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Abstract

Cardiac fibroblasts, when coupled functionally with myocytes, can modulate the electrophysiological properties of cardiac
tissue. We present systematic numerical studies of such modulation of electrophysiological properties in mathematical
models for (a) single myocyte-fibroblast (MF) units and (b) two-dimensional (2D) arrays of such units; our models build on
earlier ones and allow for zero-, one-, and two-sided MF couplings. Our studies of MF units elucidate the dependence of the
action-potential (AP) morphology on parameters such as Ef , the fibroblast resting-membrane potential, the fibroblast
conductance Gf , and the MF gap-junctional coupling Ggap. Furthermore, we find that our MF composite can show
autorhythmic and oscillatory behaviors in addition to an excitable response. Our 2D studies use (a) both homogeneous and
inhomogeneous distributions of fibroblasts, (b) various ranges for parameters such as Ggap,Gf , and Ef , and (c) intercellular
couplings that can be zero-sided, one-sided, and two-sided connections of fibroblasts with myocytes. We show, in
particular, that the plane-wave conduction velocity CV decreases as a function of Ggap, for zero-sided and one-sided
couplings; however, for two-sided coupling, CV decreases initially and then increases as a function of Ggap, and, eventually,
we observe that conduction failure occurs for low values of Ggap. In our homogeneous studies, we find that the rotation
speed and stability of a spiral wave can be controlled either by controlling Ggap or Ef . Our studies with fibroblast
inhomogeneities show that a spiral wave can get anchored to a local fibroblast inhomogeneity. We also study the efficacy of
a low-amplitude control scheme, which has been suggested for the control of spiral-wave turbulence in mathematical
models for cardiac tissue, in our MF model both with and without heterogeneities.
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Introduction

Cardiac fibroblasts, which are connective, non-myocyte cells,

play a major role in producing myocyte cells, both in the early

stage of heart development and after a myocardial infarction.

Experimental studies [1,2] suggest that such fibroblasts can be

coupled functionally with myocytes, under both physiological and

pathophysiological conditions. Fibroblasts can, therefore, modu-

late the electrophysiological properties of cardiac tissue. However,

it is not clear yet what range of values we should use for the gap-

junctional conductance Ggap of a fibroblast-myocyte gap junction

[3–5]; in intact tissue 4nS Ggap 6nS [3] and, in cell-culture

preparations, 0:3nS Ggap 8:0 nS [5]. The structural organi-

zation of fibroblast cells in cardiac tissue, which consists of

myocyte and non-myocyte cells (e.g., fibroblasts), is still being

explored [2,6–8] for different mammalian hearts. This lack of

detailed structural and functional information makes it difficult to

use experimental studies to uncover the precise role that fibroblasts

play in the propagation of electrical impulses and spiral waves of

electrical activation in cardiac tissue. Therefore, computational

studies are beginning to play an important role in the investigation

of the properties of mathematical models for cardiac tissue that

include myocytes and fibroblasts and a coupling between them;

some of these study a single, composite myocyte-fibroblast cell [9–

12]; others have considered electrical-wave propagation in one-

and two-dimensional, mathematical models for cardiac tissue, in

which the fibroblasts are modelled as passive cells [11,13,14].

Here, we build on mathematical models that couple cardiac

myocytes and fibroblasts at the single-cell level (this yields a

myocyte-fibroblast MF composite) to develop a mathematical

model for a two-dimensional (2D) sheet of cardiac myocytes

coupled to a similar sheet of fibroblasts. Our model uses the state-

of-the-art ionic model for human cardiac myocytes due to ten

Tusscher, Noble, Noble, and Panfilov (TNNP) [15]; we include

connections between myocytes and fibroblasts via gap junctions;

and we also allow for the possibility of studying zero-sided, one-sided,

and two-sided couplings (see section on ‘‘Model and Methods’’).
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We begin with a summary of the principal results of our

extensive numerical studies, which we have designed to elucidate

electrophysiological properties in mathematical models for (a)

single myocyte-fibroblast (MF) units and (b) two-dimensional (2D)

arrays of such units. Our studies of MF units yield the dependence

of the action-potential (AP) morphology on parameters such as Ef ,

the fibroblast resting-membrane potential, the fibroblast conduc-

tance Gf , the number Nf of fibroblasts coupled to a myocyte, and

the MF gap-junctional coupling Ggap; and our MF composite can

show autorhythmic and oscillatory behaviors in addition to an

excitable response. We also present ionic mechanisms that are

responsible for the modulation of the AP as we alter Ef or Ggap.

Our 2D studies use (a) both homogeneous and inhomogeneous

distributions of fibroblasts, (b) various ranges for parameters such

as Ggap,Gf , and Ef , and (c) zero-, one-, and two-sided MF

connections. We show that the plane-wave conduction velocity

CV decreases as a function of Ggap, for zero- and one-sided

couplings; however, for two-sided coupling, CV decreases initially

and then increases as a function of Ggap, and, eventually, we

observe that conduction failure occurs for low values of Ggap. In

our homogeneous studies, we find that the rotation speed and

stability of a spiral wave can be controlled either by controlling

Ggap or Ef . And we show that a spiral wave can get anchored to a

local fibroblast inhomogeneity. We demonstrate the efficacy of a

low-amplitude control scheme, which has been suggested for the

control of spiral-wave turbulence in mathematical models for

cardiac tissue [16–19], in our MF model both with and without

heterogeneities. We include several animations of our simulations

(Videos S1–S12) to provide a quick, pictorial overview of our

results.

We now present a brief and illustrative overview of some earlier

studies that have investigated the AP morphological behavior at

the level of MF units to determine the effects of the extra electrical

load, either because of passive or active fibroblasts, in both animal-

and human-ventricular-cell models; we also discuss the propaga-

tion of electrical impulses in cardiac tissue models with fibroblasts.

In Table 1 we give the ranges of parameters that have been used,

in a variety of experimental and computational studies, of MF

composites.

Xie, et al. [9] have used two different ionic models for myocytes,

namely, the Luo-Rudy Phase 1 (LRI) model [20], with modified

maximal conductances, and a rabbit-ventricular-cell model [21],

coupled to models of passive and active fibroblasts via a gap-

junctional conductance (Table 1). In their passive-fibroblast

studies, for low values of Gf , they have found that the action-

potential duration (APD) is always prolonged relative to its value

APDm for an uncoupled myocyte; however, if Gf is large, then the

APD is less than APDm, if Ef is low, but greater than APDm, if Ef

is high. They have obtained similar results in models with active

fibroblasts.

Sachse, et al. [10] have shown, with a rat-ventricular-cell model

[22], that the APD is prolonged relative to APDm in an active-

fibroblast model. Their study shows that the myocyte APD,

measured at 90% repolarization, increases from 38.9 ms to

61.3 ms if Nf ~10 and Ggap~10 nS; however, if Nf ~10 and

Ggap~0:1 nS, this APD decreases from 39.0 ms to 37.1 ms. Their

studies also show that the myocyte resting membrane potential,

Vrest, and the maximal upstroke velocity, _VVmax, depend on Nf and

Ggap.

Jacquemet, et al. [11] have studied a mouse-ventricular-cell

model [23] coupled to a simple fibroblast model that includes a

delayed activation of the membrane current. Their study has

revealed that the myocyte APD is prolonged from 14.4 ms to

14.8 ms, its action potential amplitude (APA) reduced from

115.1 mV to 114.6 mV, and there is a slight elevation of the

resting membrane potential Vrest from 282.3 mV to 282.0 mV,

when a single fibroblast is coupled to a myocyte with

Ggap~4:05 nS. They have also studied the dependence of the

APA, APD, Vrest, and _VVmax on Nf and Ggap by measuring them at

a site of a myocyte cell, located in the middle of a cable, which

contains 50 myocyte cells covered by a layer of fibroblasts. They

have found, e.g., that (a) the APA, APD, and Vrest change to

93.1 mV, 19.3 ms, and 280.5 mV, respectively, from their

corresponding uncoupled values 100.8 mV, 15.7 ms, and

282.3 mV, when Nf ~10 and Ggap~4:05 nS, and (b) _VVmax

changes to 268 mV/ms from its uncoupled value 292 mV/ms,

when Nf ~17 and Ggap~4:05 nS.

MacCannell, et al. [12] have considered fibroblast models,

principally active but also passive, coupled to a human-ventricular-

myocyte model [15]. They have presented representative results

for a single MF unit for the passive case; they have found that the

myocyte APD increases from its uncoupled value 263 ms to 273 ms

or 275 ms for Nf ~2 and 4, respectively. By contrast, in their

active-MF model, they have found that the APD decreases from

263 ms to 195 ms and 155 ms, respectively, when Nf ~2 or 4

(with the above-mentioned parameter values); furthermore, Vrest is

elevated from its uncoupled value 286.1 mV to 285.8 mV, if

Nf ~2, and 285.3 mV, if Nf ~4; and the APD shortening can be

enhanced by increasing either Cf ,tot or Ggap; e.g., if Nf ~2 the

APD decreases from 263 ms to 225 ms or 207 ms, respectively, for

Ggap~1 and 2 nS, with Cf ,tot~6:3 pF, Gf ~0:1 nS, and

Ef ~{49:6 mV. This study also obtains similar results when it

holds all parameters at the values given above but uses

Cf ,tot~6 pF or 63 pF.

Both in cell culture and in intact tissue, fibroblasts can couple

functionally to adjacent myocytes via a gap junction at the single-

cell level by expressing either the Cx43 or the Cx45 gap-junction

protein or connexin. Miragoli, et al. [24] have shown the

expression of connexins, between fibroblasts and, at contact sites,

between fibroblasts and cardiomyocytes, by studying cocultured

fibroblasts coated over rat-ventricular-myocyte strands; and

Gaudesius, et al. [25] have reported that Cx43 and Cx45 are

expressed among fibroblasts and between fibroblasts and myocytes

when fibroblasts are inserted in cocultures of neonatal rat-heart

cells in a monolayer.

Fibroblasts can play a major role in the propagation of electrical

impulses in cardiac tissue. Some cell-culture [13,24–26] and in-silico

[11,13,14] studies have reported the suppression of impulse

propagation in cardiac tissue because of fibroblasts. For example,

Miragoli, et al. [24] have studied electrical-impulse propagation in

cultured strands of myocytes coated by fibroblasts and shown that

the conduction velocity CV decreases by an amount that depends

on the density of fibroblasts. The work of Gaudesius, et al. [25] has

demonstrated that conduction delay occurs because of the

insertion of fibroblasts between myocytes in cultured myocyte

strands; the delay depends on the number of inserted fibroblasts;

and finally conduction block occurs when the length of the inserted

fibroblasts exceeds 300 mm. Zlochiver, et al. [13] have studied the

propagation of electrical impulses in a monolayer of myocytes and

fibroblasts of neonatal rats; in one set of experiments they have

either increased or decreased the gap-junction coupling by

overexpressing Cx43 or by using silencing RNAi; in another set

of experiments they have varied the ratio of fibroblasts to

myocytes. In the former case, they have observed that an increase

in the gap-junctional conductance first leads to a decrease in CV
and then an increase; in the second set of experiments they have
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found that CV decreases as the fibroblast density increases.

McSpadden, et al. [26] have studied electrical-wave propagation in

a monolayer of neonatal rat cardiac myocytes electrotonically

loaded with a layer of cardiac fibroblasts; they have used an

optical-mapping technique to find the dependence of such impulse

propagation on the gap-junctional conductance Ggap; and they

have found that impulse propagation, in both the transverse and

longitudinal directions, changes significantly when fibroblasts are

loaded on the myocyte monolayers; e.g., as the fibroblast coverage

area increases from the 0–15% coverage range to the 75–100%

coverage range, the conduction velocity CV , in loaded monolay-

ers, decreases from ^28+5 cm/s to ^21+7 cm/s, in the

longitudinal direction, and from 1363 cm/s to 963 cm/s, in

the transverse direction.

Xie, et al. [14] have followed Ref. [27] to model MF tissue in

three different ways, namely, with (a) zero-sided, (b) single-sided,

and (c) double-sided connections, by using the LRI [20]

ventricular-cell model for myocytes with slight modifications of

Table 1. Cardiac fibroblast parameter values used in various experimental and computational studies.

References Type of studies Type of fibroblast Parameter ranges

Rook, et al. [5] in culture rat Rf ^3to25GV

Ef ^{20to{40 mV

Ggap^0:3to8 nS

Kohl, et al. [3] in vitro rat Rf ^1GV

and Ef ^{15+10 mV

in culture Ggap^4{6 nS

Kiseleva, et al. [46] in vitro rat Rf ^0:51+0:01GV (control case)

^3:8+0:03GV (diseased case)

Ef ^{22+1:9 mV (control case)

Ef ^{46:5+1:8 mV (diseased case)

Kamkin, et al. [47] in vitro human Rf ^4:1+0:1GV

Ef ^{15:9+2:1 mV

Kamkin, et al. [48] in vitro rat Rf ^510+10MV (control case)

Ef ^{22+2 mV (control case)

Ef ^{41+3 mV to ^{28+3 mV (diseased case)

Chilton, et al. [49] in culture rat Cf ,tot^6:3+1:7 pF

Rf ^10:7+2:3GV

Ef ^{65+5 mV (for ½Kz�o~10 mM)

^{80+1:8 mV (for ½Kz�o~5:4 mM)

Shibukawa, et al. [50] in culture rat Cf ,tot^4:5+0:4 pF

Rf ^5:5+0:6GV

Ef ^{58+3:9 mV

Xie, et al. [9] computational passive Cf ,tot~25 pF

Gf ~0:1{4 nS

Ef ~{50{0 mV

Ggap~0{20 nS

0ƒNf ƒ4

Sachse, et al. [10] computational active Cf ,tot~4:5 pF

Ef ~{58 mV

Ggap~0:1{100 nS

0ƒNf ƒ10

Jacquemet, et al. [11] computational active Cf ,tot~4:5 pF

Ef ~{58 mV

Ggap~0:09{4:05 nS

0ƒNf ƒ10

MacCannell, et al. [12] computational active Cf ,tot~6{60 pF

Ef ~{49:6 mV

Ggap~1{3 nS

0ƒNf ƒ4

doi:10.1371/journal.pone.0072950.t001
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the original parameters. In their zero-sided connection model,

passive fibroblasts are inserted in a 2D layer of myocytes; but they

are functionally uncoupled with myocytes at their contact sites, so

the fibroblasts are equivalent to conduction inhomogeneities

[16,17,28–30]. In the single-sided connection model, connected

fibroblasts are loaded on the top of a 2D layer of myocytes;

therefore, they are equivalent to an extra, local electrical load. In

the double-sided-connection model, connected fibroblasts are

inserted in a 2D myocardial layer, with myocytes and fibroblasts

connected at contact sites; this provides an additional conduction

pathway for electrical signals, so the fibroblasts are qualitatively

similar to ionic inhomogeneities [16,17,31]. Their studies of

fibroblasts randomly attached on the top of a 2D myocyte sheet

(i.e., single-sided connections), show that, for low fibroblast

membrane conductances Gf ^1 and with the fibroblast resting-

membrane potential Ef ~{20 mV, CV initially remains almost

unchanged as the fibroblast-myocyte (FM) ratio increases; but then

it decreases quickly as the FM ratio approaches 3. If, however,

Gf ^4, CV increases initially and then decreases rapidly as the

FM ratio approaches 1. However, in both cases, with low and high

values of Gf , conduction failure occurs when CV decreases to

^0:2 m/s from its uncoupled value 0.56 m/s. Furthermore, when

Ef ~{80 mV (i.e., close to the myocyte resting-membrane

potential), CV decreases linearly from 0.56 m/s to 0.49 m/s as

the FM ratio increases from 0 to 3; this trend is almost

independent of the value of Gf . They have also studied the effects

of the random insertion of fibroblasts in a 2D sheet of myocytes

sheet; the resulting myocyte-fibroblast pairs can have zero-sided or

double-sided connections. When fibroblasts are inserted in series,

CV decreases almost linearly as the FM ratio increases, for zero-

sided connections, and conduction failure occurs if the FM ratio is

above 3. Similar results are observed with double-sided connection

when fibroblasts, with Ef ~{20 mV and a low value of Gf (1 nS)

are coupled with myocytes. However, for larger values of Gf

(4 nS), CV decreases much faster as the FM ratio increases, and

conduction failure occurs if the FM ratio is below 1. Furthermore,

if Ef ~{80 mV, CV is only slightly different from that with

uncoupled fibroblasts and almost independent of Gf . If the

fibroblasts lie parallel to myocytes in a 2D sheet, they have found

that, with random laterally inserted fibroblasts coupled to all

neighboring cells (double-sided connection), CV changes in both

longitudinal and transverse directions, but to a different extents. In

the longitudinal direction, CV is similar to that in models with

random fibroblast attachment; however, in the transverse direc-

tion, CV decreases much more rapidly, as in to models with

random fibroblast insertions. These authors have also studied the

effects of Gj on CV for randomly inserted fibroblasts (double-sided

connection) in a 2D sheet of myocytes. For low Gf (0.1 nS), with

an FM ratio of 1, they have found that CV decreases first and then

increases as Gj increases (Gjw25 nS). However, for high Gf

(2 nS), CV increases to a maximum (at Gj^5 nS), then decreases

to minimum (at Gj^25 nS), and eventually increases linearly as

Gj increases.

Zlochiver, et al. [13] have studied impulse propagation, by

inserting fibroblasts, in a 2D sheet of myocyte tissue in the

dynamic Luo-Rudy (LRd) [32,33] model of a mammalian

ventricular cell [34]. Their studies show that CV first increases

and then decreases as Ggap increases and then decreases as a

function of fibroblast-myocyte area ratio, in agreement with their

experimental observations.

The remaining part of this paper is organized as follows. In the

Section on ‘‘Model and Methods’’ we describe the formulation of

our myocyte-fibroblast model, for a single cell and for 2D tissue;

we also describe the numerical schemes that we use to solve the

model equations. In the Section on ‘‘Results’’ we present the

results of our numerical calculations. In the Section on ‘‘Discussion

and Conclusion’’ we discuss the significance of our results and

compare them with results from other experimental and compu-

tational studies.

Model and Methods

In this Section, we build on earlier mathematical models for (a)

cardiac tissue [15] and (b) the coupling, at the level of single cells,

of cardiac myocytes and cardiac fibroblasts [9–12] to develop a

mathematical model for a 2D sheet of cardiac myocytes coupled to

a similar sheet of fibroblasts. We use the ionic model for human

cardiac myocytes [15] due to ten Tusscher, Noble, Noble, and

Panfilov (TNNP); we include connections between myocytes and

fibroblasts via gap junctions; and we also allow for the possibility of

studying zero-sided, one-sided, and two-sided couplings as illustrated in

the schematic diagram of Fig. S1 in Material S1.

The cell membrane of a cardiac myocyte is modelled by the

following ordinary differential equation (ODE) [35,36]

Cm,tot
LVm

Lt
~{Iion,mzIext; ð1Þ

here Cm,tot is the total cellular capacitance, Vm is the transmem-

brane potential, i.e., the voltage difference between intra- and

extra-cellular spaces, Iion,m is the sum of all ionic currents that

cross the cell membrane, and Iext is the externally applied current.

Similarly, the membrane potential of a passive fibroblast is given

by the ODE

Cf ,tot

LVf

Lt
~{Iion,f , ð2Þ

where Cf ,tot, Vf , and Iion,f are, respectively, the total cellular

capacitance, the transmembrane potential, and the sum of all ionic

currents for the fibroblast. The passive nature of the fibroblasts

allows us to write

Iion,f ~Gf (Vf {Ef ); ð3Þ

here Gf and Ef are, respectively, the conductance and the resting

membrane potential for the fibroblast. If a single myocyte cell is

coupled with Nf fibroblasts via the gap junctional conductance

Ggap, its transmembrane potential can be modelled by the

following set of equations:

Cm,tot
LVm

Lt
~{Iion,mz

XNf

n

Igap,n, ð4Þ

Cf ,tot,n
LVf ,n

Lt
~{Iion,fn{Igap,n, ð5Þ

where

Igap,n~Ggap(Vf ,n{Vm); ð6Þ

here n labels the fibroblasts that are connected to the myocyte via

Ggap; note that 1ƒnƒNf and, for the identical fibroblasts we

Wave Dynamics with Myocytes and Fibroblasts
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consider here, Cf ,tot,n~Cf ,tot, Igap,n~Igap, and Vf ,n~Vf , for all n.

The physical units that we use for our model are as follows: time t

is in ms, the transmembrane potentials Vm and Vf are in mV, the

transmembrane currents Iion,m and Iion,f are in pA, therefore,

current densities for the myocyte are in pA/pF, the total cellular

capacitances Cm,tot and Cf ,tot are in pF, and the fibroblast

conductance Gf and the gap-junctional conductance Ggap are in

nS.

As suggested in Ref. [37], the dynamics of Nf identical

fibroblasts coupled to a myocyte is equivalent to the dynamics of

a single fibroblast coupled to a myocyte with coupling strength,

Gmf ~Gfm=Nf , where Gmf is the coupling strength of a myocyte to

Nf fibroblasts and Gfm~Ggap is the coupling strength of a

fibroblast to a myocyte. Therefore, we have performed simulations

by using only one fibroblast per myocyte in our 2D simulation

domain. This is equivalent to a myocyte being coupled with Nf

fibroblasts with coupling strength Gmf ~Gfm=Nf . Furthermore, in

our 2D model, the maximum number of fibroblasrs Nf ,max

allowed per site is roughly related with the ratio of Cm,tot and Cf ,tot

because they are related to the surface area of the cell; in

experiments, Nf depends on the ratio of these surface areas and

the volume fractions of myocytes and fibroblasts. These consid-

erations are important because fibroblasts are considerably smaller

than myocytes as we discuss in greater detail in the section on

‘‘Discussion and Conclusion’’.

In our 2D computational studies, we use a simulation domain in

which we have one layer of fibroblasts on top of a myocyte layer as

illustrated in Fig. S1 in Material S1. Such a simulation domain is

motivated by the experiments of Refs. [6–8,38]. We model this

myocyte-fibroblast bilayer by using the following discrete equa-

tions [39,40]:

Cm,tot
_VVm(i,j)~{Iion,m(i,j)zGgap Vf (i,j){Vm(i,j)

� �

z
X

I~{1;1
J~{1;1

Gmm(Vm(izI ,jzJ){Vm(i,j))z

Gfm(Vf (izI ,jzJ){Vm(i,j))

ð7Þ

Cf ,tot
_VVf (i,j)~{Iion,f (i,j)zGgap Vm(i,j){Vf (i,j)

� �

z
X

I~{1;1
J~{1;1

Gff (Vf (izI ,jzJ){Vf (i,j))z

Gmf (Vm(izI ,jzJ){Vf (i,j))

ð8Þ

here the dots above Vm and Vf denote time derivatives, Gmm

and Gff represent, respectively, intercellular couplings in the

myocyte and fibroblast layers; and Gmf and Gfm account for cross

couplings between myocyte and fibroblast layers; if one of the

cross-coupling coefficients, say Gmf , is nonzero, then the other,

Gfm, must also be nonzero to ensure current conservation; myocyte

and fibroblast composites are coupled at a given site by Ggap; in

addition, we allow for intercellular couplings (see Fig. S1 in

Material S1) that can be categorized naturally as follows: (A) zero-

sided: Gmmw0,Gmf ~Gfm~Gff ~0; (B) one-sided: Gmm,Gff w0,

Gmf ~Gfm~0; and (C) two-sided: Gmm, Gff w0, Gmf , Gfmw0; the

index (i,j) refers to the cell associated with the node under

consideration; the conductances Gmm, Gff , Gmf , Gfm, and Ggap are

in nS. Given that fibroblasts are much smaller than myocytes, the

terms Gmf , Gfm, and Gff are negligible relative to Gmm unless a

cluster of Nf fibroblasts is formed, with Nf large enough for the

size of the cluster to be comparable to that of a myocyte; such

clusters can couple to myocytes and to each other and lead to a

realization of the one- and two-sided models mentioned above (see

Fig. S1 in Material S1; and for a schematic diagram of connections

between a myocyte and a clusters of Nf ~6 fibroblasts see Fig. 7 in

Ref. [37]); in such an effective model, we assume, at the level of the

simplest approximation, that the fibroblasts in a cluster interact

only to the extent that they form the cluster.

We use a 2D square domain consisting of 6006600 grid points

and lattice spacing Dx~Dy~0:225 mm, so the side of each

square domain is L~135 mm; one of these layers contains

myocytes and the other fibroblasts as shown in Fig. S1 in Material

S1. These two layers are separated by a distance Dz~0:225 mm.

We use a forward-Euler method for the time evolution of the

transmembrane potentials with a time step Dt~0:02 ms. We use

no-flux (Neumann) boundary conditions on the edges of the

simulation domain. The initial condition we use is related to the

one given in Ref. [17]; we describe it in detail in subsection 2 in

the section on ‘‘Results’’.

It is often useful to track the trajectory of the tip of a spiral wave

to investigate the stability of a spiral, its transitions, and its rate of

drifting in a 2D simulation domain. The tip of such a spiral wave is

normally defined as the point where the excitation wave front and

repolarization wave back meet; this point can be found as the

point of intersection of an isopotential line, of constant membrane

potential, Vm~Viso (in general Visov0 mV), and the line

dVm=dt~0 [15,41,42]. Another classical technique, which tracks

the spiral-wave tip in a two-variable model, obtains this tip by

finding the point where the isocontours of the two state variables

intersect [42–45]; this technique can also be used in a complex

mathematical model for cardiac tissue provided the model has at

least one slow and one fast variable. We have developed a tip-

tracking algorithm that locates the tip position, i.e., the point at

which the wave-front and wave-back meet each other, by

monitoring INa, the sodium current. This is the predominant

current in the depolarization phase of the AP and is, therefore,

responsible for depolarizing the cells that lie ahead of the wave

front, in the 2D simulation domain; thus, it plays an important role

in the spatiotemporal evolution of this wave front. Hence, we find

the minimum strength of INa that can yield an AP; and we use this

as a reference value to track the tip position. Given the sharpness

of the depolarization, pseudocolor plots of INa show a fine line

along a spiral-wave arm (see, e.g., Fig. 2A in Ref. [16]); this fine

line stops at the spiral tip and provides, therefore, an accurate way

of tracking the spatio-temporal evolution of this tip.

Results

In our previous studies [16,17], we have investigated the

interaction of a spiral-wave with conduction and ionic inhomo-

geneities in the TNNP model for cardiac tissue. Here we elucidate

spiral-wave dynamics in the presence of fibroblasts by using the

mathematical model we have developed in the section on ‘‘Model

and Methods’’. In subsection 1.1 we present results for the

morphology of the action potential (AP) in a myocyte-fibroblast

(MF) composite; in particular, we examine the dependence of the

AP on Ggap, Gf , Ef , Cf ,tot, and Nf . Subsection 2 contains our

results for spiral-wave dynamics in a homogeneous MF bilayer, in

which MF composites are coupled; we consider zero-, one-, and

two-sided couplings. In subsection 2 we explore the dynamics of
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spiral waves in a sheet of myocytes with an inhomogeneity that is

an MF bilayer. The last subsection 3 examines the efficacy of the

low-amplitude, mesh-based control scheme of Refs. [16,18,19] in

the elimination of spiral waves in the homogeneous MF bilayer

and the sheet of myocytes with an MF-bilayer inhomogeneity.

1 A Myocyte-Fibroblast (MF) Composite
Fibroblast cells act like an electrical load on myocytes. This

load, which depends, principally, on the parameters

Ggap, Gf , Ef , Cf ,tot, and Nf , and alters the electro-physiological

properties of a myocyte that is coupled to a fibroblast. In

particular, it modifies the morphology of the action potential (AP).

Earlier computational studies [9–12], which we have summarized

in the ‘‘Introduction’’ section, have investigated mathematical

models for a single unit of a myocyte and fibroblasts, for both

animal and human ventricular cells and with passive or active

fibroblasts. Most of these computational studies focus on the

modification of the AP by (a) the number Nf of fibroblasts per

myocyte and (b) the gap-junctional conductance Ggap. In the

numerical studies that we present here we use a composite

myocyte-fibroblast (MF) system with Nf passive fibroblasts per

myocyte. We examine in detail the dependence of the AP of this

composite on the parameters of the model, namely, the membrane

capacitance Cf ,tot, the membrane conductance Gf , the resting

membrane potential Ef , and the coupling strength Ggap; the trends

we uncover are in qualitative agreement with various experiments

[3,5].

The ranges of parameters, which we use for our composite MF

system, are consistent with those found in experimental studies

[3,5,46–50] and those used in earlier computational studies [9–12]

as we summarize in Table 1 and discuss in detail in Material S1.

To investigate in detail the effect of fibroblasts on a myocyte, we

use the following wide ranges of parameters (these encompass the

ranges used in the experimental and computational studies

mentioned in Table 1): Cf ,tot~6{60 pF, Gf ~0:1{4 nS,

Ef ~{39 to 0 mV, and Ggap~0:3{8:0 nS for our MF compos-

ites. However, to observe some special properties, such as

autorhythmicity of MF composites, we vary the fibroblast

parameters and gap-junctional conductances.

Figures 1 (a)-(i) show plots of the myocyte transmembrane

potential Vm (filled symbols with solid lines) and the fibroblast

transmembrane potential Vf (unshaded symbols with dashed lines)

versus time t, when we consider an MF composite in which a

myocyte is coupled to a passive fibroblast, with Cf ,tot~6:3 pF. In

Figs. 1 (a)-(i) we use squares (& or %) for low coupling

(Ggap~0:3 nS), diamonds (X or e ) for intermediate coupling

Figure 1. Plots of action potentials: The myocyte action potential Vm (full symbols and lines) and the fibroblast action potential Vf (unshaded
symbols and dashed lines), with a passive fibroblast of capacitance Cf ,tot~6:3 pF coupled with a myocyte for (a) Ef ~0 mV and Gf ~0:1 nS, (b)
Ef ~{19 mV and Gf ~0:1 nS, (c) Ef ~{39 mV and Gf ~0:1 nS, (d) Ef ~0 mV and Gf ~1 nS, (e) Ef ~{19 mV, and Gf ~1 nS, (f) Ef ~{39 mV and
Gf ~1 nS, (g) Ef ~0 mV and Gf ~4 nS, (h) Ef ~{19 mV and Gf ~4 nS, and (i) Ef ~{39 mV and Gf ~4 nS; red squares (full or unshaded) indicate
Ggap~0:3 nS; blue diamonds (full or unshaded) indicate Ggap~1 nS; gray triangles (full or unshaded) indicate Ggap~8 nS; black squares (full or
unshaded) indicate an uncoupled myocyte.
doi:10.1371/journal.pone.0072950.g001
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(Ggap~1:0 nS), triangles (m or n) for high coupling

(Ggap~8:0 nS), and filled circles (.) for a myocyte that is not

coupled to a fibroblast. Figures 1 (a), (d), (g), which are in the first

column, depict Vm and Vf for low (0.1 nS), intermediate (1.0 nS),

and high (4.0 nS) values of Gf when Ef ~0:0 mV; their analogs

for Ef ~{19:0 mV and 239.0 mV are given, respectively, in

Figs. 1 (b), (e), (h) (second column) and Figs. 1 (c), (f), (i) (third

column). These figures show the following: (i) the fibroblast action

potential (fAP) is similar to the myocyte action potential (mAP)

when the gap-junctional conductance Ggap is high and the

fibroblast conductance Gf is low (Figs. 1 (a), (b), (c) in the first

row); (ii) for low and intermediate values of Ggap and with

Gf ~0:1 nS, the fAP plateau decreases but the APD is prolonged

with respect to that of the corresponding mAP; (iii) the fAP loses its

spike and notch and has a lower plateau and prolonged APD

compared to the mAP when Gf ~1:0 nS or 4.0 nS. Figures similar

to Figs. 1 (a)-(i), but with Cf ,tot~25:2 pF and Cf ,tot~63, are

given, respectively, in Figs. S2 (a)-(i) and Figs. S3 (a)-(i) in Material

S1; these show that Vm does not depend very significantly on Cf ,tot

but Vf does.

In Figs. 2 (a), (b), (c), (d), (e), and (f) we show, respectively, plots

of the action-potential duration APD, the resting-membrane

potential Vrest, the maximum upstroke velocity dV=dtmax, the

maximum value of Vm, during the action potential, namely, Vmax,

the value of Vm at the position of the notch, i.e., Vnotch, and the

maximum value of Vm, in the plateau region of the action

potential, i.e., Vplateau versus versus the gap-junctional conduc-

tance Ggap; here the myocyte is coupled with a passive fibroblast

with capacitance Cf ,tot~6:3 pF and conductance Gf ~4:0 nS.

These figures show plots for the fibroblast resting membrane

potential Ef ~0 mV (full red triangles), Ef ~{9 mV (full blue

squares), Ef ~{19 mV (full black circles), Ef ~{29 mV (full

blue diamonds), and Ef ~{39 mV (full red stars). For

239mV Ef {19 mV, the APD decreases monotonically as

Ggap increases, but for higher values of Ef , namely, 29 mV and

0 mV their is a monotonic increase of the APD with Ggap. Both

dV=dtmax and Vmax decrease monotonically as Ggap increases; the

lower the value of Ef , the slower is this decrease. Similarly, Vnotch

and Vplateau decrease monotonically as Ggap increases; but the

higher the value of Ef , the slower is this decrease.

In Fig. 3 (a) we present plots versus time t of the transmembrane

potentials Vm (full curves with filled symbols), for a myocyte, and

Vf (dashed curves with open symbols), for a passive fibroblast

coupled with a myocyte cell; here Cf ,tot~6:3 pF, Gf ~4:0 nS,

Ggap~8:0 nS and Ef ~{39:0 mV (blue squares) and

Ef ~0:0 mV (red triangles); the full black curve with circles show,

for comparison, a plot of Vm for an uncoupled myocyte. Figure 3

(b) contains plots versus t of the gap-junctional current Igap with

parameters and symbols as in (b); and plots versus t of Vm, {Igap,

the myocyte sodium current INa, and the total activation m3 (full

lines with filled symbols) and total inactivation hj (dashed lines

with open symbols) gates, for the first 2 ms after the application of

a stimulus current Iext~{52 pA/pF at 50 ms for 3 ms, are

depicted in Figs. 3 (c), (d), (e), and (f), respectively, for the

parameters and symbols used in Fig. 3 (a). These plots show that

the myocyte membrane potential Vm is reduced, i.e., the cell is

depolarized, when a passive fibroblast is coupled with it; the larger

the value of Ef , the more is the reduction in Vm. However, Vm is

elevated, compared to its value in the uncoupled-myocyte case, for

both the values of Ef we study, because, when Iext from

0ƒtƒ50 ms, the gap-junctional current Igap flows from the

fibroblast to the myocyte as shown in Fig. 3 (b). The greater the

elevation of Vm the earlier is the activation of the Naz fast-

activation gate m, in the presence of an external applied stimulus,

Figure 2. Plots of various morphological features of the myocyte action potential Vm versus the gap-junctional conductance Ggap;
here, the myocyte is coupled with a passive fibroblast with capacitance Cf ,tot~6:3 pF and conductance Gf ~4:0 nS. (a) The action-
potential duration APD versus Ggap; (b) the resting-membrane potential Vrest versus Ggap; (c) the maximum upstroke velocity dV=dtmax versus Ggap;
(d) the maximum value of Vm, during the action potential, Vmax versus Ggap; (e) the value of Vm at the position of the notch, i.e., Vnotch versus Ggap; (f)
the maximum value of Vm, in the plateau region of the action potential, i.e., Vplateau versus Ggap; these figures show plots for the fibroblast resting
membrane potential Ef ~0 mV (full red triangles), Ef ~{9 mV (full blue squares), Ef ~{19 mV (full black circles), Ef ~{29 mV (full blue
diamonds), and Ef ~{39 mV (full red stars).
doi:10.1371/journal.pone.0072950.g002
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as can be seen by comparing Figs. 3 (c) and (f); this early activation

shifts the minimum in INa towards the left as depicted in Fig. 3 (e).

Note that the product hj, the total inactivation gating variables,

decreases as Vm increases (dashed lines in Fig. 3 (f)) in the range

50msƒtƒ52ms. Therefore, the amplitude of INa decreases with

increasing Ef , as shown in Fig. 3 (e), and leads to a reduction in the

maximum rate of AP depolarization (see the plots of dV=dtmax in

Fig. 2 (c)); this shift in the minimum of INa is also associated with

the leftward shift of Vm in Fig. 3 (c). A comparison of Figs. 3 (e)

and (f) shows, furthermore, that, for a given value of Ef , the

minimum of INa occurs at the value of t where the plots of m3 and

hj cross.

The current Igap~Ggap(Vm{Vf ) flows from the myocyte to the

fibroblast or vice versa as shown in Figs. 3 (b) and (d). Before the

application of a stimulus current (0msƒtƒ50ms in Fig. 3 (b)),

Igapv0, i.e., it flows from the fibroblast to the myocyte; and the

current-sink capability of the fibroblast increases with Ef , because

(see Fig. 3 (a)) (Vm{Vf ) increases with Ef . However, when we

have a current stimulus Iextw0, i.e., in the time interval

50msvtƒ53ms, the trend noted above is reversed: the lower

the value of Ef the higher is the ability of the myocyte to act as a

current sink as shown in Fig. 3 (d).

Several studies [51–54] have shown that the contribution of

individual ionic currents to the AP morphology can be examined

by a partial or complete blocking of the corresponding ion

channel. Therefore, we examine, for an isolated myocyte, how the

AP morphology changes as we modify the major ionic currents. As

in Refs. [51–54], we find that (a) Vmax and dV=dtmax depend

principally on INa, (b) Vnotch depends mainly on Ito, (c) the

maximum of the plateau region Vplateau is maintained by a balance

between ICaL and IKs, (d) the final phase of repolarization, which

determines the APD, depends primarily on IKr and IKs, (e) the

diastolic or resting phase, which decides the value of Vrest, is

maintained predominantly by IK1, and (f) all gating variables,

which determine the opening and closing of ion channels, depend

on Vm, therefore, the contribution of the ionic currents to the

morphology of the AP is modified as Vm changes.

Given these results for an isolated myocyte, we can understand

qualitatively the effects on the AP morphology of a myocyte when

it is coupled with a fibroblast. The coupling of a fibroblast to a

myocyte modifies Vm because of the electronic interaction, via

Ggap. Therefore, the AP morphology changes as we have

described above and shown in Figs. 2(a)–(f); to explain the results

in this figure, we have to examine the behaviors of all the ionic

currents when the myocyte is coupled to a fibroblast. For the

ensuing discussion we consider a representative value of Ggap,

namely, 8.0 nS, and study the variation of the ionic currents as we

change Ef for an MF composite. In particular, we examine the

time-dependence of the myocyte ionic currents

INa, ICaL, Ito, IKs, IKr, IK1, INaCa, INaK , IpCa, IpK , IbNa, and IbCa,

which are plotted in Fig. 4 for a fibroblast coupled with a myocyte,

with Cf ,tot~6:3 pF, Gf ~4:0 nS, Ggap~8:0 nS and

Ef ~{39:0 mV (blue squares) and Ef ~0:0 mV (red triangles);

the full black curves with circles show the ionic currents for an

uncoupled myocyte. We observe that, as we vary Ef , the IKs and

IKr currents change substantially (see Figs. 4(d) and (e)). As a result,

APD increases with increasing Ef , as shown in Fig. 2(a).

Furthermore, as we increase Ef , Vrest increases as shown in

Fig. 2(b); the amount of elevation of Vrest depends on (Vm{Ef ).

By examining the contributions of all ionic currents (see Fig. 4) to

their values in the resting state of the AP (t§400 ms), we conclude

that IK1 changes most significantly compared to other ionic

currents. Therefore, we find the Ef -dependence of IK1 shown in

Fig. 4(f). As we have noted above for an isolated myocyte, Vmax

and dV=dtmax depend principally on INa; therefore, we examine

INa to understand the variations of Vmax and dV=dtmax as

functions of Ef for an MF composite. We find that the magnitude

of INa decreases as Ef increases (Fig. 4(a)), so Vmax and dV=dtmax

Figure 3. Plots of transmembrane potentials and currents for an MF composite: (a) Plots versus time t of the transmembrane potentials Vm

(full curves with filled symbols), for a myocyte, and Vf (dashed curves with open symbols), for a passive fibroblast coupled with a myocyte cell; here
Cf ,tot~6:3 pF, Gf ~4:0 nS, Ggap~8:0 nS and Ef ~{39:0 mV (blue squares) and Ef ~0:0 mV (red triangles); the full black curve with circles shows
Vm for an uncoupled myocyte. (b) Plots versus t of the gap-junctional current Igap with parameters and symbols as in (b). Plots versus t, for the first

2 ms after the application of a stimulus of 252 pA/pF, of (c) Vm , (d) {Igap, (e) the myocyte sodium current INa, and (f) the total activation m3 (full
lines with filled symbols) and total inactivation hj (dashed lines with open symbols) gates; the parameters and symbols here are as in (a).
doi:10.1371/journal.pone.0072950.g003
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decrease as Ef increases (as shown in Figs. 2(c) and (d)). Similarly,

we look at Ito to understand the dependence of Vnotch on Ef ; and

we examine ICaL and IKs for the Ef -dependence of Vplateau.

Figure 4(c) shows that Ito decreases when Ef increases, therefore,

Vnotch increases as a function of Ef (as shown in Fig. 2(e)).

Figures 4(b) and (d) show ICaL and IKs, respectively; the former

decreases and the latter increases as Ef increases; however, the

effect of IKs dominates that of ICaL so Vplateau increases as Ef

increases as shown in Fig. 2(f).

It has been noted in Refs. [37,55,56], that a myocyte cell can

display autorhythmicity when it is coupled with fibroblasts; in

particular, Ref. [55] shows that the cycle length of autorhythmicity

activation depends on Ef and Ggap. We find that Gf and Cf ,tot

play a less important role than Nf , Ef , and Ggap in determining

whether such autorhythmicity is obtained. We show that the

myocyte can behave like (a) an excitable, (b) autorhthymic, or (c)

oscillatory cell depending on the value of Ggap as shown and

discussed in detail in Fig. S4 in Material S1.

The number of fibroblasts Nf that are coupled to a myocyte in

our MF composite affect significantly the response of the MF

composite to external electrical stimuli as has been shown in detail

in Refs. [9,57]. In Fig. 5, we show illustrative plots versus t of

Vm,Vf , and {Igap for our MF composite with Nf ~0, i.e., no

fibroblasts (black circles), Nf ~1 (red squares), Nf ~2 (blue

diamonds), and Nf ~4 (gray triangles) for the parameter values

Cf ,tot~6:3 pF, Gf ~4 nS, Ef {39 mV. For a low value of Ggap,

namely, 0.3 nS (plots in the left column), we see that the resting

potential of the coupled myocyte is elevated slightly relative to the

case Nf ~0; and the APD decreases from 280 ms, for Nf ~0, to

260 ms when Nf ~4 (Fig.5(a)); the dependence of Vf and Igap on

Nf is illustrated in Figs.5(d) and (g). This dependence of Vm,Vf ,

and Igap increases as we can see from the plots in the middle

column, Figs.5(b), (e), and (h), for an intermediate value of Ggap,

namely, 1 nS, and from the plots in the right column, Figs.5(c), (f),

and (i), for an high value of Ggap, namely, 8 nS. In the former case

(Ggap~1 nS) Vrest rises from 284.6 mV to 283.2 mV and the

APD decreases from 280 ms to 240 ms as we go from Nf ~0 to

Nf ~4 (Fig.5(b)); in the latter case (Ggap~8 nS) Vrest rises from

284.6 mV to 274.4 mV and the APD decreases from 280 ms to

150 ms as we go from Nf ~0 to Nf ~4 (Fig.5(c)).

In Table 2, we show the change of the APD, _VVmax, and Vrest

for an MF composite with respect to their uncoupled values when

Nf identical fibroblasts are coupled with a myocyte with

high value of both Gf (4 nS) and Ggap (8 nS). We measure

DAPD70%~APDc
70%{APDm

70%, where APDc
70% and APDm

70%

are, respectively, APD of an MF composite and isolated myocyte

Figure 4. Plots of ionic current, Im, of the myocyte versus time t of an MF composite with Nf ~1; the fibroblast parameters are
Cf ,tot~6:3 pF and Gf ~4:0 nS, and it coupled with a myocyte with Ggap~8:0 nS; the full black curve with circles shows Im for an
uncoupled myocyte; the blue filled squares and the red triangles are, respectively, for Ef ~{39:0 mV and Ef ~0mV. (a) the fast

inward Naz current, INa ; (b) the L-type slow inward Ca2z current, ICaL; (c) the transient outward current, Ito; (d) the slow delayed rectifier current,
IKs; (e) the rapid delayed rectifier current, IKr; (f) the inward rectifier Kz current, IK1 ; (g) the Naz=Ca2z exchanger current, INaCa; (h) the Naz=Kz

pump current, INaK ; (i) the plateau Ca2z current, IpCa ; (j) the plateau Kz current, IpK ; (k) the background Naz current, IbNa ; (l) the background Ca2z

current, IbCa .
doi:10.1371/journal.pone.0072950.g004
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at 70% repolarization. Similarly, DAPD80% and DAPD90% are,

respectively, the change of the APD of MF composite with respect

to the myocyte APD at 80% and 90% repolarization of AP. We do

not present here the results of composites with Nf fibroblasts,

which show AP automatically in the absence of external stimulus.

The change of _VVmax, D _VVmax, is measured by subtracting _VVc
max of

an MF composite form an isolated myocyte _VVm
max. Similarly, the

change of Vrest, DVrest, is measured by subtracting Vc
rest of an MF

composite form an isolated myocyte Vm
rest. The analog of Table 2

for low values of Gf (0:1nS) and Ggap(0:3nS), is given in Table S1

in the Material S1.

2 Wave Dynamics in a 2D Simulation Domain with MF
Composites

We move now to a systematic study of the propagation of

electrical waves of activation in a 2D simulation domain with MF

composites that are coupled via the types of intercellular and gap-

junctional couplings described in the section on ‘‘Model and

Methods’’. We begin with an examination of plane-wave

propagation through such a simulation domain and study the

dependence of the conduction velocity CV on the gap-junctional

coupling Ggap for zero-, one-, and two-sided couplings. We then

study spiral-wave propagation in this domain. Finally, we

investigate spiral-wave propagation through an inhomogeneous,

square simulation domain in which most of the domain consists of

myocytes, but a small region comprises a square MF composite.

In most of our numerical simulations of 2D MF composite

domains, we choose the following representative values: the total

cellular capacitance Cf ,tot~6:3 pF; the fibroblast conductance

Gf ~4:0 nS; the resting membrane potential of fibroblast

Ef ~{39 mV; and Dmm~0:00154 cm2/ms [15], which yields,

in the absence of fibroblasts, the maximum value for the plane-

wave conduction velocity CV , namely, 268.3 cm/s [17]; here

Dmm is the diffusion constant of the myocyte layer, and it is given

by the relation, Dmm~GmmSm=Cm,tot, where Sm is the surface area

of the myocyte. For the the gap-junctional conductance we explore

values in the experimental range (see section on ‘‘Introduction’’),

0:0nS Ggap 8:0nS; the remaining intercellular conductances

lie in the following ranges: 0ƒGff ƒGmm=200 and

0ƒGmf ~GfmƒGmm=200. In some of our studies, we vary Gf

and Ef ; e.g., when we study spiral wave dynamics in the

autorhymicity regime, we use Gf ~8:0 nS and Ef ~0:0 mV.

Spiral waves in homogeneous domains. As we have noted

in the section on ‘‘Introduction’’, both experimental and

Figure 5. Plots versus t of Vm, Vf , and {Igap: for Nf ~0, i.e., no fibroblasts (black circles), Nf ~1 (red squares), Nf ~2 (blue diamonds), and Nf ~4
(gray triangles) for the illustrative parameter values Cf ,tot~6:3 pF, Gf ~4 nS, Ef ~{39 mV, and a low value of Ggap, namely, 0.3 nS (plots in the left
panel (a), (d), and (g)), an intermediate value of Ggap, namely, 1.0 nS (plots in the middle panel(b),(e), and (h)), and a high value of Ggap, namely, 8.0 nS
(plots in the right panel (c), (f), and (i)).
doi:10.1371/journal.pone.0072950.g005
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computational studies [13,14,26] have shown that CV behaves

nonmonotonically as a function of the number of fibroblasts Nf in

an MF composite. However, to the best of our knowledge, no

simulation has examined in detail the dependence of CV on Ggap;

therefore, we examine this dependence for the zero-, single-, and

double-sided couplings described in the section on ‘‘Model and

Methods’’.

We measure CV for a plane wave by stimulating the left

boundary of the simulation domain with a current pulse of

amplitude 150 pA/pF for 3 ms. This leads to the formation of a

plane wave that then propagates through the conduction domain

as shown in Fig. 6. For such a wave we can determine CV as

described, e.g., in Refs. [16,17]. In our in silico experiments, we

observe that CV decreases monotonically, as a function of Ggap,

for zero- and single-sided couplings; but CV is a nonmonotonic

function of Ggap in the case of double-sided coupling. These

behaviors of CV , as a function of Ggap, can be explained

qualitatively by examining the dependence of the rate of

depolarization dV=dt on Ggap for an isolated MF composite. As

we increase Ggap, dV=dt decreases because of the additional

electrical load of the fibroblast on the myocyte; the fibroblast acts

as current sink and, therefore, the flux carried by the wave front

decreases and CV decreases. However, for double-sided coupling, CV
decreases initially and then increases as a function of Ggap because

of the cross-coupling terms Gmf and Gfm. Such behaviors have

been seen in earlier numerical studies, with passive or active

fibroblast in models [13,14] that are similar to, but not the same

as, our mathematical model, and in cell cultures [13,24–26].

We show plane waves in Figs. 6 (a)–(f) via pseudocolor plots of

Vm at t~160 ms in a 2D square simulation domain of side

L~135 mm for (a) the control case with only myocytes, (b) zero-

sided coupling, (c) single-sided coupling with Gmm=Gff ~1, (d) double-sided

coupling with Gmm=Gff ~1, Gmm=Gmf ~100, and Ggap~0:5 nS, (e)

double-sided coupling with Gmm=Gff ~1, Gmm=Gmf ~100, and

Ggap~8:0 nS, and (f) double-sided coupling with Gmm=Gff ~1,

Gmm=Gmf ~200, and Ggap~0:5 nS. Video S1 illustrates the

spatiotemporal evolution of these plane waves. Figures 6 (g)–(h)

show plots of CV versus Ggap for (g) zero-sided coupling, (h) single-

sided coupling with Gmm=Gff ~1 (blue circles), Gmm=Gff ~4 (black

squares), and Gmm=Gff ~100 (red triangles), and (i) double-sided

coupling with Gmm=Gff ~1 and Gmm=Gmf ~200. For double-sided

coupling, conduction failure can occur for low and intermediate

values of Ggap, e.g., 0.5 nS and 2.0 nS, as shown in Fig. 6 (d);

however, no conduction occurs in this range if Gmm=Gmf ~200.

Such conduction failure is responsible for anchoring a spiral wave,

at a localized MF composite, as we discuss in the next section

where we describe our studies with inhomogenieties. We do not

observe any conduction failure in the cases of zero- and one-sided

coupling.

Two methods are often used to initiate spiral waves in

simulations [15,16,58,59] and in experiments [58,60], namely,

(1) the S1–S2 cross-field protocol and (2) the S1–S2 parallel-field

protocol. In the cross-field method, a super-threshold stimulus S2

is applied at the boundary that is perpendicular to the boundary

along which the S1 stimulus is given; in the parallel-field method,

S2 is applied parallel to the refractory tail of the S1 stimulus, but

not over the entire length of the domain. We use the parallel-field

protocol to initiate a spiral wave in our homogeneous, square

simulation domain with myocytes as follows. Initially we set the

diffusion constant Dmm~0:000385 cm2/ms; this is a quarter of its

original value, which is 0.00154 cm2/ms. We then inject a plane

wave into the domain via an S1 stimulus of strength 150 pA/pF

Table 2. The values of Cf ,tot, Gf , Ggap, Ef , and Nf for a single MF composite and the changes in the AP morphology, relative to
that of an uncoupled myocyte.

Cf ,tot

(pA)

Gf

(ns)

Ggap

(ns)

Ef

(mV) Nf

DAPD70%

(ms)
DAPD80%

(ms)
DAPD90%

(ms)
D _VVmax

(mV/ms)
DVrest

(mV)

6.3 4 8 29 1 4.62 6.72 12.30 291.89 7.12

6.3 4 8 29 2 40.90 50.40 – 2151.68 14.99

6.3 4 8 219 1 216.80 215.16 211.02 280.64 6.04

6.3 4 8 219 2 216.92 211.02 – 2137.32 12.60

6.3 4 8 229 1 236.12 234.84 231.74 268.40 4.97

6.3 4 8 229 2 258.00 254.02 – 2122.88 10.33

6.3 4 8 229 3 264.56 251.84 – 2270.10 15.91

6.3 4 8 239 1 253.62 252.64 250.32 254.41 3.90

6.3 4 8 239 2 289.68 286.92 275.54 2103.87 8.21

6.3 4 8 239 3 2112.60 2106.02 – 2135.49 12.21

6.3 4 8 239 4 2126.26 2106.18 – 2270.10 16.35

6.3 4 8 249 1 269.52 268.82 267.10 240.90 2.86

6.3 4 8 249 2 2115.22 2113.30 2107.18 282.25 6.18

6.3 4 8 249 3 2146.06 2142.18 – 2112.77 9.10

6.3 4 8 249 4 2173.62 2166.16 – 2134.10 11.77

6.3 4 8 249 5 2195.72 2179.94 – 2149.25 14.30

6.3 4 8 249 6 2205.32 2144.06 – 2162.44 16.72

6.3 4 8 249 7 2214.12 – – 2178.78 18.96

We concentrate on the APD, _VVmax , and Vrest and list the changes, indicated by D, in these parameters. DAPD70%,DAPD80% , and DAPD90% denote, respectively, the
changes in the APD at 70%, 80%, and 90% repolarization. Note that here we have high values (see text) for both Gf (4 nS) and Ggap (8 nS).

doi:10.1371/journal.pone.0072950.t002
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for 3 ms at the left boundary. After 560 ms we apply an S2

stimulus of strength 450 pA/pF for 3 ms just behind the refractory

tail of the plane wave initiated by the S1 stimulus; in our

simulation domain the S2 stimulus is applied over the region

x~360 and 1ƒyƒ550. We reset D to its original value after

882 ms. This procedure yields a fully developed spiral wave at

t~976ms (see Fig. S5 in Material S1 for a pseudocolor plot of the

transmembrane potential for this spiral wave); we use the values of

Vm, the gating variables, the intracellular ion concentrations for

this spiral wave as the initial condition for our subsequent studies.

By decreasing D for this small interval of time we are able to

reduce CV (because CV!
ffiffiffiffi
D
p

) and, thereby, the wave length l; if

we do not reduce D for this period, it is difficult to trap the hook of

the proto spiral our simulation domain, whose side L~13:5 cm.

We use the fully developed spiral wave of Fig. S5 in Material S1

in (c) as an initial condition for the myocytes in our 2D simulation

domain with MF composites; for the fibroblasts Vf is set equal to

Ef at this initial time.

We begin by studying the dependence on Ggap of spiral-wave

dynamics in our 2D MF-composite simulation domain with zero-

sided coupling. In Fig. 7 we show pseudocolour plots of Vm, in a

square simulation domain of side L~135 mm, at time t~2 s with

Gf ~4:0 nS, Ef ~{39:0 mV, and (a) Ggap~0:0 nS (control case,

i.e., only myocytes), (b) Ggap~0:5 nS (low coupling), (c)

Ggap~2:0 nS (intermediate coupling), and (d) Ggap~8:0 nS (high

coupling); the white solid lines show the trajectory of the spiral tip

for 2 sƒtƒ3 s. Video S2 illustrates the spatiotemporal evolution

of these spiral waves. The plot in Fig. 7 (e) of the rotation period

trot of the spiral wave versus Ggap shows that trot decreases as Ggap

increases. In Fig. 7 (f) we show the power spectra E(v) of the time

series of Vm(x,y,t) recorded from the representative point

x~112:5 mm,y~112:5 mm, which is indicated by an asterisk

in Figs. 7 (a)-(d), for Ggap~0:0 nS (black circles), (b) Ggap~0:5 nS

(gray squares), (c) Ggap~2:0 nS (blue diamonds), and (d)

Ggap~8:0 nS (red triangles); for these power spectra we use time

series with 400000 points; the discrete lines in these power spectra

show that, over these time scales, we have periodic temporal

evolution that is a characteristic signature of a single, rotating

spiral wave. The position of the fundamental peak in these power

spectra moves to high frequencies as we increase Ggap in a manner

that is consistent with the decrease of trot in (e).

The rotation period trot, for zero-sided coupling, decreases as

Ggap increases. We can understand this qualitatively by looking at

the APD of an MF composite and examining the propagation

properties of plane waves that we have discussed above. Recall

that, as Ggap increases, the myocyte APD for a myocyte in an MF

composite decreases for low values of Ef (e.g., Ef ~{39 mV, as

shown by red triangles in Fig. 2 (a)). The APD is roughly equal to

the refractory time of a plane wave in a 1D or 2D domain [61],

therefore, the refractory period of a plane wave in 2D decreases as

Figure 6. Plane waves shown via pseudocolor plots of Vm at t~160 ms in a 2D square simulation domain of side L~135 mm: for (a)
the control case with only myocytes, (b) zero-sided coupling, (c) single-sided coupling with Gmm=Gff ~1, (d) double-sided coupling with
Gmm=Gff ~1, Gmm=Gmf ~100, and Ggap~0:5 nS, (e) double-sided coupling with Gmm=Gff ~1, Gmm=Gmf ~100, and Ggap~8:0 nS, and (f) double-
sided coupling with Gmm=Gff ~1, Gmm=Gmf ~200, and Ggap~0:5 nS (Video S1 illustrates the spatiotemporal evolution of these plane
waves). Plots of CV versus Ggap for (g) zero-sided coupling, (h) single-sided coupling with Gmm=Gff ~1 (blue circles), Gmm=Gff ~4 (black squares), and
Gmm=Gff ~100 (red triangles), and (i) double-sided coupling with Gmm=Gff ~1 and Gmm=Gmf ~200. For double-sided coupling, conduction failure can
occur for low and intermediate values of Ggap, e.g., 0.5 nS and 2.0 nS, as shown in (d).
doi:10.1371/journal.pone.0072950.g006
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Ggap increases; and we have checked explicitly that it decreases as

Ggap increases by applying an additional stimulus at the wave back

of the propagating plane wave. The rotation period trot of a spiral

wave is related to the refractory period of a plane wave, although

the curvature plays an additional role in the spiral-wave case

[62,63]. Therefore, spiral waves rotate faster as Ggap is increased.

The white solid lines in Figs. 7 (a)–(d) show the trajectories of the

spiral tips for 2 sƒtƒ3 s. If we monitor these trajectories for

longer durations of time, we obtain the tip trajectories shown in

Figs. 8 (a), (b), and (c), respectively, for the time intervals

2 sƒtƒ3 s, 4 sƒtƒ5 s, and 6 sƒtƒ7 s for the case of zero-

sided coupling, for the control case with Ggap~0:0 ns (black

circles), Ggap~0:5 ns (gray squares), Ggap~2:0 ns (blue dia-

monds), and Ggap~8:0 ns (red triangles), and all other parameter

values as in Fig. 7. Note that in Figs. 8 (a) and (b), i.e., for t 5 s,

these trajectories are very nearly circular for all the values of Ggap

we consider. However, for tw5 s, the tip trajectories can form Z-

type curves as shown in Fig. 8 (c) for the control case with

Ggap~0:0 ns (black circles), Ggap~0:5 ns (gray squares), and

Ggap~2:0 ns (blue diamonds); the trajectory for Ggap~8:0 ns (red

triangles) continues to be circular. Videos S2, S3, and S4 illustrate

the spatiotemporal evolution of these spiral-tip trajectories. The

stability of the spiral core increases as we increase Ggap because the

interaction of the wave back of the preceding arm of the spiral

wave and the wave front of the following arm decreases with

increasing Ggap.

We also study spiral-wave dynamics in both autorhythmic and

oscillatory regimes as shown and discussed in detail in Fig. S6 in

Material S1.

In Fig. 9 we show spiral waves via pseudocolor plots of Vm at

time t~2 s; here, at each site, we have an MF composite with a

myocyte M coupled with one fibroblast F for which Ggap~8 nS,

Cf ,tot~6:3 pF, Gf ~4 nS, and Ef ~{39 mV. Figure 9(a) shows

the control case in which there are only myocytes and no

Figure 7. Pseudocolour plots of Vm with zero-sided couplings:Vm in a square simulation domain of side L~135 mm, at time t~2 s with
Gf ~4:0 nS, Ef ~{39:0 mV, with Dmm~0:00154 cm2/s, and (a) Ggap~0:0 nS (control case, i.e., only myocytes), (b) Ggap~0:5 nS (low coupling), (c)
Ggap~2:0 nS (intermediate coupling), and (d) Ggap~8:0 nS (high coupling); the white solid lines show the trajectory of the spiral tip for 2 sƒtƒ3 s.
Video S2 illustrates the spatiotemporal evolution of these spiral waves. (e) Plot of the rotation period trot of the spiral wave versus Ggap. (f) Plots of the
power spectra E(v) of the time series of Vm(x,y,t) recorded from the representative point (x~112:5 mm, y~112:5 mm), which is indicated by an
asterisk in (a)-(d), for Ggap~0:0 nS (black circles), (b) Ggap~0:5 nS (gray squares), (c) Ggap~2:0 nS (blue diamonds), and (d) Ggap~8:0 nS (red
triangles); for these power spectra we use time series with 400000 points.
doi:10.1371/journal.pone.0072950.g007

Figure 8. Plots of spiral-wave-tip trajectories with zero-sided couplings: Spiral-wave tip trajectories for the time intervals (a) 2 sƒtƒ3 s, (b)
4 sƒtƒ5 s, and (c) 6 sƒtƒ7 s, with zero-sided coupling, and for the control case with Ggap~0:0 ns (black circles), Ggap~0:5 ns (gray squares),
Ggap~2:0 ns (blue diamonds), and Ggap~8:0 ns (red triangles), and all other parameter values as in Fig. 7. Videos S2, S3, and S4 illustrate the
spatiotemporal evolution of these spiral-tip trajectories.
doi:10.1371/journal.pone.0072950.g008
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fibroblasts; Fig. 9(b) shows the spiral wave for the case of zero-

sided coupling; Fig. 9(c) gives the spiral wave for single-sided

coupling with Gmm=Gff ~1; and Fig. 9(d) portrays this wave when

we have double-sided coupling with Gmm=Gff ~1 and

Gmm=Gmf ~200; the white solid lines in these plots show the

trajectories of the spiral tip for 2svtv3s. Video S5 illustrates the

spatiotemporal evolution of these spiral waves. In Fig. 9(d), we

show the time series of Vm(x,y,t), in the interval 6sƒtƒ8s,

obtained from a representative point, shown by asterisks in

Figs. 9(a-d), namely, (x~112:5mm,y~112:5mm), for the control

case (black circles), zero-sided coupling (gray squares), single-sided

coupling (blue diamonds), and double-sided coupling (red trian-

gles); Figs 9(e) and (f) contain, respectively, plots of the inter-beat

interval (ibi) versus the beat number n and the power spectrum

E(v) (of Vm) versus the frequency v for the control case (black

circles), zero-sided coupling (gray squares), single-sided coupling

(blue diamonds), and double-sided coupling (red triangles); these

plots of ibi and E(v) are obtained from a time series with 4|105

data points separated by 0.02 ms and recorded from the

representative point (x~112:5mm,y~112:5mm) that is indicated

by a * in these pseudocolor plots. With double-sided couplings, we

have seen the formation of two spirals (see Fig. 9(d)), given the

spiral-initialization procedure that we use. From the animations in

Video S5, the time series of Vm(x,y,t), the ibi, and the power

spectra in Fig. 9, we conclude that the spiral rotates faster for

single-sided coupling than for zero-sided coupling; the spiral

rotation rate in the double-sided case lies between these rates for

zero- and one-sided couplings. Such fast and slow rotation rates of

spiral waves, for these three types of couplings, can be understood

by analyzing the AP morphology of a single MF composite and the

CV of plane waves, with these three types of couplings. In general,

our studies have shown that, if the fibroblasts in the MF

composites act as current sources (current sinks), then the rate of

rotation of the spiral wave increases (decreases).

Spiral waves in inhomogeneous domains. We now

examine the effects of fibroblast inhomogeneities on spiral-wave

dynamics in our mathematical model; outside the region of the

inhomogeneity we use the TNNP model for cardiac tissue; inside

the inhomogeneity we use the 2D MF composite domain that we

have used in our studies above.

We model an inhomogeneity in our 2D simulation domain by

incorporating a small square patch of side ‘; this patch is an MF

composite domain; the remaining part of the simulation domain

contains only myocytes that are coupled via Dmm. Again, we focus

on three different types of couplings in the MF-composite domain,

namely, zero-, single-, and double-sided couplings between

myocytes and fibroblasts; and we choose to the following,

Figure 9. Spiral waves with zero-, one-, and two-sided couplings: Pseudocolor plots of Vm at time t~2 s in a simulation domain with
L~13:5 cm, an MF composite at every site, with a myocyte M coupled via Ggap~8 nS with one fibroblast F (Cf ,tot~6:3 pF, Gf ~4 nS, and
Ef ~{39 mV) for (a) control case with only myocytes and no fibroblasts, (b) zero-sided coupling, (c) single-sided coupling with Gmm=Gff ~1, and (d)
double-sided coupling with Gmm=Gff ~1 and Gmm=Gmf ~200; the white solid lines in plots (a), (b), (c), and (d) show the trajectories of the spiral tip for
2svtv3s. Video S5 illustrates the spatiotemporal evolution of these spiral waves. (e) Time series data for Vm(x,y,t) are recorded at the point
(x~112:5mm,y~112:5mm), shown by an asterisk, for 6svtv8s. (f) Plot of the inter-beat interval (ibi) versus the beat number n, and (g) the power
spectrum E(v) (of Vm) versus the frequency v for the control case (black circles), zero-sided coupling (gray squares), single-sided coupling (blue
diamonds), and double-sided coupling (red triangles); these plots of ibi and E(v) are obtained from a time series of Vm , with 400000 data points
separated by 0.02 ms.
doi:10.1371/journal.pone.0072950.g009
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representative fibroblast parameters: Cf ,tot~6:3 pF, Gf ~4 nS,

and Ef ~{39 mV. In most of our studies, we use Ggap~8 nS.

In Figs. 10 (a), (b), and (c) we show pseudocolor plots of Vm at

time, t~2 s, in the presence of a square fibroblast inhomogeneity,

of side 33.75 mm, for the case of zero-sided coupling, and the lower-

left-hand corner of the inhomogeneity at, respectively,

(x~33:75mm,y~67:5mm), (x~56:25mm, y~56:25mm) and

(x~78:75mm, y~45mm), respectively; the white solid lines in

these figures show the spiral-tip trajectories, for 2sƒtƒ3s. We also

obtain time series for Vm from a point outside the inhomo-

geneity ((x~112:5mm, y~112:5mm) for all cases) and a point

inside it ((x~45mm, y~90mm),(x~67:5mm, y~67:5mm), and

(x~90mm, y~67:5mm) for Figs. 10 (a), (b), and (c), respectively).

Data from the points outside and inside the fibroblast inhomoge-

neity are represented, respectively, by black circles and red triangles

in Figs. 10 (d), (e), and (f). Figures 10 (g), (h), and (i) show plots of the

inter-beat intervals (ibis) versus the beat number n for the time series

of Vm mentioned above; each one of these time series contain

2|105 data points; the power spectra E(v), which follow from

these time series, are given in Figs. 10 (j), (k), and (l).

The white solid lines in Figs. 10 (a)–(c) show the trajectories of

the spiral tips for 2 sƒtƒ3 s; note that these trajectories depend

sensitively on the position of the MF composite inhomogeneity;

furthermore, the dynamics of the wave, inside and outside this

inhomogeneity, are different (cf., our previous studies with ionic

inhomogeneities [16,17]). Figure 10 (a) shows that, in the presence

of an MF-composite inhomogeneity, the tip trajectory deviates

from one with a circular core; the corresponding plots of the ibis

Figure 10. Pseudocolor plots of the transmembrane potential of the myocyte Vm at time, t~2 s, in the presence of a square shape
MF composite inhomogeneity, of side ‘~33:75 mm, for the case of zero-sided coupling; the bottom-left corner of the
inhomogeneity is fixed at (a) (x~33:75mm,y~67:5mm) , (b) (x~56:25mm,y~56:25mm) , and (c) (x~78:75mm,y~45mm) ; the white solid
lines in these figures show the spiral-tip trajectories in the time interval 2sƒtƒ3s and the local time series data are recorded from
points that are shown by asterisks. Video S6 illustrates the spatiotemporal evolution of these spiral waves. The plots in (d)-(f) show the time
series for Vm, in the interval 0sƒtƒ4s, which are obtained from a point outside ((x~112:5mm,y~112:5mm) for all cases) and inside the fibroblast
inhomogeneity ((x~45mm,y~90mm),(x~67:5mm,y~67:5mm), and (x~90mm,y~67:5mm) for (a), (b), and (c), respectively), represented by black
circles and red triangles, respectively; (g), (h), and (i) show plots of the inter-beat intervals (ibis) versus the beat number n for the time series of Vm

mentioned above; each one of these time series contain 2|105 data points; the power spectra E(v), which follow from these time series, are given in
(j), (k), and (l).
doi:10.1371/journal.pone.0072950.g010
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and power spectra, Figs. 10 (g) and (j), respectively, illustrate that

the temporal evolution of the spiral is periodic inside and outside

of the inhomogeneous domain. However, for the inhomogeneity of

Fig. 10 (b), we observe non-periodic and periodic temporal

evolutions, respectively, inside and outside the MF inhomogeneity

as can be surmised from the ibi and power-spectra plots in Figs. 10

(h) and (k); the tip has a Z-type trajectory, extends over a length

^34 mm, and it meanders both inside and outside the

inhomogeneity. For the inhomogeneity of Fig. 10 (c), we obtain

periodic and non-periodic temporal evolutions, respectively, inside

and outside the MF-composite inhomogeneity (see Figs. 10 (i) and

(l) for the ibi and power spectra); here the tip trajectory has a linear

extent ^14 mm and it is restricted, predominantly, inside the

inhomogeneity. The Video S6 has four animations that show

superimpositions of pseudocolor plots of Vm and the spiral-tip

trajectories for 2ƒtƒ3 s for a control myocyte layer with no

inhomogeneities and the simulation domains for Figs. 10 (a)–(c). If

we use one-sided coupling with Gmm=Gff ~1, we find that our

results are similar to those we have depicted in Fig. 10 for zero-

sided coupling, as we show in Fig. S7 in Material S1. In general,

the heterogeneity of cardiac tissue causes a drift of the spiral wave

towards regions in which a spiral wave has a long period of

rotation [64–66]. In our studies, the period of a spiral wave

decreases slightly inside the fibroblast heterogeneity; and the final

position of the spiral depends on the location of the heterogeneity.

Next we investigate the dependence of spiral-wave dynamics on

the size of the MF-composite inhomogeneity. Figures 11 (a), (b),

and (c) show pseudocolor plots, at time t~2 s, of Vm for three

representative square inhomogeneities, with sides ‘~22:5mm,

‘~33:75mm, and ‘~45mm; the lower-left-hand corner of these

squares is fixed at (56:25mm,56:25mm). The white, solid lines in

these figures show the spiral-tip trajectories for 2ƒtƒ3 s. The

spiral-tip trajectory, shown in Fig. 11(a), is a closed, but not

circular, path that is confined inside the inhomogeneity; as the size

of the inhomogeneity grows, this tip trajectory also grows in size

and parts of it lie outside the inhomogeneity, as shown, e.g., in

Fig. 11(b) and (c); in the latter two cases, the tip trajectories are not

closed and their linear extent is comparable to the length of the

side of the inhomogeneity. We also obtain time series for Vm from

a point outside the inhomogeneity (22:5mm,22:5mm) and a point

inside it (67:5mm,67:5mm); these points are indicated, respec-

tively, by black and white asterisks in Figs. 11 (a), (b), and (c); and

data from the points outside and inside the fibroblast inhomoge-

neity are represented, respectively, by black circles and red

triangles in Figs. 11 (d)-(l). In Figs. 11 (d), (e), and (f) we give the

time series of Vm; Figs. 11 (g), (h), and (i) show plots of the inter-

beat intervals (ibis) versus the beat number n for the time series of

Vm mentioned above (these contain 2|105 data points); the

power spectra E(v), which follow from these time series, are given

in Figs. 11 (j), (k), and (l). The Video S7 has four panels that show

superimpositions of pseudocolor plots of Vm and the spiral-tip

trajectories for 2ƒtƒ3 s for a control myocyte layer with no

inhomogeneities (top left panel) and the simulation domains for

Figs. 11 (a), (b), and (c) (top right, bottom left, and bottom right

panels, respectively). We observe rich varieties of spiral-wave

dynamics, both inside and outside of the inhomogeneity. The

precise spatiotemporal evolution of the spiral waves depends on

the size of the inhomogeneity; for a careful investigation of this size

dependence, we must keep one point of the inhomogeneity, say its

left bottom corner, fixed, as in Figs. 11(a), (b), and (c), where we

find that the system moves from periodic to non-periodic temporal

evolution as the size of the inhomogeneity increases; this

conclusion follows from the ibi plots in Figs. 11(g)-(i) and the

power spectra in Figs. 11(j)-(l). Note, furthermore, that the spiral-

wave rotation period trot decreases as the size of inhomogeneity

increases; this is consistent with Fig. 9 (f), which shows that the ibi

for a homogeneous myocyte layer is greater than the ibi of a

homogeneous MF-composite layer.

We turn now to a study of an MF-composite inhomogeneity

with double-sided coupling. We have shown that, in a homoge-

neous, 2D simulation domain with such MF composites, the

occurrence of conduction block depends on the value of Gmf ; e.g.,

we have observed that conduction failure occurs if Gmm=Gmf ƒ4

and Ggap~8 nS, but it does not occur if Ggap~8 nS and

Gmm=Gmf w4; in the latter case, CV depends on the ratio

Gmm=Gmf . Therefore, we choose the following four representative

values for Gmf in our MF-composite inhomogeneity studies:

Gmm=Gmf ~1, Gmm=Gmf ~50, Gmm=Gmf ~100, and

Gmm=Gmf ~200. We begin with Gmm=Gmf ~1 for which conduc-

tion failure occurs for all physical values Gff and Ggap in the

homogeneous case. In Figs. 12 (a)–(h), we show pseudocolor plots

of Vm at time t~2 ms, when a square MF-composite inhomo-

geneity, with Gmm=Gff ~1 and Gmm=Gmf ~1, is placed with its

lower-left corner at (x~67:5mm,y~67:5mm); the square has a

side of length ‘~0, i.e., no inhomogeneity (Fig. 12(a)),

‘~11:25mm (Fig. 12(b)), ‘~16:875mm (Fig. 12(c)), ‘~22:5mm
(Fig. 12(d)), ‘~28:125mm (Fig. 12(e)), ‘~33:75mm (Fig. 12(f)),

‘~39:375mm (Fig. 12(g)), and ‘~45mm (Fig. 12(h)). The smallest

MF-composite inhomogeneity that can anchor a spiral wave has

‘~16:875mm. The Video S8 has four panels that show the

spatiotemporal evolution of pseudocolor plots of Vm for 2sƒtƒ3s
for a control myocyte layer with no inhomogeneities (top left

panel) and the simulation domains for Figs. 12 (d), (f), and (h) (top

right, bottom left, and bottom right panels, respectively).

Figure 12(i), a plot of the rotation period trot, of such an anchored

spiral wave, versus ‘, shows how trot increases with ‘; such an

increase has also been seen for a conduction inhomogeneity [67].

If the value of Gmm=Gmf is such that conduction failure occurs in

a homogeneous, MF-composite simulation domain, then the MF-

composite inhomogeneity behaves somewhat like a conduction

inhomogeneity inasmuch as the spiral wave does not enter

significantly into the region of the inhomogeneity. We discuss in

detail in Material S1 (Figs. S8) how far a spiral wave penetrates

into an MF-composite inhomogeneity. We find that, depending on

the values of parameters, the MF-composite inhomogeneity can

act like a conduction inhomogeneity, or, the spiral wave can

penetrate the region of the inhomogeneity marginally, i.e., the

MF-composite inhomogeneity can act like an ionic inhomogeneity

[16].

In our plane-wave studies in 2D homogeneous simulation

domains with double-sided coupling, we have noted that the

propagation speed CV and the wave length l depend Gmf .

Therefore, we now carry out a study of the interaction of spiral

waves with an MF-composite inhomogeneity for different values of

Gmf . We have seen above that an MF-composite inhomogeneity

behaves somewhat like a conduction inhomogeneity if

Gmm=Gmf ~1. In Figs. 13 (a), (b), and (c) we show, for

Gmm=Gmf ~50, 100, and 200, respectively, pseudocolor plots of

Vm, at time t~2 s, in the presence of a square, MF-composite

inhomogeneity, of side ‘~33:75 mm and with its lower-left-hand

corner placed at (x~56:25mm,y~56:25mm) for the case of

doubled-sided coupling with Gmm=Gff ~1 and Ggap~8 nS. We

also obtain time series for Vm(x,y,t) from a point outside the

inhomogeneity (x~22:5mm,y~22:5mm) and a point inside it

(x~67:5mm,x~67:5mm), both of which are depicted by asterisks

in Figs. 13 (a)-(c). These time series, with 2|105 data points each,

are plotted in Figs. 13 (d), (e), and (f) for Gmm=Gmf ~50, 100, and
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200, respectively (data from the points outside and inside the

inhomogeneity are represented, respectively, by black circles and

red triangles); Figs. 13 (g), (h), and (i) show the corresponding plots

of the ibi versus the beat number n; and the associated power

spectra E(v) are depicted in Figs. 13 (j), (k), and (l). The Video S9

has four panels that show the spatiotemporal evolution of

pseudocolor plots of Vm and the spiral-tip trajectories for

2sƒtƒ3s for a control myocyte layer with no inhomogeneities

(top left panel) and, in addition, the simulation domains of Figs. 13

(a)-(c) (top right, bottom left, and bottom right panels). We observe

rich spiral-wave dynamics, which can be different inside and

outside of the MF-composite inhomogeneity, as in the cases with

zero- and single-sided couplings. The degree to which the spiral-

wave penetrates inside the inhomogeneity depends on the value of

Gmf , as we can see from the time-series plots of Figs. 13(d)-(f). We

examine the interaction of spiral waves with an MF-composite

inhomogeneity for different values of Ggap in detail in Material S1

(Fig. S9). The Video S10 has four panels that show the

spatiotemporal evolution of pseudocolor plots of Vm and the

spiral-tip trajectories for 2sƒtƒ3s for a control myocyte layer

with no inhomogeneities (top left panel) and, in addition, the

simulation domains of Figs. S9(a)-(c) in Material S1 (top right,

bottom left, and bottom right panels). Here too we obtain a rich

variety of spiral-wave behaviors inside and outside of the MF-

composite inhomogeneity, as in the cases with zero- and single-

sided couplings.

Figure 11. Pseudocolor plots of Vm with MF-composite inhomogeneities: Pseudocolor plots of the transmembrane potential of the myocyte
Vm at time, t~2 s, in the presence of three square MF-composite inhomogeneities with sides (a) ‘~22:5mm, (b) ‘~33:75mm, and (c) ‘~45mm, for
the case of zero-sided coupling; the bottom-left corner of these squares is fixed at (x~56:25mm,y~56:25mm); the white solid lines in these figures
show the spiral-tip trajectories in the time interval 2sƒtƒ3s and the local time series data are recorded from points that are shown by asterisks.
Video S7 illustrates the spatiotemporal evolution of these spiral waves. The plots in (d)-(f) show the time series for Vm, in the interval 0sƒtƒ4s, which
are obtained from the point outside the inhomogeneity (x~22:5mm,y~22:5mm) and a point inside it (x~67:5mm,y~67:5mm), represented by
black filled circles and red filled triangles, respectively; (g), (h), and (i) show plots of the inter-beat intervals (ibis) versus the beat number n for the time
series of Vm mentioned above; each one of these time series contain 2|105 data points; the power spectra E(v), which follow from these time
series, are given in (j), (k), and (l).
doi:10.1371/journal.pone.0072950.g011
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3 Control of Spiral-wave Turbulence in the Presence of
MF-composite Inhomogeneities

One of the goals of our extensive studies of various types of

heterogeneities in mathematical models for cardiac tissue

[16,17,68,69] has been to understand their effects on spiral-wave

dynamics and thus develop effective, low-amplitude control

techniques for the elimination of single, rotating spiral waves or

spatiotemporally chaotic multiple spiral waves of electrical

activation in mathematical models for cardiac tissue. In these

earlier studies [16,17,68,69] we have considered conduction or

ionic inhomogeneities; here we have extended such studies to

mathematical models in which we allow for the MF-composite

inhomogeneities that we have described above.

In this subsection we investigate the elimination of spiral-wave

turbulence in the presence of MF-composite inhomogeneities. We

use the control scheme of Sinha, et al., [19]; this eliminates spiral

waves by the application of a current pulse on a mesh, which we

describe below. We have found in our earlier studies [16–19] that

such a mesh-based control scheme is effective even when the

simulation domain has conduction or ionic inhomogeneities; by

contrast, control schemes, which use electrical stimuli at a point

[70,71], work well in homogeneous simulation domains but do not

eliminate spiral-wave turbulence in domains with inhomogeneities.

In our mesh-based control scheme in a 2D simulation domain

with an MF-composite inhomogeneity, we apply a current pulse of

amplitude 30 pA/pF for 400 ms over a mesh that divides our

square simulation domain, of side 135 mm, into 16 square cells of

side 33.75 mm each. The application of this pulse makes the

region, which is covered by the mesh, refractory and, therefore,

effectively imposes Neumann boundary conditions for any cell

bounded by this mesh. Thus, spiral waves that lie inside the cell

are absorbed at the mesh that bounds it and, eventually, spiral-

wave turbulence is eliminated from the whole simulation domain.

We begin with a discussion of the control of spiral waves, in a

2D, MF-composite simulation domain, by the application of a

current pulse on the square mesh described above. In Fig. 14 (a)

we show a pseudocolor plot of Vm at time t~0 ms, for the control

case with Ggap~0 nS; we give pseudocolor plots of Vm, at

t~400 ms, and in the absence and presence of the control pulse in

Figs. 14 (b) and (c), respectively. Figures 14 (d), (e) and (f), are the

analogs of Figs. 14 (a), (b), and (c), respectively, for zero-sided

coupling with Cf ,tot~6:3 pF, Gf ~4 nS, Ef ~{39 mV, and

Ggap~8 nS. Figures 14 (g), (h), and (i) are the analogs of Figs. 14

(a), (b), and (c), respectively, for two-sided coupling with

Cf ,tot~6:3 pF, Gf ~4 nS, Ef ~{39 mV, Ggap~8 nS,

Gmm=Gff ~1, and Gmm=Gmf ~200. From the pseudocolor plots of

Vm in Figs. 14 (c), (f), and (i) we see that our mesh-based, spiral-

control scheme succeeds in eliminating spiral-wave turbulence in

less than 400 ms in a 2D, MF-composite simulation domain with

zero- and two-sided couplings; we have obtained similar results

with one-sided coupling too. The Video S11, which comprises six

animations of pseudocolor plots of Vm, shows the spatiotemporal

evolution of the spiral waves for these cases, with and without

control pulses.

Figure 12. Pseudocolor plots of the transmembrane potential of the myocyte Vm at time, t~2 s, when a square MF-composite
inhomogeneity, with Gmm=Gff ~1 and Gmm=Gmf ~1, is placed with its lower-left corner at (x~67:5mm,y~67:5mm); the square has a side
of length (a) ‘~0, i.e., no inhomogeneity, (b) ‘~11:25mm, (c) ‘~16:875mm, (d) ‘~22:5mm, (e) ‘~28:125mm, (f) ‘~33:75mm, (g)
‘~39:375mm, and (h) ‘~45mm. Video S8 illustrates the spatiotemporal evolution of these spiral waves for (a), (d), (f) and (h). The smallest MF-
composite inhomogeneity that can anchor a spiral wave has ‘~16:875mm; (i) shows a plot of the rotation period trot of such an anchored spiral
wave.
doi:10.1371/journal.pone.0072950.g012
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We now study spiral-wave control in a 2D simulation domain

with myocytes and a square MF-composite inhomogeneity with

side l~33:75 mm whose bottom-left corner is placed at

(x~56:25mm,y~56:25mm. Again, we apply a control pulse of

amplitude 30 pA/pF for t~400 ms over a square mesh with cells

whose sides are of length L=K~33:75 mm, i.e., the simulation

domain is divided into 42~16 square blocks. We consider the

following three cases: (A) zero-sided coupling with Cf ,tot~6:3 pF,

Gf ~4 nS, Ef ~{39 mV and Ggap~8 nS; (B) double-sided

coupling with the same fibroblasts parameters as in case (A) and

with Gmm=Gff ~1 and Gmm=Gmf ~1; and (C) double-sided

coupling with the same fibroblasts parameters as in case (A) and

with Gmm=Gff ~1 and Gmm=Gmf ~200. Figures 15 (a), (d), and (g)

show pseudocolor plots of Vm at t~0 for cases (A), (B), and (C),

respectively. Figures 15 (b), (e), and (h) show their analogs for

t~400 ms when no control pulse is applied. Figures 15 (c), (f), and

(i), which show pseudocolor plots of Vm at t~0 for cases (A), (B),

and (C), respectively, at t~400 ms when we apply a control pulse,

illustrate how our control scheme is effective in suppressing spiral-

wave turbulence in the presence of an MF-composite inhomoge-

neity. For the spatiotemporal evolution of these spiral waves see

Video S12.

Discussion and Conclusion

We have carried out detailed numerical studies of an MF

composite by modelling human ventricular myocyte cells, as in

Ref. [15], and fibroblasts as passive RC circuits, as in Refs. [9,12].

The passive nature of these fibroblasts makes them behave as

inexcitable cells and, therefore, they act either as current sources

or sinks, when they are coupled with myocytes. We have

Figure 13. Pseudocolor plots of the transmembrane potential of the myocyte Vm, at time t~2 s, in the presence of a square, MF-
composite inhomogeneity, of side ‘~33:75 mm and with its lower-left-hand corner placed at (x~56:25mm,y~56:25mm) for the case
of doubled-sided coupling with Gmm=Gff ~1 and Ggap~8 nS: (a) Gmm=Gmf ~50, (b) Gmm=Gmf ~100, and (c) Gmm=Gmf ~200. Video S9 illustrates

the spatiotemporal evolution of these spiral waves. The time series for Vm(x,y,t), with 2|105 , from a point outside the inhomogeneity
(x~22:5mm,y~22:5mm) and a point inside it (x~67:5mm,x~67:5mm), both of which are depicted by asterisks in (a)-(c), are plotted in (d), (e), and
(f) for Gmm=Gmf ~50, 100, and 200, respectively (data from the points outside and inside the inhomogeneity are represented, respectively, by black
circles and red triangles); (g), (h), and (i) show the corresponding plots of the ibi versus the beat number n; and the associated power spectra E(v) are
depicted in (j), (k), and (l).
doi:10.1371/journal.pone.0072950.g013
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investigated the responses of such MF composites to external

electrical stimuli by varying systematically the total cellular

capacitance Cf ,tot of fibroblasts and their membrane conductance

Gf , resting membrane potential Ef , gap-junctional coupling (with

myocytes) Ggap, and the number Nf of fibroblasts coupled to a

myocyte over a wide range of biophysically relevant values

[3,5,46,49,50]. We find that the myocyte APD increases as we

increase Cf ,tot in the fibroblast; but it does not significantly affect

the shape of the AP. An increase in Gf prolongs the APD, if the

resting potential of the fibroblast is high (Ef w{19 mV), but it

shortens the APD if Ef v{19 mV; and Vrest is elevated

substantially as Gf is increased. We focus mainly on the

dependence of the AP morphology on Ef and Ggap, because the

values of these two parameters span a wide range in experiments

[3,5,49,50]. We find that the APD increases with Ggap (Fig. 2), if

Ef is high, but it decreases, as Ggap increases, if Ef is low. The

maximum upstroke velocity, dV=dtmax, and the maximum value

of the myocyte transmembrane potential, Vmax, decrease as we

increase Ef (Fig. 2), with a fixed value of Ggap, whereas the notch

of the AP, Vnotch, the maximum of the plateau, Vplateau, and the

resting membrane potential all increase as we increase Ef .

Furthermore, we have shown that dV=dtmax, Vmax, Vnotch, and

Vplateau decrease, but Vrest increases, as we increase Ggap (Fig. 2),

with a fixed value of Ef . We have carried out simulations to check

the dependence of the myocyte AP on the number Nf of

fibroblasts, which are coupled to a myocyte. We have observed

that (a) the APD and Vrest decrease and increase, respectively, as

Nf increases and (b) this increase of Vrest depolarizes the

membrane potential so that, eventually, Vm crosses the threshold

value for the generation of an AP, and, therefore, the MF

composite cell begins to show either autorhythmic or oscillatory

behaviors [57].

Fibroblasts are found to be much smaller than myocytes in

experimental studies [8,72]; thus, in cell-culture experiments,

more than one fibroblast can be deposited per myocyte in the cell

culture. Furthermore, the sizes of fibroblasts can vary in such

experiments; this depends on the preparation technique and

circumstances; and the fibroblast size decides the maximum

number of fibroblasts that can attach to a myocyte. Indeed, a wide

range of values has been used for the total cellular capacitance

Cf ,tot in various computer models [9,11,12] because these models

assume that Cf ,tot is related to the size of the fibroblast. Hence, in

our model studies, for a given size of fibroblast, i.e., a fixed value of

Cf ,tot, the complex, network-type interaction can occur via

Gff ,Gmf , and Gfm, depending on the number of fibroblasts Nf

coupled to a myocyte in an MF composite. Therefore, we use Nf

fibroblasts per a myocyte site in an MF composite to study the

wave dynamics; each of these fibroblasts are coupled to a myocyte

via Ggap. We think of this collection of Nf fibroblasts as a single

cluster that interacts via Gmf and Gfm, with its neighboring

myocytes; we assume that the number of fibroblast clusters is

Figure 14. Spiral-wave control in our 2D M-F composite model, by the application of a control pulse of amplitude 30 pA/pF for
t~400 ms over a square mesh with each block of side L=K~33:75 mm, i.e., the simulation domain is divided into 42 square blocks.
Plots in (a), (d) and (g) are the initial conditions of Vm , i.e., t~0 ms, for the control case, i.e., Ggap~0 nS, zero sided coupling with Cf ,tot~6:3 pF,
Gf ~4 nS, Ef ~{39 mV and Ggap~8 nS, and double-sided coupling with the same fibroblasts parameters as in (d) and with Gmm=Gff ~1 and
Gmm=Gmf ~200, respectively; (b), (e) and (h) show the pseudocolor plots of Vm at t~400 ms in the absence of any control pulse. However, the spiral-
wave is suppressed by an application of the control pulse as shown (c), (f) and (i) at time t~400 ms. The Video S11, which comprises six animations of
pseudocolor plots of Vm , shows the spatiotemporal evolution of these spiral waves for these cases, with and without control pulses.
doi:10.1371/journal.pone.0072950.g014
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exactly equal to the number of myocyte cells. We assume that, at

the level of a first approximation, the fibroblasts in a cluster

interact with each other only to the extent that they form cluster.

When the size of the fibroblast cluster is much smaller than the size

of a myocyte, then the couplings Gmf , Gfm, and Gff are irrelevant

and we should only use a zero-sided model.

Earlier computational studies [9–12], which we have discussed

in the ‘‘Introduction’’ section, have not investigated the depen-

dence of the AP morphology, as we do, on the parameters Cf ,tot,

Gf , Ef , Ggap, and Nf ; most of these earlier studies have focused on

the dependence of the AP on Nf , principally, and Ef , to some

extent. Our detailed studies of the dependence of the AP

morphology on Cf ,tot, Gf , Ef , Ggap, and Nf are designed to help

experimentalists in the growth of different tissue layers with

myocytes and fibroblasts and thus uncover the contribution of

fibroblasts to the mechanisms of ventricular fibrillation. For

example, in our simulation, we have found that Ef has the

potential to alter the APD and, therefore, it can play a crucial role

in spiral-wave dynamics.

We have performed extensive numerical simulations in two-

dimensional (2D) simulation domains, both homogeneous and

inhomogeneous, which contain myocytes or MF composites with

zero-, one-, or two-sided couplings between myocytes and

fibroblasts. We have found that, for zero- and one-sided couplings,

the plane-wave conduction velocity CV decreases as Ggap

increases, but, with two-sided couplings, CV first decreases very

rapidly and then rises slowly as Ggap increases; furthermore, we

have found that conduction failure can occur in the double-sided

case if Gmf and Ggap are low (Fig. 6). Such behaviors have been

seen in earlier numerical studies, with passive or active fibroblast

in models [13,14] that are similar to, but not the same as, our

mathematical model, and in cell cultures [13,24–26]. In our

studies with zero-sided coupling, we have found that (a) the

rotation period trot of a spiral wave decreases as we increase Ggap

(Fig. 7), which we have explained qualitatively, (b) the higher the

value of Ggap, the more compact and closed is the trajectory of the

spiral tip (this compactness prevents a single spiral from splitting

into multiple spirals [73–75]), and (c) in the parameter range in

which autorhythmicity occurs, the spiral wave rotates periodically,

for low frequencies (Figs. S6 in Material S1).

Our studies of spiral-wave dynamics in a homogeneous

simulation domain with MF composites has shown that the spiral

rotates faster for single-sided coupling than for zero-sided

coupling. The spiral rotation rate in the double-sided case lies

between these rates for zero- and one-sided couplings. We have

presented a qualitative explanation of such fast and slow rotation

rates of spiral waves by analyzing the AP morphology of a single

MF composite and the plane-wave CV with these three types of

couplings. In general, our studies have shown that, if the

fibroblasts in the MF composites act as current sources (current

Figure 15. Spiral-wave control in the 2D Fibroblast model in the presence of a square shape MF composite inhomogeneity of size
l~33:75 mm whose bottom-left corner is placed at (56.25 mm, 56.25 mm). We apply a control pulse of amplitude 30 pA/pF for t~400 ms
over a square mesh with each block of size L=K~33:75 mm, i.e., the simulation domain is divided into 42 square blocks. Plots in Figs. (a), (b) and (c)
are the initial conditions of Vm, i.e., t~0 ms, for zero sided coupling with Cf ,tot~6:3 pF, Gf ~4 nS, Ef ~{39 mV and Ggap~8 nS, double sided
coupling with same fibroblasts parameters as in (a) with Gmm=Gff ~1 and Gmm=Gmf ~1, and double sided coupling with same fibroblasts parameters
as in (a) with Gmm=Gff ~1 and Gmm=Gmf ~200, respectively. Figures (b), (e) and (h) are the time evolution of Vm corresponds to Figs. (a), (d), (g),
respectively, at t~400 ms in absence of any control pulse. However, the spiral-wave is suppressed an application of control pulse as shown in Figs.
(c), (f) and (i) at time t~400 ms. For the spatiotemporal evolution of these spiral waves see Video S12.
doi:10.1371/journal.pone.0072950.g015
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sinks), then the rate of rotation of the spiral wave increases

(decreases).

Our studies of spiral-wave dynamics in the presence of localized,

MF-composite inhomogeneities have shown that they may block

spiral-wave propagation like conduction inhomogeneities

[16,28,30,68,69,76]; such behavior is the consequence of conduc-

tion failure, which we have observed in our plane-wave studies in

homogeneous domains. However, in some cases the spiral wave

can enter the region with the MF-composite inhomogeneity and

yield rich spiral-wave dynamics, which can be different inside and

outside of the inhomogeneity, as happens, e.g., when we have ionic

inhomogeneities [16,31,69]. We have found that zero- and single-

sided couplings have the potential to behave like ionic inhomo-

geneities; but double-sided couplings have the potential to behave

either like conduction- or ionic-type inhomogeneities (depending

on the value of Gmf ). Furthermore, spiral-wave dynamics, with all

these three types of couplings, depends sensitively on the position

and size of our MF composite inhomogeneities [16,17].

Our model has some limitations: it does not have any

mechanosensitive currents [77], either for the myocytes or the

fibroblast. These types of ionic currents have been obtained in

experimental studies of fibroblasts in the sino-atrial node (SAN)

and atria of certain mammals [3,46,48,77,78]. These mechan-

osensitive currents may affect spiral-wave propagation if there is

electro-mechanical feedback [79,80]; our model excludes such

electro-mechanical feedback. The purely electrical approach,

which we adopt, has also been used by several other groups (see,

e.g., Refs. [19,76,81–86]) with the understanding that the

mechanical system basically follows the electrical activation at

the level of a first approximation (see, e.g., Ref. [87]). Further-

more, our model is based on passive fibroblasts rather than active

fibroblast; there are several reasons to use passive fibroblast rather

than active ones, the main reason being that, so far, no

experiments have identified the presence of ionic currents in

human, ventricular fibroblasts; and the presence of active

fibroblast in human, ventricular fibroblasts continues to be a

matter of debate. The expression of ionic currents in fibroblasts

have been observed in animal species, either in the region of the

SAN or the right atrium. In spite of these limitations of our model,

our work provides the most comprehensive study, attempted so

far, of (a) the response of MF composites to external electrical

stimulation and (b) the propagation of spiral waves in MF-

composite 2D simulation domains, which are designed to model

cell-culture experiments of the sort presented in Refs. [13,26]. We

do not attempt here to study diffuse fibrosis; this lies beyond the

scope of this paper; it has been addressed in other simulation

studies [40,57,88–90]. Our studies have been designed specifically

to uncover the role of fibroblasts in spiral-wave dynamics in the the

absence of other tissue heterogeneities; once the underlying

contributions of fibroblasts to spiral-wave dynamics have been

revealed, we can incorporate tissue anisotropy and diffuse fibrosis

as, e.g., in Ref. [57].

One of our goals is to test our low-amplitude control scheme in

our 2D MF-composite model; we have focused here on a

monodomain model, because we use low-amplitude control pulses

rather than high-amplitude ones; the latter may require a

bidomain model. Furthermore, some studies [91] have shown

that there are no significant qualitative differences between

bidomain and monodomain models, so we expect that our

principal qualitative result will continue to hold even when such

models are considered; this will have to be checked explicitly by

subsequent studies.

Supporting Information

Material S1 Supplementary Material

(PDF)

Video S1 Plane-wave propagation in our 2D, homogeneous

myocyte-fibroblast (MF) model for different cases. (a) the control

case, i.e., with only myocytes; (b) zero-sided coupling; (c) single-sided

coupling with Gmm=Gff ~1; (d) double-sided coupling with Gmm=Gff ~1,

Gmm=Gmf ~100, and Ggap~0:5 nS; (e) double-sided coupling with

Gmm=Gff ~1, Gmm=Gmf ~100, and Ggap~8:0 nS; and (f) double-

sided coupling with Gmm=Gff ~1, Gmm=Gmf ~200, and Ggap~0:5 nS.

The time evolution of pseudocolor plots of the myocyte

transmembrane potential Vm is shown for 0sƒtƒ1s; we use 10

frames per second (fps); in real time each frame is separated from

the succeeding frame by 8 ms.

(MPG)

Video S2 Spiral-wave dynamics in our 2D homogeneous

myocyte-fibroblast model with zero-sided coupling. (a)

Ggap~0:00 nS (control case, i.e., with only myocytes); (b)

Ggap~0:50 nS (low coupling); (c) Ggap~2:00 nS (intermediate

coupling); (d) Ggap~8:00 nS (high coupling). Here spiral-tip

trajectories, for 2sƒtƒ3s, are shown by the white lines; we use

10 frames per second (fps); in real time each frame is separated

from the succeeding frame by 8 ms.

(MPG)

Video S3 Spiral-wave dynamics in our 2D homogeneous

myocyte-fibroblast model with zero-sided coupling. (a)

Ggap~0:00 nS (control case, i.e., with only myocytes); (b)

Ggap~0:50 nS (low coupling); (c) Ggap~2:00 nS (intermediate

coupling); (d) Ggap~8:00 nS (high coupling). Here spiral-tip

trajectories, for 4sƒtƒ5s, are shown by the white lines; we use

10 frames per second (fps); in real time each frame is separated

from the succeeding frame by 8 ms.

(MPG)

Video S4 Spiral-wave dynamics in our 2D homogeneous

myocyte-fibroblast model with zero-sided coupling. (a)

Ggap~0:00 nS (control case, i.e., with only myocytes); (b)

Ggap~0:50 nS (low coupling); (c) Ggap~2:00 nS (intermediate

coupling); (d) Ggap~8:00 nS (high coupling). Here spiral-tip

trajectories, for 6sƒtƒ7s, are shown by the white lines; we use

10 frames per second (fps); in real time each frame is separated

from the succeeding frame by 8 ms.

(MPG)

Video S5 Spiral-wave dynamics in our 2D homogeneous

myocyte-fibroblast model with gap-junctional conductance,

Ggap~8:0 nS. (a) control case; (b) zero-sided coupling; (c) single-

sided coupling; (d) double-sided coupling. Here spiral-tip trajec-

tories, for 2sƒtƒ3s, are shown by the white lines; we use 10

frames per second (fps); in real time each frame is separated from

the succeeding frame by 8 ms.

(MPG)

Video S6 Spiral-wave dynamics in our 2D myocyte-fibroblast

model in the presence of a square fibroblast inhomogeneity, of side

‘~33:75 mm, for the case of zero-sided, and the lower left-hand

corner of the inhomogeneity at different positions. (a) control case;

(b) (x~33:75 mm, y~67:5 mm); (c) (x~56:25 mm,

y~56:25 mm); (d) (x~78:75 mm, y~45 mm). Here spiral-tip

trajectories, for 2sƒtƒ3s, are shown by the white lines; we use 10

frames per second (fps); in real time each frame is separated from

the succeeding frame by 8 ms.

(MPG)
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Video S7 Spiral-wave dynamics in our 2D myocyte-fibroblast

model in the presence of a square fibroblast inhomogeneity of side

‘ for the case of zero-sided with the lower-left-hand corner of the

inhomogeneity fixed at (x~56:25 mm, y~56:25 mm). (a) control

case; (b) ‘~22:5 mm; (c) ‘~33:75 mm; (d) ‘~45 mm. Here

spiral-tip trajectories, for 2sƒtƒ3s, are shown by the white lines;

we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.

(MPG)

Video S8 Spiral-wave dynamics in our 2D myocyte-fibroblast

model with a double-sided coupling and a square fibroblast

inhomogeneity with side ‘ and Gmm=Gff ~1 and Gmm=Gmf ~1, and

the lower left-hand corner of the inhomogeneity fixed at (x~67:5
mm, y~67:5 mm). (a) ‘~0, i.e., absence of inhomogeneity; (b)

‘~22:5 mm; (c) ‘~33:75 mm; (d) ‘~45 mm. Here the myocyte

transmembrane potential time evolution is shown for 2sƒtƒ3s;

we use 10 frames per second (fps); in real time each frame is

separated from the succeeding frame by 8 ms.

(MPG)

Video S9 Spiral-wave dynamics in our 2D myocyte-fibroblast

model in the presence of a square, MF-composite inhomogeneity,

of side ‘~33:75 mm and with its lower-left-hand corner placed at

(x~56:25 mm, y~56:25 mm) for the case of doubled-sided

coupling with Gmm=Gff ~1 and Ggap~8 nS. (a) control case, i.e.,

with only myocytes; (b) Gmm=Gmf ~50; (c) Gmm=Gmf ~100; (d)

Gmm=Gmf ~200. Here the myocyte transmembrane potential time

evolution is shown for 2sƒtƒ3s; we use 10 frames per second

(fps); in real time each frame is separated from the succeeding

frame by 8 ms.

(MPG)

Video S10 Spiral-wave dynamics in our 2D myocyte-fibroblast

model in the presence of a square, MF-composite inhomogeneity,

of side ‘~33:75 mm and with its lower-left-hand corner placed at

(x~56:25 mm, y~56:25 mm) for the case of doubled-sided

coupling with Gmm=Gff ~1 and Gmm=Gmf ~200. (a) control case,

i.e., with only myocytes; (b) Ggap~0:5 nS (low coupling); (c)

Ggap~2:0 nS (intermediate coupling); (d) Ggap~8:0 nS (high

coupling). Here the myocyte transmembrane potential time

evolution is shown for 2sƒtƒ3s; we use 10 frames per second

(fps); in real time each frame is separated from the succeeding

frame by 8 ms.

(MPG)

Video S11 Spiral-wave dynamics, without (top panel) and with

(bottom panel) control pulses, in our 2D MF-composite model; we

apply a control pulse of amplitude 30 pA/pF for t~400 ms over a

square mesh with each block of side L=K~33:75 mm, i.e., the

simulation domain is divided into 42 square blocks. (a) for the

control case, i.e., Ggap~0 nS; (b) zero-sided couplings with

Cf ,tot~6:3 pF, Gf ~4 nS, Ef ~{39 mV and Ggap~8 nS; and

(c) double-sided couplings with the same fibroblasts parameters as

in (b) and with Gmm=Gff ~1 and Gmm=Gmf ~200. The animations

in (d), (e), and (f) are the analogs of (a), (b), and (c), respectively,

with control pulses. Here the spatiotemporal evolution of the

myocyte transmembrane potential is shown for 0sƒtƒ0:8s; we

use 10 frames per second (fps); in real time each frame is separated

from the succeeding frame by 8 ms.

(MPG)

Video S12 Spiral-wave dynamics, without (top panel) and with

(bottom panel) control pulses, in the 2D Fibroblast model in the

presence of a square MF composite inhomogeneity of side

l~33:75 mm whose bottom-left corner is placed at (56:25 mm,

56:25 mm); we apply a control pulse of amplitude 30 pA/pF for

t~400 ms over a square mesh with each block of side

L=K~33:75 mm, i.e., the simulation domain is divided into 42

square blocks. (a) zero-sided coupling with Cf ,tot~6:3 pF,

Gf ~4 nS, Ef ~{39 mV and Ggap~8 nS, (b) double-sided

coupling, with the same fibroblasts parameters as in (a) with

Gmm=Gff ~1 and Gmm=Gmf ~1, and (c) double-sided coupling with

the same fibroblasts parameters as in (a) with Gmm=Gff ~1 and

Gmm=Gmf ~200. The animations in (d), (e), and (f) are the analogs

of (a), (b), and (c), respectively, with control pulses. Here the

spatiotemporal evolution of the myocyte transmembrane potential

is shown for 0sƒtƒ0:8s; we use 10 frames per second (fps); in real

time each frame is separated from the succeeding frame by 8 ms.

(MPG)
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