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ABSTRACT 

Background: Multiple sclerosis (MS) is a disease of the central nervous system where an autoimmune 
response leads to chronic inflammation. It represents the second leading cause of non-traumatic 
disability in the world, affecting mainly young adults and with high female to male incidence. 
At present, the causative agent in MS is unknown, preventing the development of prophylaxis 
policies and the understanding of how the human system copes with this complex inflammation. 
Tetracyclines (Tet) have attracted great attention due to their anti-inflammatory effects. Minocycline 
and doxycycline represent the second-generation Tet that have been largely used to treat acne and 
to suppress inflammation. In addition, they are safer and cheaper than other drugs currently used to 
treat MS.
Aim: This study aims to review recent data involving the Tet minocycline and doxycycline and their 
therapeutic potential in MS. 
Relevance for Patients: Many of the drugs used to treat MS have severe side effects and are costly. 
Tet, on the other hand, are a safe and inexpensive class of drugs that can modulate the immune 
response in MS patients.

1. Introduction

Besides, the hard historic either in treatment or in diagnosis, new strategies to face 
multiple sclerosis (MS), have been proposed, with great focus in the repositioning of drugs 
regularly used for other proposals, such antibiotics. The development from ground zero to a 
novel drug conducted to treat a specific disease spend huge time and science efforts, leading 
us to accept and search for more substances to be re-explored. In this review, a collection of 
evidence to support the use of tetracyclines (Tet) in the MS treatment has been summarized 
in topics describing the disease, the antibiotics family, and their properties. Furthermore, the 
study finishes with the last clinical trial results to ensure the knowledge about this approach 
for Tet.

2. MS: An Autoimmune Puzzle

MS is an autoimmune inflammatory disease that directly affects the central nervous system 
(CNS) through the unregular activity of the immune system [1]. MS typically manifests 
in sporadic, moderately reversible attacks usually followed by remission. Demyelination, 
frequently observed in substantia nigra acquired from magnetic resonance imaging (MRI) 
readings, is normally preceded by inflammation, gliosis, and axonal injury [2]. In the early 
stages of MS, the demyelination predominates while in advanced stages the axonal loss 
overlaps. Although the precise mechanisms that lead to MS are unknown and it is believed 
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that loss of blood–brain barrier (BBB) integrity, possibly linked 
to genetic factors, plays a major role in disease development [3]. 
Autoreactive CD4+ T cells play a major character in MS pathogeny 
by targeting the myelin sheaths and fueling inflammation in the 
CNS through the secretion of cytokines and chemokines [3,4]. Glial 
cells, microglia, and astrocytes are involved in MS pathology 
through cytokines and growth factors release [5-7]. BBB 
disruption facilitates the entrance of encephalitogenic T cells and 
other mononuclear cells into the CNS which contributes to MS 
pathology [8,9].

MS incidence is higher among young adults and affects 
women twice than men. MS is the leading cause of non-traumatic 
neurological disability, and the most common neurodegenerative 
illness [2,10,11]. According to the World Health Organization [12], 
MS has become a serious public health problem worldwide, with 
more than 2.5 million people affected. 

The experimental autoimmune encephalomyelitis (EAE) 
represents the most studied animal model of MS, due to the 
many similar aspects with the human disease. EAE is induced by 
subcutaneous immunization of myelin proteins with adjuvants, 
and many animal species such as mice, rats, and marmoset 
monkeys are susceptible to this model [13,14]. 

The pathogenesis of MS is poorly understood but environmental 
and genetic factors are considered to play an important role in disease 
development [4]. It is known that latitude may be related to the 
prevalence of the disease, due to higher latitudes that present lower solar 
incidence, which means lower Vitamin D production. Thus, a correlation 
between solar exposure and MS has been established, in which the risk 
of developing MS is inversely proportional to sun exposure, due to a 
possible key role of Vitamin D in CNS protection [15-17]. Another factor 
that would increase not only the pathogenic risk == but the progression, is 
the smoking habit, especially concerning vascular comorbidities resulting 
from cigarette consumption [18-20]. Exposure to pathogens, such as 
Epstein-Barr Virus, has also been associated with an increased risk to 
develop MS [21]. Genetically, some genes are associated with disease 
development or worsening, such as the Human Leukocyte Antigen gene, 
located on the short arm of chromosome 6 (6p21) [22-24].

Therapeutic strategies are considered a major challenge 
and drugs have been used based on immunological 
mechanisms [4]. Classically, MS is treated in first-line with 
Interferon-beta (IFN-β), glatiramer acetate, teriflunomide, and 
dimethyl fumarate. Second-line therapies include intravenous 
fingolimod and natalizumab, which have considerable levels 
of effectiveness and reducing the rate of relapses. Besides, 
alemtuzumab, cladribine, and ocrelizumab have recently been 
added as alternative approved therapies. All of these treatments 
are immunomodulatory or immunosuppressive systemic therapies 
with high potential for very painful side effects, majorly exhibiting 
low recovery rates and very expensive coasts to the patients. 
Unfortunately, only the Relapse Remitting form of MS (RRMS) 
has these approved therapies [2,25]. Therefore, there is an urgent 
need for the development of drugs with minimum side effects and 
that are cheaper enough to ensure more well-being for patients. 

Tet are well-known drugs originally used for the treatment 
of bacterial infections and recent evidence shown that they also 

possess powerful anti-inflammatory activities. Thus, this study 
aims to review recent advances and data that demonstrate the anti-
inflammatory effects of Tet and its possible use in MS treatment 
as an adjuvant.

3. Tet: Great Pleitropic Antibiotics

As mentioned above, Tet are a group of antibiotics with non-
antibiotic properties, such as chemical affinity to numerous proteins 
and receptors in bacterial and mammalian cells, these characters 
place Tet to a potential application as MS adjuvant therapy [26]. The 
first drug of the family was primally discovered on the fermentation 
products of Streptomyces aureofaciens, a soil bacterium, and 
has also been used for more than a half-century to treat bacterial 
infections [27,28]. The antibiotic mechanism of action is similar to 
that presented by aminoglycosides through the binding to the 30S 
ribosome subunit site where the aminoacyl-tRNA binds, which led 
to the inhibition of protein synthesis [29]. They are used in the skin, 
chronic inflammatory airway infections, rheumatoid arthritis, early 
diffuse scleroderma, and periodontitis treatments [30-32]. Studies in 
animal models and in in vitro approaches suggest viable therapeutic 
potential in immune-associated diseases, such as diabetes and 
autoimmune diseases in the nervous system [31,33]. 

The main non-antibiotic effect is the anti-inflammatory 
activity that has been shown by many actions in some pathways, 
highlighting the inhibition of matrix metalloproteinases 
(MMP) [34] and modulation of cytokines and other pro-
inflammatory mediators [35,36]. Furthermore, it has been reported 
that Tet have pro-apoptotic properties that are very helpful for 
different approaches, such as for antitumor therapies [37,38].

3.1. Pharmacokinetics

Tet are administered orally and have good absorption rates. 
Among family members, doxycycline (Dox) and minocycline 
(Min) are almost completely absorbed after ingestion and do not 
present unexpected reactions when mixed with milk and derivates, 
in contrast to Tet. Notwithstanding, iron-food consumption is not 
recommended due to the potential interactions in the Tet molecule 
that inactivate their abilities (Figure 1) [29,39,40]. The half-life 
presented by Dox (14-22 h) and Min (11-13 h) is much higher 
compared to Tet (8.5 h) [29,41]. Their elimination occurs through 
renal and biliary pathways, with proportions that vary depending on 
the lipophilicity of the molecule, for example, Dox can be majorly 
excreted through the intestinal mucosa in the inactive form [42]. 
Dox and Min as mentioned are lipid-soluble and reach body fluids 
and tissues with ease and detected at high concentrations in the 
lymphatic and peritoneal fluids, colonic and prostate tissues, and 
even in breast milk. Min is the highest lipid-soluble Tet, being 10 
times more soluble than Tet itself. Dox has a good lipid solubility 
as well, 5 times more than Tet, and presents exceptional infiltration 
in the cerebrospinal fluid, although not greater than Min [29,43-45]. 

3.2. Side effects

Side effects associated with Dox target mainly the 
gastrointestinal tract when the drug is taken during fasting; 
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however, such discomfort can be bypassed with meal 
consumption. Likewise, Min ingestion during fasting leads 
to abdominal discomfort and in high levels, Min can induce 
vestibular toxicity, which represents the major side effect 
reported for its oral use [44,46,47]. Moreover, Min intake can 
lead to adverse reactions that resemble those observed in lupus 
syndromes, liver dysfunction, and hyperpigmentation, which 
drives to irreversible color-state change, ranging from grayish to 
black, manifesting itself in some body parts as well skin, nails, 
and bones [44,48-50]. Conversely, Dox does not induce these 
symptoms and is, therefore, safer than Min [44,47].

3.3. MMP inhibition

MMPs are a family of 26 proteolytic zinc-binding enzymes, 
which play important roles in physiological functions such as 
tissue disruption, reconstruction, and immune responses. MMPs 
process constituents of the extracellular matrix, remodeling 
it during either pathological or physiological conditions that 
include tissue morphogenesis, wound healing, and also cell 
migration and angiogenesis [51,52]. The conserved pro-domain 
and catalytic domain are the common characteristics presented 
among MMPs. 

Furthermore, this family is organized into subgroups according 
to the protein domain and substrate preference, such as gelatinases, 
stromelysins, collagenases, membrane-type (MT)-MMPs, and 
the called “other MMPs” [51-53]. After synthesis, most proteins 
are secreted into the extracellular space by the producing cells, 
including macrophages, neutrophils, T cells, mast cells, epithelial 
cells, and mesenchymal cells [54,55]. 

Many neural cells secrete MMPs during CNS development 
and its production continues throughout adulthood as the CNS 
faces challenges and physiological remodeling. However, 
overexpressed or highly activated MMPs in the CNS are linked to 
many diseases. Abnormal expression of MMP-3, -7, -9, and -12 is 
observed in sera from MS patients, and their inhibition alleviates 
disease severity. Knock-out mice for both MMP-2 (Gelatinase 
B) and MMP-9 (Gelatinase A) are resistant to EAE while single 
knock-out mice are susceptible, suggesting that MMP-2 and 
MMP-9 have a role in inflammation. Notwithstanding, MMP-2 
and -9 can induce the expression of chemokines stimulating the 
PI3K/p-AKT/NF-kβ pathway in astrocytes [52,54,56,57].

Moreover, MMPs are involved in BBB disruption by 
degrading the basement membrane surrounding the endothelium 
of vessels, thus allowing the entrance of inflammatory 
cells to the CNS. Inside CNS, high MMP levels worsen the 
inflammation activating inflammatory mediators. MMPs also 
disrupt the myelin sheaths contributing to demyelination and 
neuronal or oligodendrocyte death [54,55,58]. The extracellular 
MMP inducer (EMMPRIN) modulates activation, proliferation, 
and invasion of T cells into the CNS contributing to MS 
pathogenesis. Anti-EMMPRIN treatment reduces EAE severity 
by downregulating MMP activity. Therefore, as mentioned, 
MMPs inhibitors can provide beneficial outcomes to MS 
patients [59]. 

The use of Tet in this context has been extensively studied 
and satisfactory results have been reported. In EAE, Min inhibits 
EMMPRIN, decreases MMP-9 and MMP-2 activities, suppresses 
the activity of T cells, while also dampening neuronal cell 
apoptosis [8,60]. In addition, Min upregulates the tissue inhibitor 
of metalloproteinase 1 (TIMP-1) and TIMP-2 mRNA, potentiating 
their inhibitory effect on MMPs [8,60]. 

Inhibitory effects of Dox and Min varies on the differences 
between MMP species and the pH of the environment. Dox 
inhibitory effect against collagenases is the highest in all the 
family. This trend may be explained by a higher affinity of Dox to 
the ions in the structure of MMPs. Dox promotes the inhibition of 
MMP-7, MMP-8, and MMP-13 probably through chelation in the 
structural zinc and/or calcium atoms inserted in the metallic center 
of the protein, but not in the catalytic zinc site [61]. The pH levels in 
the microenvironment exert inhibitory effects that can be observed 
in an experimental assay, in which Dox can inhibit MMP-8 at pH 
> 7.1, but not in lower pH levels [62]. Curci et al. (2000) found an 
association between a huge reduction in MMP-9 protein and the 
respective mRNA rates in analyzes after oral Dox administration 
in patients with abdominal aortic aneurysms. In these patients, Dox 
decrease monocytic cell levels, as well, inhibited the activation 
of proMMP-2 in the diseased aortic wall [63]. Studies in human 
endothelial cells also corroborate the control of MMP-9 expression 
by Dox [64]. Furthermore, corneal epithelial cell analyses suggest 
that the MMP inhibition involves blockage in the activation of 
c-Jun N-terminal kinases (JNK) signaling pathways, which exhibit 
a key role in the upregulation of MMP [65,66].

Figure 1. Graphic representation of plane structural formula of drugs from tetracyclines family. A – Tetracycline molecule, B – Minocycline molecule, 
C – Doxycycline molecule.
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3.4. Anti-inflammatory effects

3.4.1 Suppression of cytokines and modulation of inflammatory 
cells

Cytokines consist of almost 300 proteins that play 
a coordinating role in immune cells, offering complex 
cascades of events that result generally in a synergistic and 
balanced action [67,68]. Unbalances in these cytokines, 
however, can develop exacerbate undesirables and damaging 
responses [69,70,71]. Although inflammation is necessary to 
eliminate infectious agents, uncontrolled immune responses 
lead to autoimmunity and deleterious inflammation. For this 
reason, inflammation is fine-tuned by signals derived from the 
environment and cells and, in this case, anti-inflammatory agents 
are a very important tool to prevent deleterious responses. In 
MS, autoreactive T cells are stimulated by antigen-presenting 
cells (APCs), which provide inflammatory cues that trigger T 
cell differentiation toward an effector helper (Th) profile. These 
reactive cells secrete the inflammatory cytokines interleukin-17 
(IL-17) and IFN-γ that directly impact the integrity of the 
BBB, in addition to altering the characteristics of CNS resident 
cells such as astrocytes. Chemokines produced by invading 
leukocytes and resident stromal cells enhance the influx of 
lymphocytes and myeloid cells through the BBB, which further 
perpetuates inflammation. The cells also secrete granulocyte-
macrophage colony-stimulating factor (GM-CSF), stimulating 
a pro-inflammatory profile in monocytes and monocyte-derived 
cells. These monocytic cells further develop a highly pathogenic 
behavior, with high production of reactive oxygen species (ROS) 
and inflammatory cytokines, which, in turn, is related to an 
enhancement in the inflammation and tissue destruction [71]. 

The family of Tet has been shown to have significant effects in 
controlling inflammation by modulating cytokine and chemokine 
production and nitric oxide levels. Tet also have antioxidant effects. 
Furthermore, Min has multiple anti-inflammatory properties that 
include modulation of microglia and immune cells, and reduction 
in the production of cytokines, chemokines, lipid mediators, and 
nitric oxide. Pro-inflammatory cytokines, such as TNF-α, IL-1β, 
and IL-6, are secreted by microglial cells, astrocytes, neutrophils, 
and macrophages and are closely related in the enhancement 
of inflammatory responses and overcoming immune reactions. 
Min suppresses TNF and inducible nitric oxide synthase (iNOS) 
production and inhibits microglial activation, a key point in the 
immunopathogenesis of MS [72-74]. Several studies report that 
Min also decreases the proliferation of T cells [13,75,76]; decreases 
the expression and production of MHC II, MMP, TNF-α, IL-1β, 
IL-6, tool-like receptor-2, and iNOS [77-80]; inhibits antigen 
processing by APCs [81]; decreases the production of MMPs, 
and protects BBB integrity [13,74,81]; stimulates the induction 
of Th2 cells at the expense of Th1 cells [74]; provides neuronal 
and axonal protection by stimulating anti-apoptotic pathways 
through inhibition of cytochrome c and Smac/DIABLO; as well 
as inhibiting caspase-1, caspase-3, caspase-8, caspase-9, and 
decreasing the release of oxygen radicals [65,66,82-87].

3.4.2. Dendritic cells (DC) modulation: a new edge?

DCs are professional APCs present in all tissues of the body. 
In the presence of microorganisms, DCs trigger innate immune 
reactions and capture proteins, process antigens and present 
epitopes in MHC molecules to naïve T-cells, orchestrating 
adaptive immune responses. DCs are essential in immunity and 
its regulation. Because of their pro/anti-inflammatory activities, 
many therapeutic strategies focus their actions on DCs to provide 
additional modulation on the immune system [88,89]. MS 
pathogenesis is believed to involve autoreactive T cells that react to 
myelin proteins and migrate to the CNS to promote damage to the 
myelin sheaths. In EAE, CD11c+ DCs present antigens to T cells and 
initiate the chronic inflammation observed in the CNS [90]. Bone 
marrow (BM)-derived DCs treated with chloroquine suppresses 
EAE by reducing the activation of glial cells, decreasing the gene 
expression of IL-6 and IL-17, and reducing the infiltration of 
inflammatory cells in CNS [91]. Similarly, extracts of the murine 
malaria causative agent, Plasmodium berghei, modulated DCs 
to a tolerogenic profile and, when used in adoptive experimental 
therapy by transference to EAE mice, stimulates the generation 
of regulatory T cells (T-reg) and alters the profile of cytokines 
secreted by T cells promoting disease amelioration [92]. This 
evidence strengthens the potential of in vitro modulated BM-DCs 
as an efficient cell-based therapy to treat chronic autoimmune 
diseases. In this context, Min-treated BM-DCs are resistant to 
maturation stimuli, showing a reduction in MHC II expression 
and a decrease in cytokines production. Moreover, Min-treated 
DCs inhibited allogeneic T cell proliferation and induced Treg 
cells. When injected into EAE mice, Min-treated DCs reduced 
disease development [93,94]. Combined with Glatiramer Acetate, 
Min affects the DCs derived from the blood of MS patients, 
diminishing their ability to present antigens and decreasing their 
maturation [95]. 

Dox downregulates CD11c, OX62, CD86, CD80, and MHC 
Ⅱ expression on treated DCs. Furthermore, it contributes to an 
inhibitory profile, which decreases T cell proliferation and the 
antigen presentation capacity of DCs, constated by low surface 
costimulatory markers expression [96]. In the presence of Dox, 
BM-cells were inducible to DCs differentiation and inhibited the 
RANKL-induced osteoclastic differentiation suppressing MAPKs 
and c-Fos [97]. As cited before, Dox and Min can decrease the NO 
amount and the latter plays a key role in the tolerogenic profile in 
DCs [98], demonstrating another target of Tets.

3.4.3. ROS scavenging action

On the other hand, Dox also decreases iNOS expression, 
which can contribute to its MMP-inhibition role [63]. Krakauer 
and Buckley (2003) showed that Dox downregulates IL-1β, 
IL-6, TNF-α, TNF-γ, MCP-1, MCP-1α, and MIP-1β expression, 
by interfering with the PKC pathway [99]. In addition, Dox can 
suppress p38 MAPK and NF-κB pathways, which inhibit the 
activation of microglial cells, therefore preventing cytokines, 
chemokines, and many cytotoxic molecules, including NO and 
ROS [100]. In a model of meningitis, Dox was shown to decrease 
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the levels of IL-1β, IL-6, IL-10, TNF-α, and NO produced by 
astroglial cells [101]. Dox also decreases caspase-1 expression 
in humans and the mice systems [78,102]. Due to the relevant 
immune-suppressive abilities of Dox, it is hypothesized that the 

drug can be a potential treatment for toxic shock. Furthermore, the 
intake of lower doses of Dox presents greater anti-inflammatory 
efficacy than Min, thus having lower toxicity [103].

The probable action mechanisms of Tets are summarized in 
Figure 2.

Figure 2. Brain microenvironment in different contexts – A. Regular brain representation showing healthy CNS microenvironment (the right side) 
and intact occlusion junctions (green lines between endothelium cells, and represented in red) without damage (regular T cells represented in purple) 
in the BBB; B. Autoreactive T cells (green watercolor cells) activated by an APC cell (e.g., DCs; represented by the orange cells) through an antigen 
that mimicries myelin protein or another CNS molecule (little purple circumference) trigger inflammatory reactions, enhancement of MMP activity 
that lies to BBB disruption; also, these T cells can enhance the secretion of pro-inflammatory substances, such as cytokines, chemokines, and nitric 
oxide (little points in the right side). Furthermore, severe inflammatory reactions can cause injuries over resident cells, including oligodendrocytes and 
the neuron cell itself; C. Doxycycline and minocycline (orange circles) engage a tolerogenic profile in DCs, which stops the antigen presentation, and 
also inhibits immune cells, reducing autoreactive T cell proliferation and triggering the stimulation of T naïve profile, inhibition of macrophages (red 
cells), microglia (pink cells), and astroglia (star-shape yellow cells) cells, MMP (MMP2, MMP3, MMP7, MMP8, MMP9, and MMP13), and cytokines 
(IL-1β, IL-6, IL-10, TNF-α, TNF-γ, MCP-1, MCP-1α, and MIP-1β); D. After Dox and Min induct a tolerogenic profile, they can keep entering to CNS 
even after the rebuilding of the BBB, due to their high lipophilicity, protecting patients from relapses.

A B

C D

E
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3.5. Pre-clinical trials

Studies involving Min and animal models show us great 
possibilities reached by this drug. In the murine EAE model, 
Niimi, Kohyama, and Matsumoto [8] describe effects in 
EMMPRIN inhibition, decreased levels in MMP, MMP-2, and 
T-cell activity, also reduction in neuron cell apoptosis. In this 
context, Min exerts control in TIMP-1 and -2 expressions, 
increasing it. In addition, other studies reported the performance 
in cytokines control (Table 1), in MHC II receptor expression, 
inhibition in iNOS and caspase pathways, and stimulating the Th2 
immune profile, which means a tolerogenic profile [74,78,85]. In 
vitro assays, the caspase pathway inhibition and cytokine control 
are also reported again [77,83,84,87]. 

By the way, Dox treatment in EAE murine model can produce 
a reduction in cytokine expression, exerting control under its 
expression, and suppression either in p38 MAPK or NF- κB 
pathways (Table 2) [101-103,111]. Watching in vitro experiments, 
workgroups reported effects involving control in cytokines 
expression, MMP inhibition, downregulation in the caspase 
pathway, and reduction iNOS expression [63,64,86]. In other 
models such as Murine forebrain ischemia, inhibition of iNOS 
production is present, additionally the reduction in caspase-1 
production [77].

All these results appoint to a great response mediated by the 
actions of Min and Dox against exacerbating reaction of the 
immune system, which is essential to stop MS pathogenesis and 
relapses, as well the development.

3.6. Clinical trials

3.6.1 Diseases in general

Clinical trials, the most powerful instrument to ensure the real 
applicability inside real organisms [104], also had Min and Dox 
presence. According to ClinicalTrials.gov, there are currently 
139 completed clinical trials with Min and the other 29 are in 
the recruiting phase. Min has been tested on Parkinson’s disease 
(PD), schizophrenia, acne, cancer, rheumatoid arthritis, autism 
spectrum disorder, and among other conditions [105]. The NINDS 
NET-PD Investigators (2006) reports Min and creatine as futile 
to inhibit the disability progression in PD in both administration 
times tested, 12 months, and 18 months [107]. A peroxynitrite-
removal feature of Min has been reported [106], which can act 
on the α-synuclein aggregation blocking the nitration in the 
molecule; which is associated with the cascade reactions that lead 
to the PD development [108]. In schizophrenia, an improvement 
in symptoms unaccompanied by detectable cognitive effects was 
imputed to anti-inflammatory actions of Min [107], however, the 
administration was rejected by 33% of patients due to side effects 
proportioned by the Min intake [109]. In a comparative study 
between Min and zinc gluconate in acne perspective [108], Dreno 
et al. (2001) showed better functional effectiveness of Min in 
decreasing the number of acne lesions, but with more severe side 

Table 1. Experimental trials
Tetracycline Experimental 

model
Outcome Reference

Minocycline EAE EMMPRIN 
inhibition;
↓ MMP-9 and 
MMP-2 activity;
↓ T cells activity;
↓ apoptosis of 
neural cells;

Niimi, Kohyama 
and Matsumoto, 
2013;

↑TIMP-1 
and TIMP-2 
expression
MHC II, TNF-α, 
IL-1β, IL-6,
LR-2, and iNOS 
inhibition

Nikodemova et al., 
2007; Henry et al., 
2008;

↑ Th2 immune 
profile

Popovic et al., 2002

Caspase pathways 
inhibition

Maier et al., 2007; 

In vitro assay Caspase pathways 
inhibition

Li et al., 2002; 
Scarabelli et al., 
2004; Wang et al., 
2004; Wilkins et al., 
2004;

iNOS inhibition
caspase-1 
induction
microglial 
activation

Yrjänheikki et al., 
1998;

Doxycycline EAE ↓ IL-1β, IL-6, 
TNF-α, TNF-γ,
MCP-1, MCP-1α, 
and MIP-1β
expression 

Krakauer and 
Buckley, 2003

p38 MAPK and 
NF- κB pathways 
suppression

Santa-Cecília et al., 
2016

↓ IL-1β, IL-6, 
IL-10, TNF-α, 
and NO

Muri et al., 2019

↓ caspase-1 Fredeking et al., 
2015

In vitro assay Caspase pathways 
inhibition

Gabler et al., 1992;

MMP-7, MMP-8, 
and MMP-13 
inhibition;
↓ MMP-9 
and MMP-2 
expression;

Curci et al., 2000;
Hanemaaijer et al., 
1998;

↓ iNOS 
expression

García et al., 2005

Murine 
forebrain 
ischemia model

↓ caspase-1 Yrjänheikki et al., 
1998

http://
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Dox prolonged life in early-stage patients by delaying disease 
progression [114]. Studying another TSE, Fatal familial insomnia 
(FFI), also caused by prions, Dox presented actions reporting 
a possible preventive treatment to patients with a genetically 
inherited mutation that can lead to FFI development [115]. The sub-
antibiotic dose of Dox (SDD) is a no side effect medication with 
recommended use for chronic inflammatory periodontal disease 
and chronic inflammatory skin disease, without altering the gut 
microbiota [116-118]. Dox administration at the SDD level was 
shown to suppress Graves’ orbitopathy, which is associated with 
autoimmune Graves’ disease [119].

3.6.2 MS Approach

There are currently four clinical trials evaluating the effect 
of Min therapy in MS [105]. In these studies, Min promoted a 
reduction in lesions and decreased relapses with little side effects, 
prompting its use in MS [120]. Moreover, the same group reported 
these effects when Min was administered in combination with 
glatiramer acetate, first-line therapy in MS [121]. Similarly, 
Min-treated MS patients showed lower lesions sizes and reduced 
disease severity in the first 6 months of the study, but not in 
the long-term (24 months) [122]. Importantly, combined with 
subcutaneous administration of IFN b-1a, Min did not alter MS 
progression; instead, the patients reported side effects related to 
the gastrointestinal tract [123]. As a monotherapy, Min decreased 
frequency of relapses, which was associated with an increase in 
levels of IL-12p80, which inhibited inflammation, and had little 
side effects [124]. 

There is only one clinical trial studying the effect of Dox on MS. 
According to the study, there is a promising benefit in combining 
Dox with IFN-β-1a in patients with RRMS, when researchers 
found that Dox+IFN-β-1a reduced lesion sizes likely by inhibiting 
MMP-9 activity. Moreover, suppression of monocyte migration 
through endothelium was reported. Only one patient presented a 
relapse and insignificant side effects have been noted, additionally, 
they reported enhancement in IFN-β-1a activity, as well as the 
reduction in lesions, showed by contrast-enhanced MRI [125]. The 
combination of Dox and IFN-β-1a blocked inflammation in MS 
patients by interfering with multiple inflammatory pathways [126]. 

4. Conclusion

MS represents a terrible silent menace that is poorly 
understood even nowadays; therefore, it is important to develop 
new therapeutic strategies to complement the current therapies. 
Tet are a potential allied due to their anti-inflammatory abilities: 
Cytokines modulation, MMP inhibition, and maintaining the BBB 
integrity, which prevents immune cells entrance in CNS. 

The most understandable collateral effect of Tet misuse is the 
development of microbial resistance to their antibiotic properties. 
However, several studies reported that Dox presents valuable 
clinical effects when administered at very low doses that avoid 
the antibiotic effect of Tet. Despite that, more studies are required 
to assess the safest dose and treatment regimen of Dox in MS 
patients.

effects than zinc [110]. In rheumatoid arthritis, Min ameliorates 
the patient conditions [109,110] and this effect was linked to 
antibiotic and anti-inflammatory mechanisms [111].

According to ClinicalTrials.gov, there are currently 179 
completed clinical trials with Dox that evaluated its effect on 
polycystic ovarian cancer, Lyme neuroborreliosis (LNB), type II 
diabetes, aortic aneurysm, periodontitis, coronary artery disease, 
and Alzheimer’s disease, among others [112]. LNB, a neurological 
disease developed due to systemic infection by Borrelia burgdorferi, 
involves symptoms such as painful meningoradiculitis and facial 
nerve palsy. Dox exhibited a great action against the inflammatory 
condition and reduced the presence of mononuclear cells in the CSF 
of patients with LNB [113]. In a trial with Creutzfeld-Jakob disease, 
a transmissible spongiform encephalopathy (TSE) caused by prions, 

Table 2. Clinical trials
Tetracycline Clinical/

Experimental 
model

Outcome Reference

Minocycline Parkinson’s 
disease

Inhibition of 
the α-synuclein 
aggregation;

Schildknecht 
et al., 2011

Schizophrenia Improvement in 
symptoms.

Chaudhry et al., 
2012

Acne ↓ levels of 
acne-related lesions

Dreno et al., 2001

Rheumatoid 
arthritis

Ameliorates the 
patient conditions

Kaplan et al., 
1995

Multiple 
Sclerosis

↓ lesions and risk of 
relapse;
↓ conversion from 
the clinically isolated 
syndrome;
↑ levels of IL-12p40, 
which led to 
the blockage of 
IL-12p70.

Metz et al., 
2004;2009;
Metz et al., 2017;
Zabad et al., 
2007.

Doxycycline
Lyme 
neuroborreliosis 
(LNB)

Anti-inflammatory 
actions;
↓ mononuclear cells 
in CSF;

Bremmel and 
Dotevall, 2014

Creutzfeld-Jakob 
disease

life prolongation in 
early-stage patients;
↓ evolution in clinical 
hallmarks;
↓ disease worsening.

Varges et al., 
2017

Fatal Familial 
Insomnia

Inhibition of 
the gene-related 
expression, as 
a prophylactic 
alternative.

Forloni, 2015

Multiple 
Sclerosis

↓ MMP-9 activity;
↓ monocyte 
migration;
inflammatory 
pathways inhibition;
↓  reduction in lesions.

Minagar et al., 
2008;
Sharafaddinzadeh 
et al., 2010;
Silvester, 2005.

EAE: Experimental autoimmune encephalomyelitis; CSF: Colony-stimulating factor
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Further studies focusing on the inflammatory process, 
modulation of the immune response, neuroprotective mechanisms, 
and all actions related to Min and Dox are needed. In this context, 
the modulation of DCs is especially interesting as a way to 
circumvent drug toxicity and microbial resistance.

The elucidation of the mechanisms and the comprehension of 
the behavior of Dox and Min in the long-term administration will 
provide further evidence to use them in MS therapy. Our research 
group has an ongoing study with Min and Dox, to evaluate their 
roles in DCs mechanisms and modulation, avoiding antimicrobial 
activities, and comparing then, aiming to elect the most secure 
substance to aggregate in therapeutic strategies. Altogether, we 
reviewed studies that showed that Tets can represent a cheaper 
and effective alternative to MS immunotherapy.
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