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Abstract 

Background:  Drug repurposing is to find new indications of approved drugs, which is essential for investigating new 
uses for approved or investigational drug efficiency. The active gene annotation corpus (named AGAC) is annotated 
by human experts, which was developed to support knowledge discovery for drug repurposing. The AGAC track of 
the BioNLP Open Shared Tasks using this corpus is organized by EMNLP-BioNLP 2019, where the “Selective annotation” 
attribution makes AGAC track more challenging than other traditional sequence labeling tasks. In this work, we show 
our methods for trigger word detection (Task 1) and its thematic role identification (Task 2) in the AGAC track. As a 
step forward to drug repurposing research, our work can also be applied to large-scale automatic extraction of medi-
cal text knowledge.

Methods:  To meet the challenges of the two tasks, we consider Task 1 as the medical name entity recognition (NER), 
which cultivates molecular phenomena related to gene mutation. And we regard Task 2 as a relation extraction task, 
which captures the thematic roles between entities. In this work, we exploit pre-trained biomedical language rep-
resentation models (e.g., BioBERT) in the information extraction pipeline for mutation-disease knowledge collection 
from PubMed. Moreover, we design the fine-tuning framework by using a multi-task learning technique and extra 
features. We further investigate different approaches to consolidate and transfer the knowledge from varying sources 
and illustrate the performance of our model on the AGAC corpus. Our approach is based on fine-tuned BERT, BioBERT, 
NCBI BERT, and ClinicalBERT using multi-task learning. Further experiments show the effectiveness of knowledge 
transformation and the ensemble integration of models of two tasks. We conduct a performance comparison of vari-
ous algorithms. We also do an ablation study on the development set of Task 1 to examine the effectiveness of each 
component of our method.

Results:  Compared with competitor methods, our model obtained the highest Precision (0.63), Recall (0.56), and 
F-score value (0.60) in Task 1, which ranks first place. It outperformed the baseline method provided by the organizers 
by 0.10 in F-score. The model shared the same encoding layers for the named entity recognition and relation extrac-
tion parts. And we obtained a second high F-score (0.25) in Task 2 with a simple but effective framework.

Conclusions:  Experimental results on the benchmark annotation of genes with active mutation-centric function 
changes corpus show that integrating pre-trained biomedical language representation models (i.e., BERT, NCBI BERT, 
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Background
Drug repurposing is a strategy used to identify new uses 
for approved or investigational drugs that are beyond the 
scope of the original medical indication. It focuses on 
predicting the effective off-label usages of existing drugs 
on the market. These drugs may have valid or expired 
licenses. Both researchers and the industry pay more 
attention to the repurposing usages of the drugs with 
expired licenses. Generally, PubMed1 is considered a sig-
nificant source of knowledge discovery because it stores 
a growing number of scientific discovery reports. It 
requires further development of more automated meth-
ods. Recently, utilizing the natural language processing 
techniques to find and mine medication-related informa-
tion from the text (e.g., PubMed) for drug repurposing 
has been a promising exploration theme [1–4].

For the objective of drug repurposing, the active gene 
annotation corpus (AGAC) was created as a benchmark 
dataset [5]. The AGAC track is the portion of the BioNLP 
Open Shared Task 2019 [6], which points to accumulate 
content mining approaches among the BioNLP commu-
nity to focus on drug-oriented knowledge discovery. It 
comprises three assignments to extract mutation-disease 
information from PubMed abstracts: trigger words NER, 
thematic roles identification, and mutation-disease infor-
mation extraction. One mission of this track is to extend 
the effectiveness of drug discovery. Discovering the rela-
tionship of a drug with its target mutant gene needs to 
consider the functional changes of the corresponding 
mutant gene and the drug’s pharmacological activity. The 
gene-function change-disease knowledge in this track 
contains the relationship between mutation and disease 
and indicates the function change of the mutation, i.e., 
gain of function (GOF) and loss of function (LOF). To 
this end, we focus on the tasks of trigger words NER and 
thematic roles identification tasks.

The large-scale pre-trained language models have 
recently become the basis for various natural language 
processing tasks [7, 8]. They achieved remarkable perfor-
mance across a wide range of tasks [9], e.g., text classi-
fication, natural language inference, question answering. 
One popular used pre-trained language model is BERT 
which is proposed by Devin et al. [7]. BERT firstly trains 
bidirectional transformers [10] on the unannotated 

large-scale corpus from the general domain, and the 
pre-trained model is then fine-tuned to adapt to down-
stream tasks. This fine-tuning process is regarded as 
transfer learning, where BERT acquires knowledge from 
the large-scale corpus and transfers it to downstream 
tasks. Although BERT was developed for general-pur-
pose language understanding, there are likewise several 
pre-trained models that follow BERT architecture lev-
eraging domain-specific knowledge effectively from a 
large set of unannotated biomedical texts (e.g., PubMed 
abstracts, clinical notes), such as SciBERT [11], BioBERT 
[12], NCBI BERT [13], Clinical BERT [14, 15]. In particu-
lar, SciBERT [11] leverages unsupervised pre-training 
on a large multi-domain corpus of scientific publica-
tions. BioBERT (BERT for Biomedical Text Mining) [12] 
further trained Google’s BERT on PubMed abstracts 
(4500M words). NCBI BERT (a.k.a BlueBERT) [13] was 
pre-trained on PubMed abstracts and clinical discharge 
summaries (i.e., MIMIC-III notes) [16]. ClinicalBERT 
[15] was clinically oriented BERT models initialized with 
original BERT and BioBERT parameters, and some of 
them pre-trained on PubMed abstracts, PMC articles, 
MIMIC III notes [16] and a subset of discharge sum-
maries. Knowledge can be transferred by these models 
effectively from a large number of unlabeled texts to bio-
medical text mining models with minimum task-specific 
architecture revisions.

Methods
Pre‑trained language model
The BERT model architecture is a multi-layer bidirec-
tional Transformer encoder [10] that is based on the 
original self-attention mechanism. The input represen-
tation is a concatenation of WordPiece embeddings, 
segment embeddings and positional embeddings. A par-
ticular classification token “[CLS]” is inserted as the first 
token and separated token “[SEP]” is added as the last 
token. Given an input token sequence x = x1, . . . , xT , 
BERT’s output is H = h1, . . . , hT after 12 stacked self-
attention blocks. It is firstly pre-trained with two strate-
gies on large-scale unlabeled text, i.e., masked language 
model and next sentence prediction.

The pre-trained BERT model provides a powerful 
context-dependent sentence representation and can 
be applied to various kinds of downstream tasks, i.e., 
machine reading comprehension and text classification, 
through the fine-tuning procedure. Based on the BERT 

ClinicalBERT, BioBERT) into a pipe of information extraction methods with multi-task learning can improve the ability 
to collect mutation-disease knowledge from PubMed.
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architecture, several domain-specific language represen-
tation models are pre-trained on large-scale biomedical 
corpora (e.g., PubMed abstracts, clinical notes) for bio-
medical text mining. These models can be transferred 
effectively from many unlabeled texts to biomedical text 
mining models with minimal task-specific architecture 
modifications.

Hence, the BERT model can easily be extended to the 
medical domain information extraction pipeline, first 
extracting the trigger words and determining the rela-
tionship between these entities, as shown in Fig. 1.

Task 1: trigger words NER
Task 1 aims to identify trigger words in the PubMed 
digest and annotate them as correct trigger markers 
or entities (Var, MPA, Interaction, Pathway, CPA, Reg, 
PosReg, NegReg, Disease, Gene, Protein, Enzyme). As 
shown in Fig. 2, it can be seen as an NER task involving 
the identification of many domain-specific proper nouns 

in the biomedical corpus [17, 18]. For example, the sen-
tence is“Our results showed that SHP-2 E76K mutation 
caused myeloproliferative disease in mice”, and we need 
to extract entities: SHP-2 (Gene), E76K mutation (Var) 
and myeloproliferative (disease). The challenge of this 
task comes from two parts, unbalanced entity type dis-
tribution and selective annotation (i.e., if any necessary 
gene, mutation, disease mentions are missing in the sen-
tence, other named entities that appear in the sentence 
will not be annotated).

We first split each PubMed abstracts into sentences 
using ’\n’ or ’.’, and convert each sentence into words 
by NLTK tokenizer.2 After that, words are further 
tokenized into sub-tokens x = x1, . . . , xT . Then we use 
a representation based on the BERT from the last layer 
H = h1, . . . , hT . In order to make better use of the word-
level information, POS tagging labels and word shape 
embedding representation [19] of each word are also 
concatenated into the output of BERT, passing through a 
single projection layer, followed by the conditional ran-
dom fields (CRF) layer [20] with a masking constraint to 
calculate the token-level label probability P = p1, . . . , pT . 
If a word is tokenized into several tokens, each token will 
be given the same tagging labels. Transition mask with 
invalid moves as 0 and valid as 1.

When fine-tuning the BERT, we found that the per-
formance of the model performed better in the case of 
BIO for the selection of the tagging schemes compared 
to BIOES. We further extend our model to multi-task 
learning jointly trained by sharing the architecture and 

Fig. 1  The architecture of our method. We start by splitting the PubMed abstract into sentences, tagging them as words, and extracting several 
features, such as POS tags. NER offsets and entity identification are then performed based on the BERT-based approach, and finally the relationship 
of each potential entity pair is predicted

Fig. 2  The base architecture diagram of our NER model

2  https://​www.​nltk.​org.

https://www.nltk.org
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parameters. Although the discrepancy in different data-
sets, multi-task means joint learning with other biomedi-
cal corpora. The assumption is to make more efficient use 
of the data and to encourage the models to learn more 
generalized representations. More specially, the same 
token-level information and BERT encoder are shared 
and each data set has a specific output layer, e.g., CRF 
layer. Our final loss function is obtained as follows:

where yci denotes true tag sequence and xci denotes 
the input tokens for corpora ci , �ci and �r are weighted 
parameters.

Task 2: thematic roles identification
Task 2 is to identify the thematic roles (Theme of, Cause 
of ) between trigger words. For example, the sentence 
is “two protein-truncating DNMs ... in SHROOM3,...”, 
and the relationship between the “DNMs (Var)” and 
the “SHROOM3 (Gene)” is “ThemeOf”. Note that the 
cross-sentence relations, which account for 96% of the 
data set, are challenges for the model to capture long 
dependencies.

We treat it as the multiclass classification problem by 
introducing “no relation (NA)” label. When constructing 
the training data of Task 2, we use the relational tuples of 
which two entities are no more than one sentence away. 
For NA label, random sampling is performed. In the test-
ing process, relation label will be assigned to the corre-
sponding thematic role when its probability is maximum 
and larger than the threshold. Otherwise, it will be pre-
dicted as no relation.

We also anonymously use a predefined tag (such as 
%Disease) to represent a target named entity. And we 
additionally append two concrete predicted entity words 
separated by the [SEP] tag after each sentence shown in 
Fig. 3. Following [21], we also add the token-level relative 
distance to the subject entity information for each token, 

−
∑

�ci logP
(

yci |xci
)

+ �r�W�2

i.e., 0 for the position t between two entities, t-s for tokens 
before first entity and t-e for tokens after second entity, 
where s, e are the starting and ending positions of first 
and second entity after tokenization, respectively. The 
relation logits of two entities are performed using a single 
output layer from the BERT as y = softmax(Whcls + b) 
where hcls denotes the hidden state of the first special 
token ([CLS]).

Furthermore, we notice that most pairs of entities are 
unrelated (i.e., NA label) that causes a large label imbal-
ance. To alleviate the problem, similar to [22], we use a 
two-stage inference procedure for task 2 as shown in 
Fig.  4. In the first stage, the model needs to determine 
whether the relationship exists for a given pair of enti-
ties, i.e., binary classification (NA or REL). Random sam-
pling and down-sampling methods are used to select 
the negative data. In the second stage, we learn a model 
trained only using relation pairs to distinguish their 
labels between the two corresponding entities (Theme of 
/ Cause of ). After that, for a given pair of entities at the 
time of testing, the model of the first stage is first applied 
to predict whether there is a relationship between them. 
If the relation label is predicted, the model of the second 
stage is applied to predict the thematic roles.

Experimental setup
The AGAC track organizers develop an active gene anno-
tation corpus (AGAC) [4, 23], for the sake of knowledge 
discovery in drug repurposing. The track corpus con-
sists of 1250 PubMed abstracts: 250 for public, 1000 for 
final evaluation. Although the total number of abstracts 
is small, it contains 2534 sentences, among which 3317 
named entities and 2729 relationship groups are distrib-
uted. Among them, there are 1428 named entities of the 
Bio-concept Named Entities type, 905 named entities 
of the Regulatory Named Entities type, and 984 named 
entities of the Other Entities type. We randomly split the 
public texts into train and development data sets with 
the radio of 8:2. The training set is used to learn model 
parameters, the development set to select optimal hyper-
parameters. For evaluation results, we measure the trig-
ger words recognition and thematic roles extraction 
performance with F1 score. Table  1 shows the external 

Fig. 3  The base architecture diagram of our RE model

Fig. 4  The two-stage inference procedure for task 2. Yes: there is a 
relation between two entities; No: no relation exists. Here we set the 
threshold equals 0.5
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data sets used under the joint learning method. The BIO 
form of these data sets is different from that of Task 1; 
hence we use different projection and CRF layers. But 
it is not that the more data sets, the better the model 
performance. We found that the NCBI disease [24] and 
BC5CDR [25] datasets are helpful for the final results, 
and the performance is reduced when using BC2GM [26] 
and 2010 i2b2/VA dataset [27]. We use three metrics to 
evaluate the performance of all methods: Precision (P), 
Recall (R), F-score (F1).

Experiment settings
We tried the original BERT,3 NCBI BERT,4 Clinical-
BERT5 and BioBERT6 pre-trained models. Each train-
ing example is pruned to at most 384 and 512 tokens for 
named entity recognition (NER) and relation extraction 
(RE). We use a batch size of 5 for NER, and 32 for RE. 
We also use the hierarchical learning rate in the training 
process so that the pre-trained parameters and the newly 
added parameters converge at different optimization pro-
cesses. For fine-tuning, we train the models for 20 epochs 
using a learning rate of 2 ∗ 10−5 for pre-trained weights 
and 3 ∗ 10−5 for others. The learning parameters were 
selected based on the best performance on the dev set. 
For trigger word detection, we ensemble 5 models from 
fivefold cross-validation and 2 models using the normal 
training-validation approach. For the identification of 
thematic roles, we ensemble 3 models that used all the 
construction data in training.

Results
Main results
The results of the two tasks with the pre-trained model 
for trigger words NER and thematic roles identification 
are presented in Table  2. We show a comparison of the 
performance of the development set results using dif-
ferent pre-trained models. From Table  2, we can see 
that the pre-trained model outperforms the classical 

BiLSTM + CRF labeling approach for the general domain 
[28]. From the last four lines of two tasks, we can see that 
different pre-trained models have different results for the 
same experimental setup. It demonstrates the validity of 
performing pre-training tasks in the medical or biomedi-
cal domain.

The results for Task 1 are presented in Table  3. The 
baseline method of Task 1 is to use BERT to learn the 
semantic structure of the text and then output sequence 
labels. The difference in performance across labels stems 
partly from the unbalanced distribution of trigger labels 
[29]. Our method performs better than the previous 
best and provides a significant improvement over the 

Table 1  Datasets statistics for joint learning in recognizing the 
trigger words

Datasets BC5CDR NCBI disease BC2GM 2010 i2b2/VA

# Train 4559 5423 12,573 16,315

# Dev 4580 922 2518 –

# Test 4796 939 5037 27,626

Table 2  Model comparison in development set with different 
pre-trained models

The models (except BiLSTM + CRF) are jointly trained by using NCBI dataset, 
BC5CDR dataset, and our training set. BioBERT performs better than others 
in Task 1, while ClinicalBERT achieves best F1 in Task 2. The two-step training 
process (i.e., TS) further improves the performance

Task Model P R F1

Trigger words recognition BiLSTM + CRF 0.478 0.408 0.440

BERTbase 0.497 0.448 0.471

NCBI BERT 0.553 0.453 0.498

ClinicalBERT 0.523 0.486 0.504

BioBERT 0.511 0.529 0.519

Thematic roles identification BERTbase 0.758 0.890 0.818

NCBI BERT 0.778 0.879 0.826

ClinicalBERT 0.796 0.913 0.850

BioBERT 0.807 0.891 0.847

ClinicalBERT-TS 0.810 0.917 0.860

BioBERT-TS 0.813 0.894 0.852

Table 3  Comparison of Precision (P), Recall (R) and F1 scores for 
trigger word detection

Label P R F1

CPA 0.39 0.27 0.32

Disease 0.57 0.57 0.57

Enzyme 0.75 0.16 0.26

Gene 0.71 0.64 0.68

Interaction 0.50 0.29 0.36

MPA 0.46 0.47 0.47

NegReg 0.71 0.62 0.66

Pathway 0.83 0.36 0.50

PosReg 0.64 0.61 0.63

Protein 0.32 0.17 0.22

Reg 0.75 0.50 0.60

Var 0.64 0.63 0.64

ALL (ours) 0.63 0.56 0.60

ALL (baseline) 0.50 0.51 0.50

3  https://​github.​com/​google-​resea​rch/​bert.
4  https://​github.​com/​ncbi-​nlp/​NCBI_​BERT.
5  https://​github.​com/​Emily​Alsen​tzer/​clini​calBE​RT.
6  https://​github.​com/​dmis-​lab/​biobe​rt.

https://github.com/google-research/bert
https://github.com/ncbi-nlp/NCBI_BERT
https://github.com/EmilyAlsentzer/clinicalBERT
https://github.com/dmis-lab/biobert
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previous state-of-the-art methods. Table  4 summarizes 
the results for Task 2. The baseline method of Task 2 is 
to use the traditional support vector machine to classify 
the relationship. Our method improves over the baseline 
model and multi-stage training is found to be effective 
for relationship extraction. However, there is a large dis-
crepancy between the performance of our approach on 
the development set and the performance of the test set: 
one reason is that the test set may be quite different from 
our constructed development set; on the other hand, this 
also is relevant to the way we use recognized entities (e.g., 
sentence-level or document-level pair combinations).

Ablation study
To test the validity of each component of our approach, 
we performed ablation experiments using the develop-
ment set of Task 1.

As illustrated in Table 5, we can see that adding a layer 
of BiLSTM behind the BERT encoder does not improve 
the performance of the model, resulting in an F1 loss of 
0.04. For the NER task, external features are likely to be 
an improvement in performance of the model. Therefore, 
we verified the validity of the lexical and POS labels on 
task 1 and found that adding this information makes the 
value of F1 increase by more than 0.01. In addition, jointly 
learning using other datasets of named entity recognition 
task can also improve the results of the model.

Discussion
Identifying disease-related genes and their related 
changes is a challenging task for biomedical research. 
With the help of the AGAC dataset, we used fine-tuning 

and multi-task learning techniques to identify the trigger 
labels and thematic roles in PubMed abstracts. Our work 
can also be applied to large-scale automatic extraction of 
medical text knowledge, which should propel drug repur-
posing research.

As mentioned in the paper [29] of the task organizer, 
different from the traditional sequence labeling problem, 
there is selective partial labeling in the AGAC dataset 
(that is, it is labeled when the sentence fits the GOF/LOF 
topic). In addition, due to the complexity of labeling and 
the uneven distribution of medical knowledge, the distri-
bution of AGAC data sets in some types of entities is dif-
ferent, and the number of abstracts for labeling is limited. 
The limitation of training data may affect the learning 
process of the model. In this paper, we use cross-valida-
tion and early stopping methods to avoid overfitting as 
much as possible. When dealing with NER joint learning 
with multiple corpora and multiple entity types, a critical 
issue is whether it introduces noisy labels or significantly 
decreases performance, e.g., a disease in NCBI corpus is 
labeled as DISEASE while it is not in the BC2GM corpus. 
In this work, we migrate the problem through different 
task layers. Another question is whether the performance 
of entities of the same type from different corpora can be 
compared. We argue that it is an open question whether 
equivalent comparisons can be made, considering differ-
ences in the entity type definition, annotation standard, 
and data quality.

We also conducted the error analysis. There are sev-
eral types of errors: the first is the abbreviation problem 
[30], but we can use the abbreviation tool in the post-
processing process to obtain its corresponding full name, 
for example: Cd is Cadmium, AF is Atrial fibrillation. 
However, this processing method will encounter a spe-
cific abbreviation corresponding to different full names 
in different articles, for example: AD is the abbreviation 
of Alzheimer’s disease, but in another paragraph is the 
abbreviation of acute distress. The second common mis-
take is that the specific gene name is not in the vocabu-
lary of pre-trained models, making it difficult to identify. 
The last kind of weakness is related to our method. We 
employ the pipeline to solve the tasks, with NER comes 
before RE. However, pipeline systems are prone to error 
propagation. In the field of general natural language 
processing, the latest work [31, 32] uses the framework 
of encoder-decoder to generate triples. In order to solve 
the problem of triplet overlap, Wei et  al. [33] also pro-
pose a Hierarchical Binary Tagging method to model the 
relationship as a function that maps the subject in the 
sentence to the object. However, they only proved use-
ful on the sentence-level dataset. For processed text data 
in the medical field, the entities and relationships to be 
extracted are often distributed in different paragraphs. 

Table 4  Comparison of Precision (P), Recall (R) and F1 score for 
prediction of thematic roles

Label P R F1

Cause of 0.60 0.26 0.36

Theme of 0.63 0.11 0.19

ALL (ours) 0.61 0.16 0.25

ALL (baseline) 0.05 0.02 0.03

Table 5  Ablation study of Task 1 in development set

Model P R F1

BioBERT 0.511 0.529 0.519

w/ BiLSTM 0.502 0.448 0.473

w/o Word shape 0.539 0.453 0.492

w/o POS tags 0.518 0.482 0.499

w/o Multi-task learning 0.492 0.478 0.484
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Different entities need to cross sentence combinations to 
judge the relationship, which is also a challenge for the 
current model. Besides, in the AGAC corpus, long con-
texts also make it more challenging to model sequence 
information. As mentioned in [34], truncated short text 
segments may prevent the model from capturing long 
dependencies and global information in the document.

Conclusions
In this paper, we integrated pre-trained biomedical lan-
guage representation models into an information extrac-
tion pipeline to collect mutational disease knowledge 
from PubMed. Specially, we investigated the use of pre-
trained models (i.e., BERT, NCBI BERT, ClinicalBERT, 
and BioBERT) to fine-tune new tasks to reduce the risk 
of overfitting. By considering the relationship between 
different data sets, we get better results. Experimental 
results of benchmark annotation of genes with active 
mutation-centric functional changes show that pre-
trained models help improve the baseline to obtain state-
of-the-art performance. In future work, we will explore 
how to simultaneously train entity recognition and rela-
tionship extraction tasks to reduce the cascading errors 
caused by the pipeline model in biomedical information 
extraction.
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