive saccades and longer latency in the anti-saccade

task. These increased errors are usually explained by the deficits in inhibitory control.

It has been demonstrated that inhibitory control on eye movement may be one of

the earliest biomarkers of the onset of alcohol-related cognitive impairments. This

review summarizes how an anti-saccade task can be used as a tool to investigate

and assess the cognitive dysfunctions and the early detection of relapsing risk of

alcohol dependence.
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INTRODUCTION

Alcohol use has increased rapidly in many countries in the past decade, especially during times of
the coronavirus disease 2019 (COVID-19) pandemic, due to the increase in illegal production of
alcohol and the disruptions in access to medical care for alcohol dependence (1–3). A substantial
body of evidence suggests that chronic excessive alcohol use can cause deficits in a broad range
of cognitive functions, including memory, learning, psychomotor speed, visuospatial functioning,
attention, executive functioning, and impulsivity (4). A common cognitive mechanism underlying
these deficits, alcohol use disorder (AUD), may be the inflexibility of inhibitory control that can be
probed with behavioral paradigms such as Stroop task and go/no-go task (5–7).

In the above-mentioned behavioral paradigms, the impaired inhibitory control on the response
or attention bias to the substance-related cue was often indexed by lowered accuracy or delayed
responses to complete the cognitive task when the cue was presented as distracting information.
For example, conflict between task-irrelevant words and task-relevant colors in the Stroop task
led to interference on the behavioral response that is required by the task. It can be tested that,
relative to neutral cues, drug-related cues induce attention in drug users. The attention bias to
drug-related stimuli is reflected by the increase in reaction times (RTs). However, the evidence is
indirect and the effect is somewhat circumstantial because the increased RT is affected by complex
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cognitive processing as well as linguistic and motor abilities.
The assessment of attention bias would be benefitted from
multiple dimensions: What was noticed first? How long did it
take the subject to attend the target? Was the attention bias
due to the difficulty of disengaging attention from the drug-
related cue? Addressing these issues thus asks for a direct and
multidimensional index and real-time monitoring for attention
bias, i.e., eye movement.

The anti-saccade task, first developed by Peter Hallet in 1978,
has emerged as an imperative tool for investigating the capacity
of suppressing the prepotent response (8). A correct anti-
saccade performance consists of two main saccadic processes,
namely, restraining a reactive saccade toward the target and then
producing a saccade in the opposite direction. In this task, a
sudden-onset target appears in the peripheral visual field and
participants are instructed to suppress the automatic response
(pro-saccade) and instead direct their gaze in the opposite
direction (anti-saccade). To carry out volitional saccade in the
opposite direction, the powerful urge tomake a reflexive response
to a sudden-onset target has to be suppressed. This effortful
process results in slower latencies for correct anti-saccades and
more errors than for pro-saccades.

There are three variants of anti-saccade tasks, namely, gap,
overlap, and immediate condition (9). The division of the three
paradigms is based on the temporal difference between the
disappearance of the central fixation point and the emergence
of the target. If the central fixation is still there when the target
appears, it is the overlap condition; if the central fixation point
has disappeared for a period of time when the target appears, it is
the gap paradigm; and if the central fixation just disappears when
the target appears, it is the immediate condition (Figure 1). It has
been suggested that anti-saccade task provides abundant sources
of data to study the link among inhibitory control, executive
function, and the underlying neural substrates.

In this review, first, we briefly described the neurocognitive
impairment in AUD, the potential neurobiological, and
neurochemical mechanisms by which alcohol consumption leads
to cognitive dysfunctions. Second, we also discussed how the
anti-saccade task can be used as an important tool to investigate
the capability of suppressing the impulse to the substance-related
stimuli in AUD, and how anti-saccade performance can predict
the long-term cognitive dysfunctions and the early detection of
relapsing risk of AUD.

THE MOST COMMON MEASUREMENTS IN
THE ANTI-SACCADE TASK

The commonly used indicators in anti-saccade tasks are as
follows (10, 11): (1) saccade latency, also known as RT of the
first saccade, refers to the interval from the appearance of the
target to the first saccade. In the anti-saccade task, there are
correct anti-saccade latency and wrong pro-saccade latency. (2)
The wrong rate of saccade direction refers to the proportion
of saccades made in the wrong direction in the anti-saccade
task. The stimulus suddenly appearing in the visual field induces
reflective saccade toward the target, which are otherwise required

to be inhibited. Therefore, the direction error rate of saccade can
reflect the autonomous control ability and is an important index
to investigate inhibition function. In addition, saccade amplitude,
velocity, and peak velocity of reverse saccade are also the basic
indicators of the anti-saccade task, which can reflect the ability to
execute and inhibition control.

NEURAL MECHANISMS OF
ANTI-SACCADES

The neural mechanisms of anti-saccades have been extensively
studied, and the brain regions responsible for anti-saccades have
been identified. In anti-saccade tasks, the automatic saccade (pro-
saccade) and the voluntary saccade (anti-saccade) were thought
to be in the planned state at the same time. Meanwhile, they have
a competitive relationship in the neural activation or inhibition.
The outcome of the competition ultimately determines which
kind of saccade would be implemented.

Whether or not a correct anti-saccade can be generated
depends on the relative activation of the neural system toward
a pro-saccade and anti-saccade (12). The competition theory
suggests that if the neural system performing anti-saccade
reaches the activation threshold first, a correct anti-saccade will
be generated and the reflexive saccade will be suppressed (13).
Conversely, if the neural system performing reflexive saccade
first reaches the activation threshold, it will lead to a false
saccade toward the target, and then a corrected saccade may be
generated. The process of the anti-saccade is more complex, and
its activation threshold is relatively higher than that of a pro-
saccade (14). The neural activation of the automatic saccade has
to be decreased so that the anti-saccade system can reach the
activation threshold.

The superior colliculus (SC) and the frontal eye fields (FEFs)
contain distinct populations of fixation and saccade neurons,
which play a regulatory role in the production of a correct
anti-saccade through modulating discharges in a reciprocal
manner (15). Compared with prosaccade trials, activity of
fixation neurons is enhanced on anti-saccade trials, which can
explain the anti-effect: longer RTs in anti-saccade trials than
in pro-saccade trials. The contralateral dorsolateral prefrontal
cortex (DLPFC) and anterior cingulate cortex (ACC) can inhibit
reflexive saccade by inhibiting the neurons (16). Recently,
converging evidence in experimental animals and human has
revealed the neural networks that are involved in the production
of anti-saccades. Clinical studies found that patients with lesions
of the DLPFC struggled to perform the anti-saccade task, leading
to the suggestion that the frontal lobes played a significant
role in the inhibitory control (17). Similarly, by combining
iontophoretic application of the general muscarinic receptor
antagonist scopolamine with single-cell recordings, Major AJ et
al. demonstrated that the blockade of muscarinic receptors in
DLPFC led to deficits in saccade and visual direction selectivity
measures (18). Johnston, Kevin et al. found that the DLPFC
neurons send signals selective for stimulus location, saccade
direction, and task directly to the SC through the technique
of implanting electrodes in DLPFC and SC (19). These studies
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FIGURE 1 | Schematic of the pro- and anti-saccade tasks. Each trial began with the presentation of a fixation point at the center of the screen, which participants are

required to fixate, and to make either a prosaccade or antisaccade depending on the task rule. Immediate pro-saccade task: A-D; Immediate anti-saccase task: A-E;

Gap pro-saccade task: A-F-D; Gap ant-saccade task: A-F-E; overlap pro-saccase task: A-B; Overlap anti-saccade task: A-C.

have provided evidence that the DLPFC may provide top-down
signals to the SC neurons to inhibit the automatic saccade (20).
Another area that might also send a supplementary signal to
SC and FEF for the motor command of anti-saccades is the
supplementary eye fields (SEFs). These commands sent to the
brainstem premotor circuit can augment motor commands from
the FEF and SC leading to the successful production of volitional
anti-saccades (21).

It is more likely that a wrong-directional saccade and correct
anti-saccade are not a series of processing processes but rather
may be processed simultaneously. The individuals plan the
correct anti-saccade while restraining the automatic pro-saccade.
There is a certain connection between the parietal lobe region of
the brain and the spatial calculation of an anti-saccade. The tasks
require the perceptual motor conversion function to transform
the visual stimulus into the appropriate motor command for the
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FIGURE 2 | Anti-saccades research in neurological and psychiatric disorders.

execution of saccades of the parietal lobe. The conversion is fast
and the exact mechanism is unknown. However, evidence has
accumulated to the lateral intraparietal area (LIP), and FEFmight
have a crucial role in vector inversion (22).

Anti-saccades Research in Neurological
and Psychiatric Disorders
Eye movement plays a vital role in the acquisition of visual
information. Eye movement tasks, especially saccadic tasks, have
been widely used in patients with neurological and psychiatric
disorders to assess cognitive function in recent years (Figure 2).
Holden et al. believed that it was a dynamic process for patients
to develop from amnestic mild cognitive impairment (aMCI)
to Alzheimer’s disease (AD). According to this point of view,

they conducted anti-saccade tasks among three groups (i.e.,
aMCI, mild AD, and controls), which found that patients with
aMCI committed significantly more anti-saccade errors (46.9%)
compared with those of controls (24.3%). Moreover, the AD
group had a significantly larger self-corrected error rate than
the other two groups (23). The anti-saccade task is especially
useful for detecting dysfunction in selective attention in aMCI
and AD (24). In some other studies, participants with AD showed
reduced activation in the FEFs and posterior cortex and increased
inhibitory errors when performing the anti-saccade tasks in
a functional magnetic resonance imaging (fMRI) study (25).
Executive dysfunction can be tested in Parkinson’s disease (PD);
Gallea C et al. investigated the predictive factor of freezing in
PD by anti-saccade tasks and reported that compared with the
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non-Freezer group, the Freezer group showed equivalent motor
or cognitive signs but increased anti-saccade latency before the
impairment of motor or other cognitive function like memory.
They concluded that anti-saccade latency is a predictive marker
of the 5-year onset of freezing of gait (26). Moreover, inhibition
control deficits in PD have been attributed to fronto-basal
ganglia (BG) dysfunction in translating signals into voluntary
motor behavior (27–29). Saccadic data also confirmed executive
dysfunction in amyotrophic lateral sclerosis (ALS) as the higher
percentage of direction errors in the anti-saccade tasks and
increased saccadic latency (30).

Anti-saccade tasks are also used in psychiatric disorders
to assess inhibitory control and explore the potential
neurobiological mechanisms of the diseases. Children with
attention deficit hyperactivity disorder (ADHD) exhibited
shorter latency and significantly a higher anti-saccade error
rate than the control group, which confirmed that children
with ADHD have difficulties on precise oculomotor control
and oculomotor response inhibition function (31). This kind
of oculomotor control dysfunction is reflected in patients with
internet gaming disorder (IGD) and socially anxious (SA). The
IGD group exhibited higher saccade-error rates in the case of
game-related images than in neutral or scrambled images (32).
However, SA participants had longer anti-saccade latencies than
non-anxious (NA) participants (33).

NEUROCOGNITIVE IMPAIRMENT IN AUD

Alcohol Effects on Cognitive Function
Alcohol consumption can lead to impaired cognitive functions,
accompanied with an impulse to substance-associated stimuli
(34). The ability of inhibiting an automatic impulse can be
indexed by the Stroop effect that assessed with the computerized
version of the Stroop Color and Word Test (SCWT) (35). It is
widely believed that the Stroop test is one of the gold standards
of attention measures and one of the most popularly used
instruments in clinical and experimental neuropsychological
settings (36). In the SCWT, participants are often presented
with colored color words (e.g., the word “red” printed in green)
and are required to suppress the dominant tendency to read
the word and instead identify the print color of the word, e.g.,
green) (37). The extent to which the print color is correctly
and quickly identified is taken as how well the distracting word
is inhibited. It has been found that patients with AUD show
longer RTs in color-naming words and higher error rates on
alcohol-related Stroop pictures (i.e., photos of alcoholic drinks
or persons drinking alcohol) than neutral Stroop pictures (i.e.,
photos of kitchen items or persons in kitchen scenes), indicating
an attention bias to alcohol cues relative to neutral cues (38–
40). In addition, Christiansen and his colleagues showed that
including individualized stimuli (e.g., the current participant’s
favorite drink) as the Stroop stimuli is more sensitive to measure
the attention bias than including standardized stimuli (41).
Studies using different paradigms, such as go/no-go tasks (42–
44), visual conjunction search (VCS) tasks (45), cued visual probe
tasks (cVPT) (46), and flanker tasks (47) and have consistently
demonstrated that participants with AUD showed attention
bias to alcohol-related cue. Moreover, these experiments also

indicated that the poorer behavioral control was related to higher
alcohol consumption.

In addition to attention bias and impaired executive function,
AUD also showed other cognitive deficits. For instance,
individuals drinking more frequently showed worse performance
in a visuospatial functioning task, and this effect did not depend
on more alcohol use days (48). By examining changes in
working memory performance as measured by Trail Making
Test-B, Lechner et al. highlighted that the function between
greater alcohol-induced working memory decline and adverse
consequences was mediated by the amount of the drinks
per drinking day (49). However, Nguyen-Louie et al. drew a
contrary conclusion about the link between adolescent alcohol
with neuropsychological measurements, showing that more
alcohol use days led to more neurotoxic events, and predicted
worse verbal memory, visuospatial ability, and psychomotor
speed, whereas unexpectedly, predicted better working memory
performance (50).

Alcohol Effects on the Brain Structure
The long-term, heavy consumption of alcohol results in
reversible or irreversible modification of selective neural systems
of the brain function and structure (51, 52). Brain structure
damage in chronic alcoholism is well documented (53). Based
on modern neuroimaging technology, an increasing number of
studies have shown brain structure damage that can be related to
alcohol dependence.

For example, Cosa et al. found robust magnetic resonance
imaging (MRI) markers that are affected by alcohol, which
showed the sensitivity and selectivity even after the relative short
exposure period of alcohol consumption (54). Many animal and
human models consistently demonstrated that the prefrontal
cortex (PFC) is affected by chronic alcohol consumption.
Extensive evidence from neuroimaging studies indicates that
alcohol exposure leads to the degradation of circuitry originating
from the PFC, which plays an essential role in PFC-dependent
behavioral deficits in AUD (55). By using fMRI, Kreusch et al.
found greater activation of PFC, in the presence of alcohol-
related cues compared with neutral cues in young heavy drinkers
(HDs). A potential vicious cycle was suggested that a late
maturing of PFC can also increase the vulnerability of developing
substance use disorder later in life including AUD (56). The
DLPFC, known for its importance in cognitive function, is
thought to be impaired globally by alcohol consumption.

To date, an increasing number of studies have addressed anti-
saccade performance in AUD. The various forms of behavioral
change in AUD show a striking similarity to that of patients
with prefrontal lesions, such as AD (57). Hence, anti-saccade task
performance is related to structural alterations in the frontal lobe
and can be a reliable and valid biomarker for the diagnosis of
AUD (58, 59).

ANTI-SACCADE RESEARCH IN ALCOHOL
USE DISORDER

Dose Correlates
The impairment of impulse inhibition in AUD has been shown in
previous studies using anti-saccade tasks. Specifically, a decreased
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anti-saccade accuracy and a specific alcohol-induced impairment
in saccade amplitudes were observed in AUD (60–62). Roche
DJ et al. investigated how the doses of alcohol consumption
affect the eye-movement control. A total of 138 non-alcoholic
social drinkers, with self-reported positive (FH+) or negative
(FH–) family history, were enrolled in this study. They were
divided into two groups [i.e., HDs and light drinkers (LDs)]
according to the guidelines from The Substance Abuse and
Mental Health Services Administration (SAMHSA). Both groups
received eye-movement tests of smooth pursuit, prosaccadic, and
antisaccadic task at baseline, 60min (T1), and 180min (T2) after
the initiation of beverage consumption (63). All the subjects
consumed a high alcohol dose (0.8 g/kg), a low alcohol dose
(0.4 g/kg), or a beverage containing placebo (1% ethanol as
taste mask) with the order randomized across separate sessions.
In the anti-saccade tasks, both high dose of alcohol (0.8 g/kg)
and low dose of alcohol (0.4 g/kg) increased the latency and
decreased anti-saccade velocity for both HD and LD, whereas the
effect of high dose was greater and more lasting. Interestingly,
HDs reported less perceived deficits from alcohol than LDs in
anti-saccade tasks.

It is generally considered that heavier drinkers display
reduced reactions to a dose of alcohol. The theory of behavioral
tolerance to alcohol posits that more experience with drinking
to intoxication leads to less impaired cognitive and psychomotor
performance (64). One possible explanation is that exposure to
heavy or binge drinking may produce behavioral tolerance to the
response to alcohol (e.g., greater motor skills). However, some
research explained that behavioral tolerance in heavy drinkers
occurs only at the early phase, but the heavy drinkers remain at
risk in alcohol harm as they continue to engage in chronic binge
drinking over time (65, 66).

Comorbidities Correlates
Alcohol use disorder often shows attention bias to alcohol
images, as revealed by eye-tracking tasks (67). The seek for
alcohol significantly develops an attention bias, which has been
demonstrated in previous studies (68). This effect also can be
observed in the populations with co-morbid AUD and other
impulse control disorders. Some research has measured the
performance in these patients, and the underlying connection
between AUD and the comorbidities could be probed with anti-
saccade tasks.

Patients with binge eating disorder (BED) show dysfunction
of inhibition on response to food cues in anti-saccade tasks,
and they usually have co morbidity with AUD and meanwhile
show strong impulse to alcohol cues (69–71). Drinkers may
have difficulties in inhibiting saccades toward appetitive stimuli,
particularly when stimuli were in the peripheral visual field
(72). To assess the difference between the deficits of response
inhibition between the two disorders, Schag, Kathrin et al.
compared the performance between BED, AUD, and their age-
and sex-matched control groups in the modified anti-saccade
tasks (73). In the tasks, the stimulus in each trial was specific to
the disorder (food stimuli for BED and alcohol stimuli for AUD).
The results showed that BEDs made more directional mistakes
in both first saccades and second saccades, which indicated

that BEDs have more difficulties in inhibiting the response to
stimuli regardless of the stimulus category. However, AUDs
showed no discrepancy in the error rates, compared with the
control groups. In addition, AUDs also performed significant
less fixations to alcohol stimuli and shorter dwell times on both
alcohol stimuli and neutral stimuli in free exploration tasks.
Taking the two tasks into consideration, we can suggest that
AUD avoid stimuli deliberately. One of the limitations of the
research was that AUDs were told to be abstinent before the tasks,
so that the tendency to avoid alcohol stimuli can be explained
by learning efficiency. Peña-Oliver et al. investigated the diverse
degrees of impulsivity to food incentives and substantiated a
remarkable increase of goal-directed behavior to food incentives
in alcohol-preferring rats, which might be related to their intense
preference for alcohol (74). Moderate drinking can increase
subsequent food intake, particularly of high-fat savory food
as well (75). Christiansen P et al. investigated the effects of
alcohol on energy intake and found that individuals who were
given an alcohol prime (i.e., alcoholic drink mixed with diet
lemonade) (0.6 g/kg) performed worse on the Stroop test and
consumed more cookie calories than individuals who were given
the placebo drink (76). However, the increase in energy intake
was not observed in acute alcohol consumption (0.4 g/kg) in
another study (77). Recent research demonstrated that alcohol
consumption can increase food intake and food reward, but such
effects occur only at a higher dose (0.6 g/kg) (78). A conclusion
that can be drawn is that, in anti-saccade tasks, patients with
BED show unselected attention bias to food cues (including
alcohol-related stimuli), whereas only patients with AUD with
low dose of alcohol show highly selective attention bias to
alcohol-related cue. The attention bias to alcohol-related stimuli
in AUDmay generalize into food cues when the patients consume
more alcohol.

In another line, researchers have examined the dysfunction
of impulse control in patients who had comorbid alcohol and
cocaine use disorder. They concluded that the anti-saccade
performance could be a predictor of decreased white matter
integrity (79). Given that anti-saccade performance affected
by alcohol intoxication has been shown in different forms of
comorbidity with AUD, the task may have the ecological validity
in the way that it can be a promising tool to assess the risk of
further developing into other impulse control disorder with the
long-term alcohol consumption.

Alcohol Intoxication
The development of AUD involves chronic heavy drinking to
high levels of alcohol intoxication. Likewise, earlier occurred
alcohol intoxication in adolescent is related to the higher rate of
diagnosing AUD in the adulthood (80, 81). In addition to long-
term neurocognitive impairment, some research has focused
on the deficit of inhibition control during intoxication period
with behavioral paradigm. In a study using the Stroop task,
20 healthy social drinkers, who reported imbibing 1–3 times a
week as light-to-moderate drinking pattern and 1.5–3.5 drinks
an occasion, participated in both alcohol (vodka as 20% v/v in
orange juice) and placebo (the same volume of orange juice)
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sessions as their own control condition. The modified four-
color Stroop task required individuals to respond to the color.
Each word’s color was consistent or inconsistent with the word
meaning. There were also trials with a word in gray color, and
the participants had to respond to the word meaning. Blood
oxygen level-dependent (BOLD) signal was acquired using fMRI
during the task. The results showed that alcohol increased RTs
error rates in incongruent trials. Moderate alcohol inebriation
attenuated ACC activation during both incongruent trials and
erroneous responses. These findings suggested that alcohol
consumption interferes with goal-directed behavior, resulting in
poor inhibition control.

The Stroop evidence based on the behavior results is
somewhat indirect. The cognitive processes include in such
tasks involve both manual inhibition and saccade inhibition.
Alcohol can also affect the motoric execution, such as the button
press (82).

Anne Eileen Campbell et al. investigated the effect of
alcohol on response control separately. In their study, 40
participants reported consuming 48 g ethanol in one session on
at least 6 occasions in the past year, and they were required
to complete each experimental task in sessions before and
after drink manipulation in the alcohol testing day (i.e., 40%
volume vodka in 500ml orange juice) and placebo testing
day (i.e., the same volume of orange juice with a few drops
of vodka). The task can be divided into two parts, namely,
manual and saccadic stop-signal reaction time (SSRT) task
(83). In manual SSRT tasks, participant are told to make
rapid responses with right or left index fingers to the location
of the target. Similarly in saccadic SSRT tasks, saccades are
produced corresponded the left and right targets. In addition,
a red fixation point appears in the center of the screen as
a distraction in 25% trials, and participants completed these
trials with the instruction to ignore the signal and continue to
make a correct button press or saccade response. The results
showed that the RT (i.e., latency) reflecting manual inhibition
increased during alcohol intoxication, but the RT (i.e., latency)
reflecting saccadic inhibition did not increase. Their finding
is different from the previous one, which noted significant
increase of saccade latency by alcohol and decrease of peak
velocity in classical anti-saccade tasks (61). However, both
have found that saccadic error rates were not influenced by
alcohol intoxication.

Below, we explained what accounts for the discrepancy in
the results between the two experiments. First of all, Anne
Eileen Campbell et al. employed the saccadic SSRT task in which
reflexive eyemovements toward sudden-onset distractive fixation
point has to be inhibited but in the absence of the requirement
to perform an immediate anti-saccade, which involved vector
inversion and voluntarymovement.Moreover, the research based
on the classical anti-saccade task also detected the impairment of
saccade amplitude (accurate mirrored saccadic location) under
alcohol. Combined with the above results, it suggests that
alcohol intoxication impairs the process of vector inversion
and voluntary movement in anti-saccade but not the trigger
to inhibit the flexible saccade. Second, in the saccadic SSRT

task, the peripheral target appeared 12◦ from center (6◦ in anti-
saccade task). Nevertheless, the latency of the corrective anti-
saccade decreased with increasing stimulus distance (84). This
may explain why there was no increase of saccade latency in
saccadic SSRT task.

It seems that saccadic inhibition is immune to alcohol
intoxication. It has been shown that the frontal cortex and SC
are considered to be the key regions and command producers
of saccade, respectively. On account of previous studies on the
neural mechanisms of antisaccades, the immunological effect
probably was due to the interactive regulatory unbalance of
fixation and saccade neurons in FEF and SC (15). The saccade
neurons (active in prosaccade) are inhibited more intensively
than fixation neurons affected by alcohol intoxication so that
the visual response that is initiated by the appearance of
the target will not exceed reflexive saccadic threshold (20).
However, exposing to ethanol has an effect of suppressive cortical
visual event-related potentials (ERPs), which then interferes the
assessment of inhibitory function in the frontal cortex. Research
based on fMRIs results also demonstrated alcohol-induced
activity decreases to voluntary anti-saccades and responses to
erroneous responses in dorsal ACC, an area that is the central
node in a predominantly frontal cortical network sub-serving
inhibitory tasks (85).

LIMITATIONS AND FUTURE DIRECTIONS

Although a large number of studies have used anti-saccade
tasks, these studies are not uniform in experimental settings.
For example, the target eccentricity used in many studies ranges
from 4◦ to 10◦, which makes saccade latencies and error rates
of different studies inappropriate to compare with each other.
The history of alcohol consumption is also a significant factor
in the analysis of the ethanol effects on PFC and SC. Thus,
it is not conclusive to summarize the extent of impairment of
inhibition control among AUDs. In addition, saccade latency
and saccade error rate are frequently used in assessing AUDs,
but there are relatively few studies on saccade spatial accuracy
and the underlying mechanisms. This is also the content to
be paid attention to in future research. In preparation for our
manuscript, we have searched the databases PubMed, Cochrane
library, and Web of Science up to and including October 2021
to collect the literature. Our search terms included alcohol use
disorder OR alcohol dependence OR alcoholism OR alcohol
intoxication AND anti-saccade OR saccade OR eye-tracking with
no search limits applied. However, the relevant literature is not
enough for a systematic review. First, these studies involved a
wide range of subjects including abstainers, social drinkers, and
alcohol intoxication. It is difficult to compare their impaired
performance in anti-saccade task given the major discrepancy
of inclusion criteria. Second, the different eccentricity of target
stimulus could also make a significant impact on the results
based on anti-saccade tasks. Finally, according to previous
research, the alcohol-related stimuli could lead to an obvious
deficit of saccadic inhibition control in AUD compared with the
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neutral stimuli. Nevertheless, the studies we searched adopted
different types of cue in the tasks and assessed different ability
of inhibition control (i.e., manual or saccadic), which are not
appropriate for conducting a systematic analysis. Considering
all things, we still think it is necessary to summarize these
studies to remind the readers that the anti-saccade task is
multidimensional, objective, and convenient, as a tool to assess
the attention bias and inhibition control in AUD. Moreover,
this is our objective to write the review, and we all hope to
lay a foundation of diversified research method in AUD in
the future.

In summary, as prolonged alcohol abuse is known to
impair response inhibition, alcohol abusers may benefit from
interventions that improve response inhibition, thereby restoring
inhibitory control over automatic impulses (43, 86). Eye-
movement tasks, especially the anti-saccade task, may be
favorable for detecting the early impairment of inhibitory control
and the risk of AD. Some new techniques such as virtual
reality (VR) technology and mobile devices can be applied to
assess saccadic eye movements in situations more similar to
the real world (87, 88). A growing consensus that AUD and
AD share common disease pathophysiology is the dysfunction
in the cholinergic system in the brain, which probably can
explain the preclinical abnormity showed in anti-saccade tasks
(89, 90). According to this, the acetylcholine esterase (AchE)
inhibitors may improve the frontal executive function in AUDs.
Clinicians should also be cautious about the exposure of the social

drinkers to the different types of alcohol-related stimuli during
anti-saccade tasks, such as alcohol-related auditory cues (91).

These findings, taken together, indicate a new direction in
future work. Aided by the early detection of inhibitory error
rates in the anti-saccade task, there is increased potential for
commencing effective interventions earlier for AUDs.
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