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Abstract

Background: Sample size calculations are an important tool for planning epidemiological

studies. Large sample sizes are often required in Mendelian randomization investigations.

Methods and results: Resources are provided for investigators to perform sample size

and power calculations for Mendelian randomization with a binary outcome. We initially

provide formulae for the continuous outcome case, and then analogous formulae for the

binary outcome case. The formulae are valid for a single instrumental variable, which

may be a single genetic variant or an allele score comprising multiple variants. Graphs

are provided to give the required sample size for 80% power for given values of the

causal effect of the risk factor on the outcome and of the squared correlation between

the risk factor and instrumental variable. R code and an online calculator tool are made

available for calculating the sample size needed for a chosen power level given these

parameters, as well as the power given the chosen sample size and these parameters.

Conclusions: The sample size required for a given power of Mendelian randomization in-

vestigation depends greatly on the proportion of variance in the risk factor explained by

the instrumental variable. The inclusion of multiple variants into an allele score to explain

more of the variance in the risk factor will improve power, however care must be taken

not to introduce bias by the inclusion of invalid variants.
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Key Messages

• Resources are provided for investigators to perform sample size and power calculations for Mendelian randomization

with a binary outcome.

• The sample size required for a given power level is greater with a binary outcome than a continuous outcome, and is

highly dependent on the proportion of the variance in the risk factor explained by the instrumental variable.
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Introduction

Sample size calculations are an important part of experimen-

tal design. They inform an investigator of the expected power

of a given analysis to reject the null hypothesis. If the power

of an analysis is low, then not only is the probability of re-

jecting the null hypothesis low, but when the null hypothesis

is rejected, the posterior probability that the rejection of the

null hypothesis is not simply a chance finding is low.1

Mendelian randomization is the use of genetic variants

as instrumental variables for assessing the causal effect of a

risk factor on an outcome from observational data.2

Genetic variants are chosen which are specifically associ-

ated with a risk factor of interest, and not associated with

variables which may be confounders of the association be-

tween the risk factor and outcome.3 Such a variant divides

the population into groups which are similar to treatment

arms in a randomized controlled trial.4 Under the instru-

mental variable assumptions,5,6 a statistical association be-

tween the genetic variant and the outcome implies that the

risk factor has a causal effect on the outcome.7 However,

as genetic variants typically explain a small proportion of

the variance in risk factors, the power to detect a signifi-

cant association between the variant and outcome in an

applied Mendelian randomization context can be low.8

Sample size analysis is particularly important to inform

whether a null finding is representative of a true null causal

relationship, or simply a lack of power to detect an effect

size of clinical interest.

Sample size calculations have been previously presented

for Mendelian randomization experiments with continu-

ous outcomes. Calculations based on asymptotic statistical

theory have been presented with a single instrumental vari-

able (IV), whether that IV is a single genetic variant or an

allele score.9 An allele score (also called a genetic risk

score) is a single variable summarizing multiple genetic

variants as a weighted or unweighted sum of risk factor-

increasing alleles.10 A simulation study for estimating

power has also been presented with both single and mul-

tiple IVs.11 These approaches have shown good agreement.

However, in many cases, the outcome in a Mendelian ran-

domization experiment is binary (dichotomous), such as

disease. In this paper, we present power calculations for

Mendelian randomization studies with a binary outcome.

We assume the context of a case-control study where the

causal parameter of interest is an odds ratio, although the

calculations are also valid for other study designs.

Methods and Results

We give results for the asymptotic variance of IV estima-

tors with a single IV, and for the resulting sample size

needed in a Mendelian randomization study to obtain a

given power level. We initially present formulae with a con-

tinuous outcome (this reviews material previously covered

by Freeman et al.9) and then analogous formulae with a bin-

ary outcome. We concentrate on estimates from the ratio

(or Wald) method, as this method makes few parametric as-

sumptions, relying only on a linear relationship between the

conditional expectation of the outcome (or in the binary

case, the logistic function of the probability of the outcome)

and the risk factor.12 If the imprecision in the estimate of

the genetic association with the risk factor is negligible, then

estimates of power and sample size from the ratio method

also correspond to those from assessment of the causal rela-

tionship of the risk factor on the outcome by testing the as-

sociation between the genetic variant and outcome.

Other estimation approaches are possible with a binary

outcome13 but these either give equivalent estimates to the

ratio method with a single IV (the two-stage predictor sub-

stitution method14) or are not recommended for general

use in applied practice. These include the two-stage re-

sidual inclusion method, due to inconsistency for a param-

eter with a natural interpretation,15 and the generalized

method of moments (GMM) and structural mean models

(SMM) methods, due to potential lack of identifiability of

the causal parameter (S Burgess et al., unpublished data).

Power with a continuous outcome

With a single IV and a continuous outcome, the IV esti-

mates from the ratio, two-stage least squares (2SLS) and

limited information maximum likelihood (LIML) methods

coincide.16 The estimator can be expressed as the ratio be-

tween the coefficient from the regression of the outcome

(Y) on the genetic variant (G), divided by the coefficient

from the regression of the risk factor (X) on the variant:

b̂IV¼
b̂GY

b̂GX

: ð1Þ

The asymptotic variance of this IV estimator is given by

the formula:

varðb̂IVÞ¼
varðRYÞ

NvarðXÞq2
GX

ð2Þ

where RY¼Y – b1. X is the residual of the outcome on sub-

traction of the causal effect of the risk factor, and q2
GX is

the square of the correlation between the risk factor X and

the IV G.17 The coefficient of determination (R2) in the re-

gression of the risk factor on the IV is an estimate of q2
GX.

The IV in these calculations could either be a single genetic

variant or an allele score.10

The asymptotic variance of the conventional regression

(ordinary least squares, OLS) estimator of the association
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between the risk factor X and the outcome Y is given by

the formula:

varðb̂OLSÞ¼
var RYð Þ
Nvar Xð Þ: ð3Þ

The sample size necessary for an IV analysis to demon-

strate a non-zero association for a given magnitude of causal

effect is therefore approximately equal to that for a conven-

tional epidemiological analysis to demonstrate the same

magnitude of association divided by the q2
GX value for the

IV.18 If the significance level is a and the power desired to

test the null hypothesis is 1�b, then the sample size required

to test a causal effect of size b1 using IV analysis is:9

Sample size¼
ðzð1�a

2ÞþzbÞ2var RYð Þ
var Xð Þb2

1q
2
GX

ð4Þ

where z is a quantile function, so that za is the 100a per-

centile point on the standard normal distribution. If the

significance level is 0.05 and the power is 0.8, then the

sample size to test for a change of b1 standard deviations in

Y per standard deviation increase in X is:

Samplesize¼ 7:848

b2
1q

2
GX

: ð5Þ

For a given sample size N, the power to detect a causal ef-

fect (in the same direction the true effect) can be calculated as:

Uðb1qGX
p

N � zð1�a
2ÞÞ ð6Þ

where U is the cumulative distribution function of the

standard normal distribution. This is the inverse function

of the quantile function (U(za)¼ a).

We use these formulae to construct power curves for

Mendelian randomization using a significance level of

0.05. In Figure 1 (left), we fix the squared correlation q2
GX

at 0.02, meaning the variant explains on average 2% of the

variance of the risk factor, and vary the size of the effect

b1¼ 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 and the sample size

N¼ 1000 to 10 000. In Figure 1 (right), we fix the size of

the effect at b1¼ 0.2 and vary the squared correlation

q2
GX¼ 0.005, 0.01, 0.015, 0.02, 0.025, 0.03 and the sam-

ple size as before. In each of the figures, the power to de-

tect a positive causal relationship is displayed; this tends to

0.025 as the sample size tends to zero. We see that the

power increases as the causal effect increases, and as the IV

explains more of the variance in the risk factor (the q2
GX

parameter or the expected value of the R2 statistic

increases).

Similar formulae to these have been made available in

an online tool for calculating either power for a given sam-

ple size or sample size needed for a given power, taking the

causal effect (b1) and squared correlation (q2
GX) param-

eters, as well as the variance of the risk factor and out-

come, and the observational (OLS) coefficient of the risk

factor from regression on the outcome.19

Power with a binary outcome

With a single IV and a binary outcome, the same IV esti-

mator1 as in the continuous outcome case can be eval-

uated, except that a logistic model is typically used in the

regression of the outcome on the genetic variant.12 The

asymptotic variance of this estimator can be approximated
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Figure 1. Power curves varying the sample size with continuous outcome and a single instrumental variable. Left panel: for a fixed value of the IV

strength (q2
GX ¼ 0.02) and different values of the size of the causal effect (b1¼ 0.05, 0.1,…, 0.3). Right panel: for a fixed value of the causal effect

(b1¼ 0.2) and varying the size of the IV strength (q2
GX ¼ 0.005, 0.01,…, 0.03)
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using the delta method for the ratio of two estimates.20

The leading term in the expansion is:

varðb̂IVÞ¼
varðb̂GYÞ

b̂GX

: ð7Þ

Although further terms from the delta method could be

included, these are usually much smaller in magnitude. In

the simulation example later in the paper, if the association

between the risk factor and IV is estimated using data on

the entire sample of control participants, the second and

third terms in the expansion are two orders of magnitude

smaller than the leading term (Figure 1). The asymptotic

variance of the coefficient b̂GY from logistic regression is:

varðb̂GYÞ ¼
1

E
P

ig
2
i PðY¼1jG¼giÞPðY¼0jG¼giÞ

� � ð8Þ

where i indexes individuals. This expression is obtained by

differentiation of the log-likelihood. If the probability of

an event does not depend greatly on the value of the gen-

etic IV, then P(Y¼ 1 jG¼ gi)�P(Y¼ 1) which is the ratio

of cases to participants in the sample. This approximation

will be reasonable if the genetic variant does not explain a

large proportion of the variance in the risk factor, and/or

the effect of the risk factor on the outcome is not extreme.

We assume (without loss of generality) that the mean of G

is 0 and the variance is 1, so that E(Ri g2
i )¼N, where N is

the sample size. The square of the coefficient b̂GX is ap-

proximately equal to var(X) q2
GX. This gives:

varðb̂IVÞ ¼
1

N varðXÞq2
GX PðY ¼ 1ÞPðY ¼ 0Þ

: ð9Þ

The sample size required to detect an effect of size b1 per

standard deviation increase in X for 80% power with a sig-

nificance level of 0.05 is therefore

Sample size ¼ 7:848

b2
1q

2
GX PðY ¼ 1ÞPðY ¼ 0Þ

ð10Þ

where the effect b1 is a log odds ratio. If there are to be

an equal number of cases and controls, P(Y¼ 1)¼
P(Y¼0)¼ 0.5, and:

Sample size¼ 31:392

b2
1q

2
GX

: ð11Þ

The corresponding power to detect a causal effect of size

b1 with a significance level of 0.05 is:

Uðb1qGX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNPðY¼1ÞPðY¼0ÞÞ

p
�1:96Þ: ð12Þ

Similar power curves to Figure 1 in the binary outcome

setting are given in the Web Appendix (available as

Supplementary data at IJE online).

We use these approximations to calculate the number

of cases needed to obtain 80% power in a Mendelian ran-

domization analysis with a binary outcome for different

values of b1 and q2
GX, assuming a 1:1 ratio of cases to con-

trols. The results are displayed in Figure 2. We note that

when the genetic variants explain a small proportion of the

variance in the risk factor, large sample sizes are required

to detect even moderately large causal effects with reason-

able power.

An R21 script for performing sample size and power cal-

culations is provided in the Appendix (available as

Supplementary data at IJE online). This code enables the

calculation of the sample size required for a chosen power

level given the values of b1 and q2
GX, as well as the power

given the values of b1, q2
GX and the chosen sample size.

A calculator using this code is available online.22

Validation simulation

In order to validate the estimates of sample size and power,

we simulate data on a genetic variant, a continuous risk

factor and an outcome. The data-generating model for in-

dividuals indexed by i is:

gi � Nð0,1Þ ð13Þ
xi � NðgiqGX,1� q2

GXÞ
yi � Binomialð1, expitðb0 þ b1xiÞÞ

where expit(x)¼ (exp(x) / 1þ exp(x)) is the inverse of the

logit function and b1 is the log odds ratio per unit (which

here equals 1 standard deviation) increase in the risk fac-

tor. The genetic variant is modelled by a standard normal

distribution; it can be regarded as a standardized weighted

allele score. The parametric relationship between X, G and

qGX ensures that the proportion of variance in the risk fac-

tor explained by the instrumental variable in a large sample

is q2
GX. We also simulate data with a dichotomous risk fac-

tor; details are given in the Web Appendix (available as

Supplementary data at IJE online).

We set b0¼�3 so that the outcome has a prevalence of

about 5% in the population from which the case-control

sample is taken. We take three values of b1¼ 0.1, 0.2, 0.3,

three values of q2
GX¼ 0.01, 0.02, 0.03, three sample sizes

(10 000, 20 000, and 30 000 cases), and two values of the

ratio of cases to controls (1:1 and 1:2). For each set of par-

ameter values, we calculate the estimate of the power from

equation (12) using a significance level of 0.05, and com-

pare this with the number of times the 95% confidence

interval for the ratio estimate excludes the null based on

10 000 simulated datasets.

The 95% confidence interval for the ratio method used

in calculating the power of the simulation method is

International Journal of Epidemiology, 2014, Vol. 43, No. 3 925

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyu005/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyu005/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyu005/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyu005/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyu005/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyu005/-/DC1


constructed using Fieller’s method,23 and so does not rely

on the same asymptotic assumption as the analytical

method for estimating the power. Previous simulations

have shown that confidence intervals from Fieller’s method

maintain nominal coverage levels even with weak instru-

ments.16 To obtain a case-control sample of the necessary

size, we initially simulate data for a large number of indi-

viduals, and then take the required number of cases and

controls from this population.

Simulation results

Results from the validation simulation are given in

Table 1. The Monte Carlo standard error (the expected

variation from the true value due to the limited number of

simulations) in the simulation estimates of power is at

most 0.5%. The coverage levels of the 95% confidence

interval from Fieller’s method are close to 95% throughout

(between 94.8 and 95.9 for the 54 scenarios).

We note that estimates of power from the formula of

equation (12) are similar to those from the simulation ap-

proach. There is no apparent systematic bias in the esti-

mates from the analytical formula, with simulation

estimates being greater and less than those from the for-

mula a similar number of times (when rounded to nearest

0.1%, the estimate from the simulation was less 24 times

and greater 19 times). Estimates from both approaches are

no more different than would be expected due to chance

alone. Similar results are obtained with a dichotomous risk

factor; details are given in Web Table A1 (available as

Supplementary data at IJE online). In comparing estimates

of power with equal numbers of cases, greater power is

achieved when there is a case:control ratio of 1:2 than with

a ratio of 1:1. However, when the total sample size is fixed,

the estimate of power is greatest when the numbers of

cases and controls are equal. This can be seen by compar-

ing estimates with 30 000 cases and a ratio of 1:1, and

with 20 000 cases and a ratio of 1:2.

In response to concerns from a reviewer that the power

estimates may not be valid with a discrete instrumental

variable (such as a single nucleotide polymorphism) or

when there is confounding, additional validation simula-

tions were performed in these scenarios. Results are given

in the Web Appendix (Web Tables A2–A4, available as

Supplementary data at IJE online). No substantial differ-

ences were observed from the validation simulation in the

main paper when the instrumental variable was discrete.

When there was confounding, estimates from the analyt-

ical formula slightly overestimated power, particularly

when the confounding was in the same direction as the

causal effect. However, this overestimation was slight (on

average less than 1% when the confounding was in the op-

posite direction, and less than 2% when the confounding

was in the same direction). As the magnitude of confound-

ing is not possible to estimate in applied practice, conserva-

tive estimates of the correlation and causal effect

parameters used in power calculations are recommended,

particularly if confounding is thought to be substantial.
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Figure 2. Number of cases required in a Mendelian randomization analysis with a binary outcome and a single instrumental variable for 80% power

with a 5% significance level and 1:1 ratio of cases:controls varying the size of causal effect [odds ratio per standard deviation (SD) increase in risk fac-

tor, exp(b1)] for different values of IV strength. Left panel: q2
GX ¼ 1%–8%. Right panel: q2

GX ¼ 0.5%–3.0%
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Discussion

In this paper, we have provided information on sample

sizes and power calculations in a Mendelian randomiza-

tion analysis with a single IV and a binary outcome. We

have shown in the continuous setting how the power de-

pends on the magnitude of causal effect and the proportion

of variance in the risk factor explained by the IV. With a

binary outcome, the precision of the coefficient in the re-

gression of the outcome on the IV is reduced compared

with a continuous outcome, as the outcome can only take

two values. As a result, the required sample sizes to obtain

80% power are much larger.

For a given applied example, the magnitude of the

causal effect of a risk factor is fixed, as is the expected pro-

portion of variance in the risk factor explained by each

variant. However, the expected proportion of variance in

the risk factor explained by the IV depends on the choice

of IV. The required sample size for a given power level can

be reduced (or equivalently the expected power at a given

sample size can be increased) by including more genetic

variants into the IV. This can be achieved by using multiple

variants as separate IVs,13 or as a single IV using an allele

score approach. With an allele score, power can be further

increased by the use of relevant weights for the variants.10

Provided that weights are not derived naively from the

data under analysis, the allele score approach avoids some

of the problems of bias from weak instruments resulting

from using many IVs.24 A disadvantage of the inclusion of

many variants in an IV analysis, whether in a multiple IV

or an allele score model, is that one or more of the variants

may not be a valid IV. If a variant is associated with a con-

founder of the risk factor–outcome association, or with the

outcome through a pathway not via the risk factor of inter-

est, then the estimate associated with this IV may be

biased. If the function and relevance of some variants as

IVs are uncertain, investigators will have to balance the

risk of a biased analysis against the risk of an underpow-

ered analysis. Sensitivity analysis may be a valuable tool to

assess the homogeneity of IV estimates using different sets

of variants.

If there are missing data, this may adversely impact the

power of an analysis. When there are multiple genetic vari-

ants, individuals with sporadic missing genetic data can be

included in an analysis using an imputation approach.25

Table 1. Validation simulation to compare estimates of power in a Mendelian randomization analysis with a continuous risk fac-

tor and a binary outcome from analytical formula and simulation study with a 5% significance level varying the size of causal ef-

fect (b1), the IV strength (q2
GX), the sample size and the ratio of cases to controls

Case:control ratio¼1:1 10000 cases 20000 cases 30000 cases

Formula Simulation Formula Simulation Formula Simulation

q2
GX ¼0.01

b1¼0.1 10.5% 10.2% 16.9% 16.6% 23.1% 22.4%

b1¼0.2 29.3% 28.4% 51.6% 51.2% 68.8% 69.5%

b1¼0.3 56.4% 56.4% 85.1% 85.0% 95.7% 95.7%

q2
GX ¼0.02

b1¼0.1 16.9% 17.2% 29.3% 28.9% 41.0% 41.1%

b1¼0.2 51.6% 51.0% 80.7% 80.2% 93.4% 93.6%

b1¼0.3 85.1% 84.9% 98.9% 98.9% 99.9% 100.0%

q2
GX ¼0.03

b1¼0.1 23.1% 22.9% 41.0% 40.8% 56.4% 57.0%

b1¼0.2 68.8% 68.5% 93.4% 93.3% 98.9% 99.0%

b1¼0.3 95.7% 95.5% 99.9% 99.9% 100.0% 100.0%

Case:control ratio¼1:2 10000 cases 20000 cases 30000 cases

Formula Simulation Formula Simulation Formula Simulation

q2
GX ¼0.01

b1¼0.1 12.6% 12.9% 21.0% 21.4% 29.3% 28.9%

b1¼0.2 37.2% 37.5% 63.7% 64.4% 80.7% 81.1%

b1¼0.3 68.8% 68.2% 93.4% 93.3% 98.9% 98.8%

q2
GX ¼0.02

b1¼0.1 21.0% 21.2% 37.2% 37.8% 51.6% 51.6%

b1¼0.2 63.7% 63.9% 90.4% 90.7% 97.9% 97.9%

b1¼0.3 93.4% 93.2% 99.8% 99.8% 100.0% 100.0%

q2
GX ¼0.03

b1¼0.1 29.3% 29.0% 51.6% 51.4% 68.8% 68.8%

b1¼0.2 80.7% 80.8% 97.9% 97.7% 99.8% 99.9%

b1¼0.3 98.9% 98.9% 100.0% 100.0% 100.0% 100.0%
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This can minimize the impact of missing data on the power

of the analysis, particularly if the distributions of genetic

variants are correlated (the variants are in linkage

disequilibrium).

The calculations in this paper make several assump-

tions. The distribution of the IV estimator is assumed to be

well approximated by a normal distribution. This is known

to be a poor approximation when the IV is weak;26 how-

ever, if the IV is weak, then the power will usually be low.

The standard deviation of this normal distribution is

assumed to be close to the first-order term from the delta

expansion. This term only involves the uncertainty in the

coefficient from the genetic association with the outcome.

The uncertainty in the estimate of the genetic association

with the risk factor is not accounted for. Typically, this un-

certainty will be small in comparison as the genetic associ-

ation with the outcome is assumed to be mediated through

the risk factor. Again, if this uncertainty is large, then the

power of the analysis will usually be low. If a more precise

estimate of the power is required, either further terms from

the delta expansion could be used, or a direct simulation

approach could be undertaken. The model of the logistic-

transformed probability of an outcome event is assumed to

be linear in the risk factor. As the power is very sensitive to

the squared correlation term q2
GX, it is advisable to take a

conservative estimate of this parameter, or to perform a

sensitivity analysis for a range of values of q2
GX. Despite

these approximations, the validation simulation suggests

that estimates of sample size and power from the formulae

in this paper will be close to the true values for a range of

realistic values of the parameters involved.

The ratio method used in this paper has been criticized

for use with binary outcomes to estimate an odds

ratio.27,28 This is due to the non-collapsibility of the odds

ratio, meaning that the parameter estimate depends on the

choice of covariate adjustment.29 This is a general property

of odds ratios, and not a specific feature of the ratio

method. The estimate from the ratio method approximates

a population averaged odds ratio,15 and is close to a condi-

tional odds ratio under certain specific circumstances.30

The choice of odds ratio estimate does not affect the con-

sistency of the estimator under the null.31 As effect estima-

tion is usually secondary to the demonstration of a causal

effect, the precise identification of the parameter estimated

by the ratio method is not of particular importance in

Mendelian randomization analyses, and over-literal inter-

pretation of Mendelian randomization estimates should be

avoided even outside the odds ratio case.32

Although the sample sizes required in Mendelian ran-

domization experiments are often large, it is not always ne-

cessary to measure the risk factor on all of the participants

in a study. Simulations have shown that, in some cases,

90% of the power of the complete-data analysis can be ob-

tained while only measuring the risk factor for 10% of par-

ticipants.33 This means that obtaining measurements of the

risk factor, which may be expensive or impractical for a

large sample, should not be the prohibitive factor for a

Mendelian randomization investigation.
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Supplementary data are available at IJE online.

Conflict of interest: None declared.

References

1. Davey Smith G, Ebrahim S. Data dredging, bias, or confounding.

BMJ 2002;325:1437.

2. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can

genetic epidemiology contribute to understanding environmental

determinants of disease? Int J Epidemiol 2003;32:1–22.

3. Lawlor D, Harbord R, Sterne J, Timpson N, Davey Smith G.

Mendelian randomization: using genes as instruments for mak-

ing causal inferences in epidemiology. Stat Med 2008;27:

1133–63.

4. Nitsch D, Molokhia M, Smeeth L, DeStavola B, Whittaker J,

Leon D. Limits to causal inference based on Mendelian random-

ization: a comparison with randomized controlled trials. Am J

Epidemiol 2006;163:397–403.

5. Greenland S. An introduction to instrumental variables for epi-

demiologists. Int J Epidemiol 2000;29:722–29.

6. Martens E, Pestman W, de Boer A, Belitser S, Klungel O.

Instrumental variables: application and limitations.

Epidemiology 2006;17:260–67.

7. Didelez V, Sheehan N. Mendelian randomization as an instru-

mental variable approach to causal inference. Stat Methods Med

Res 2007;16(4):309–30.

8. Schatzkin A, Abnet C, Cross A. Mendelian randomization: how

it can – and cannot – help confirm causal relations between nutri-

tion and cancer. Cancer Prev Res 2009;2:104–13.

9. Freeman G, Cowling B, Schooling M. Power and sample size cal-

culations for Mendelian randomization studies. Int J Epidemiol

2013;doi:10.1093/ije/dyt110.

10. Burgess S, Thompson S. Use of allele scores as instrumental vari-

ables for Mendelian randomization. Int J Epidemiol 2013;42:

1134–44.

11. Pierce B, Ahsan H, VanderWeele T. Power and instrument

strength requirements for Mendelian randomization studies

using multiple genetic variants. Int J Epidemiol 2011;40:

740–52.

12. Didelez V, Meng S, Sheehan N. Assumptions of IV methods for

observational epidemiology. Stat Sci 2010;25:22–40.

13. Palmer T, Lawlor D, Harbord R et al. Using multiple genetic

variants as instrumental variables for modifiable risk factors.

Stat Methods Med Res 2011;21:223–42.

14. Cai B, Small D, Ten Have T. Two-stage instrumental variable

methods for estimating the causal odds ratio: Analysis of bias.

Stat Med 2011;30:1809–24.

928 International Journal of Epidemiology, 2014, Vol. 43, No. 3

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyu005/-/DC1


15. Burgess S; CHD CRP Genetics Collaboration. Identifying the

odds ratio estimated by a two-stage instrumental variable ana-

lysis with a logistic regression model. Stat Med 2013;32:

4726–47.

16. Burgess S, Thompson S. Improvement of bias and coverage in in-

strumental variable analysis with weak instruments for continu-

ous and binary outcomes. Stat Med 15 2012;31:1582–600.

17. Nelson C, Startz R. The distribution of the instrumental vari-

ables estimator and its t-ratio when the instrument is a poor one.

J Business 1990;63:125–40.

18. Wooldridge J. Econometric Analysis of Cross Section and Panel

Data. Cambridge, MA: MIT Press, 2002.

19. Shakhbazov K. mRnd: Power Calculations for Mendelian

Randomization. http://glimmer.rstudio.com/kn3in/mRnd (27

January 2014, date last accessed).

20. Thomas D, Conti D. Commentary: the concept of ‘Mendelian

Randomization’. Int J Epidemiol 2004;33:21–25.

21. R Development Core Team. R: A Language and Environment

for Statistical Computing. Vienna: R Foundation for Statistical

Computing, 2011.

22. Burgess S. Online Sample Size and Power Calculator for

Mendelian Randomization With a Binary Outcome. http://

spark.rstudio.com/sb452/power/ (27 January 2014, date last

accessed).

23. Buonaccorsi J. Fieller’s theorem. In: Armitage P, Colton T (eds).

Encyclopedia of Biostatistics.Hoboken NJ: Wiley, 2005.

24. Burgess S, Thompson S; CRP CHD Genetics Collaboration.

Avoiding bias from weak instruments in Mendelian randomiza-

tion studies. Int J Epidemiol 2011;40:755–64.

25. Burgess S, Seaman S, Lawlor D, Casas J, Thompson S. Missing

data methods in Mendelian randomization studies with multiple

instruments. Am J Epidemiol 2011;174:1069–76.

26. Burgess S, Thompson S. Bias in causal estimates from Mendelian

randomization studies with weak instruments. Stat Med

2011;30:1312–23.

27. Palmer T, Thompson J, Tobin M, Sheehan N, Burton P.

Adjusting for bias and unmeasured confounding in Mendelian

randomization studies with binary responses. Int J Epidemiol

2008;37:1161–68.

28. Palmer T, Sterne J, Harbord R et al. Instrumental variable

estimation of causal risk ratios and causal odds ratios in

Mendelian randomization analyses. Am J Epidemiol 2011;173:

1392–403.

29. Greenland S, Robins J, Pearl J. Confounding and collapsibility in

causal inference. Stat Sci 1999;14:29–46.

30. Harbord R, Didelez V, Palmer T, Meng S, Sterne J, Sheehan N.

Severity of bias of a simple estimator of the causal odds ratio

in Mendelian randomization studies. Stat Med 2013;32:

1246–58.

31. Vansteelandt S, Bowden J, Babanezhad M, Goetghebeur E. On

instrumental variables estimation of causal odds ratios. Stat Sci

2011;26:403–22.

32. Burgess S, Butterworth A, Malarstig A, Thompson S. Use of

Mendelian randomisation to assess potential benefit of clinical

intervention. BMJ 2012;345:e7325.

33. Pierce B, Burgess S. Efficient design for Mendelian

randomization studies: subsample and two-sample instrumental

variable estimators. Am J Epidemiol 2013;178:1177–84.

International Journal of Epidemiology, 2014, Vol. 43, No. 3 929

http://glimmer.rstudio.com/kn3in/mRnd
http://spark.rstudio.com/sb452/power/
http://spark.rstudio.com/sb452/power/

	dyu005-M1
	dyu005-M2
	dyu005-M3
	dyu005-M4
	dyu005-M5
	dyu005-M6
	dyu005-M7
	dyu005-M8
	dyu005-M9
	dyu005-M10
	dyu005-M11
	dyu005-M12
	dyu005-M13
	l

