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Abstract

Characterizing consciousness in and of itself is notoriously difficult. Here, we propose an alternative approach to characterize, and even-
tually define, consciousness through exhaustive descriptions of consciousness’ relationships to all other consciousness. This approach
is founded in category theory. Indeed, category theory can prove that two objects A and B in a category can be equivalent if and only
if all the relationships that A holds with others in the category are the same as those of B; this proof is called the Yoneda lemma. To
introduce the Yoneda lemma, we gradually introduce key concepts of category theory to consciousness researchers. Along the way, we
propose several possible definitions of categories of consciousness, both in terms of level and contents, through the usage of simple
examples. We propose to use the categorical structure of consciousness as a gold standard to formalize empirical research (e.g. color
qualia structure at fovea and periphery) and, especially, the empirical testing of theories of consciousness.

Keywords: consciousness; contents of consciousness; level of consciousness; qualia; category theory; yoneda lemma; functor; natural
transformation

Problems in characterizing consciousness
on its own
Over the last few decades, the question of the nature of con-
sciousness is gaining a respected position as the target of scientific
inquiry. Much of the empirical research has tried to identify the
neural correlates of consciousness (Koch et al. 2016). Building on
the massive amount of empirical evidence, some models or the-
ories have been proposed to explain the link between various
features and aspects of the neural activity and the associated
functions and phenomena of consciousness (Engel and Singer
2001; Graziano and Kastner 2011; Lamme 2015; Northoff and
Huang 2017; Brown et al. 2019; Mashour et al. 2020).

Another distinct approach to consciousness is to study it using
a mathematical framework (Hoffman 1966, 1980; Stanley 1999;
Tononi 2004; Fekete and Edelman 2011; Yoshimi 2011; Prentner
2019; Kleiner 2020; Prakash et al. 2020; Signorelli et al. 2021).
Among these, the Integrated Information Theory (IIT) of con-
sciousness by Tononi and colleagues (Oizumi et al. 2014; Tononi

et al. 2016) is arguably the most developed and discussed in
the literature. IIT takes a unique approach, where it tries to

first identify the essential properties of consciousness, which

are always true to any experience. These essential properties

are called “phenomenological axioms,” and IIT tries to derive
mathematical postulates that any physical system should sat-
isfy to support these properties. IIT then proposes an explanatory
“identity” between phenomenal consciousness and information
structure (Haun and Tononi 2019).

In the past (Tsuchiya et al. 2016), we, the authors, have sug-
gested that, rather than trying to propose the explanatory “iden-

tity” between the two in a single step, it would be empirically

more tractable to break up the IIT project into the following

three subprojects: (i) to characterize the structure of conscious

phenomenology as a category; (ii) to characterize the structure

of information as a category; and (iii) to assess the degree of
similarity between the structures. For the second issue, we and
others have made some initial efforts on the mathematical side
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(Northoff et al. 2019; Kleiner and Tull 2020; Tull and Kleiner 2020).
Notably, there has been progress on the application of category
theoretical approaches toward stochastic processes (Manin and
Marcolli 2020) to formalize information structures (Baudot and
Bennequin 2015; Baudot et al. 2019). For the third issue, we also
made an initial attempt (Haun et al. 2017). Here, we deal with the
first issue: how we can characterize the structure of conscious-
ness as a category. Note that category theory has been proposed to
model aspects of cognition and how they are supported by neural
networks in the brain (Ehresmann and Vanbremeersch 1987, 1996;
Arzi-Gonczarowski 1999; Healy et al. 2008; Phillips and Wilson
2010, 2016; Ehresmann and Gomez-Ramirez 2015; Phillips 2020).

Precisely defining consciousness has been notoriously diffi-
cult (Dennett 1988; Sloman 1991; Stanovich 1991; Chalmers 1996;
Velmans 2009; Kleiner 2020), but certain characterizations of con-
sciousness are accepted by many for use in empirical conscious-
ness research (Koch et al. 2016; Mashour et al. 2020). One of the
widespread consensus is to distinguish the “level” and “contents”
of consciousness (Laureys 2005; Boly et al. 2013). For example,
Searle (Searle 2000) gives the following definition: “Consciousness
consists of inner, qualitative, subjective states and processes of
sentience or awareness.” Consciousness, so defined, begins when
we wake in the morning from a dreamless sleep and continues
until we fall asleep again, die, go into a coma, or otherwise become
“unconscious.” In the case of the contents of consciousness, a par-
ticular conscious experience of red color, often called a red quale
(Kanai and Tsuchiya 2012), is typically characterized as “redness
of red” or “red like this wine.” In these cases, consciousness is
characterized in reference to another conscious experience. This
relational nature of consciousness appears to be one of the fun-
damental characteristics of consciousness (Nagel 1974; Chalmers
1996; Kleiner 2020).

In this paper, by introducing several notions of category theory,
we offer mathematical justification for the relational character-
ization of consciousness. In fact, situations where a particular
object is not possible to define or even characterize on its own
arise relatively often outside of consciousness research. In these
situations, what has been effective is to rely on the relation-
ships between the object to be defined and its surroundings. For
example, some linguists consider that meanings of a word can be
understood only through how the word is related to other words
and how they are put into the context in the sentence (e.g. Frege
1980; De Saussure 2011). In ecology, it is essential to characterize
any life form within an ecosystem; defining a tree without men-
tioning the geological area in which it lives and which animals,
insects, and other plants interact with it and in what way would
miss the very essence of what that tree is. In quantum theory,
the essence of quantum features is that they are only possible
to explain through the interactions between the objects (Coecke
and Kissinger 2017). In cosmology, black holes are, in themselves,
impossible tomeasure and characterize, but their interactionwith
their neighbors can be measured and used to characterize their
properties. In mathematics, various types of infinity can be distin-
guished through what types of relationships they have with other
mathematical objects.

There is a deep mathematical foundation in why these theo-
retical fields can dispense with a direct definition of an object in
favor of characterizing its interaction with its surroundings. That
is what we introduce to consciousness research in this paper: the
Yoneda lemma. In short, the Yoneda lemma allows us to equate
A with B (up to isomorphism defined in “What does it mean for
objects to be the same in a category? Isomorphic objects in a
category”) if the relationships between A and the rest of objects
(including B) are the same (up to natural equivalence defined in

“Functor category, whose objects and arrows are functors and nat-
ural transformations”) as those between B and the rest (including
A). Importantly, this is true, even if A and B themselves are diffi-
cult to characterize in and of themselves, as in the case of black
holes in cosmology or infinity inmathematics. While defining con-
sciousness directly in a way where everyone agrees is not easy,
characterizing consciousness through a rich set of relationships
is much more feasible.

Note that we will not offer a definitive definition(s) of con-
sciousness in this article. Rather, our plan is to introduce a novel
perspective on how we can start doing so through the appli-
cation of the Yoneda lemma. Through our proposed approach,
eventually, we would hope to completely justify the relational
definition of consciousness. But first things first. To apply the
Yoneda lemma, we need to propose several possible categories of
consciousness. After introducing key concepts in category theory,
we will come back to the issue of how we can apply the Yoneda
lemma in consciousness research and discuss what it means for
consciousness research. For example, the Yoneda lemma will
enable us to address the question of the equivalence of color
qualia structure at the fovea and the periphery in a systematic
way.1

What’s the category in category theory?
Categories of consciousness
In this section, we will explain the basics of category theory,
which is necessary to explain the Yoneda lemma with a view to
its application in consciousness research. We will propose two
categories: category of level of consciousness, Lv, and category
of contents of consciousness, Q Note that we are not claiming
that these examples are “the” only possible formulation of cate-
gories of consciousness. They are invoked here as a starting point.
For an accessible introduction to category theory, see Lawvere
and Schanuel (2009); Spivak (2014); Bradley (2017); Northoff et al.
(2019).

The basis of category theory is three concepts: (i) category,
(ii) functor, and (iii) natural transformation. Let us start with a
category.

Definition: For a collection of objects to be considered as a category,
they must satisfy the following five axioms.

1. An arrow has its “source” object called domain and “target” object
called codomain.

2. For every object, there is a self-referential arrow called identity.
3. A pair of arrows is composable if the domain of one arrow equals

the codomain of another.
4. Identities do not change other arrows by composition.
5. Composition is associative.

In other words, a category is a system consisting of “objects”
and “arrows.” Figure 1 explains the above definitionwith a diagram
in an intuitive manner.

For a category of level of consciousness, we consider global
states of consciousness or the degree of wakefulness as an object.
The level of consciousness is usually assumed to go from 0 in dead
humans, which is lower than deeply anesthetized or dreamless
sleep, and highest in fully wakeful states (Mormann and Koch

1 We assume that many readers of this article are unfamiliar with cate-
gory theory and have no or little background training in mathematics. These
readers are our primary target audience. To make the mathematical aspects as
accessible as possible, we provided informal interpretations of mathematical
concepts and their concrete examples in the context of consciousness research.
We found this highly effective in introducing category theory to scientists with
no or little mathematical background (Spivak 2014).
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Figure 1. Requirements of a category. (a) Composition: if A, B, and C are
objects in category X, and f: A → B and g: B → C are arrows in category
X, then we can compose (or combine) f and g to obtain an arrow, f;g: A →
C. Note f;g reads as “f then g” and it is often denoted as g◦f (Fong and
Spivak 2019). (b) Associativity: if f, g, and h are arrows in category X, then
the order to compose the arrows does not matter: (f;g);h= f;(g;h). A, B, C,
and D are objects in category X. (c) Unit: For any object A in category X,
there is a self-referential arrow A → A, which is called identity arrow: 1A.
For any arrow f: A → B, the following is always satisfied: 1A;f= f = f;1B

2007). Note that one object can contain many elements. As an
example, let us consider a fully wakeful state as an object. One
can distinguish eachmoment of experience as different elements.
An object in this case is a group of these elements considered as
one entity, much like the colloquial use of a “category.” Mathe-
matically speaking, an object does not have to be one element.

For a category of contents, we can consider any possible con-
tent of consciousness, such as color, sound, and pain. As is usually
the case in mathematics, however, starting from the most general
situation, encompassing all levels of consciousness in all animals
or all types of contents, is not a wise strategy to make progress.
Accordingly, we will consider a very concrete case of conscious-
ness categories below and leave generalization of these categories
to future work.

An arrow, →, relates an object with another object. For exam-
ple, f: A → B denotes a relationship f between object A and object
B. In the case of level of consciousness category Lv, we can define
the meaning of f to be the level of consciousness in A “is higher or
equal to” B. Soon, it will become clear whywe need “equal to.” Read
on! In the case of content category Q, we can define the meaning
of f to be that A “is experienced as nearly indistinguishable with”
B in a certain aspect.

If the system consisting of objects and arrows satisfy further
three conditions (composition, associativity, and unit) as depicted
in Fig. 1, then it qualifies as a category. We visualize these three
requirements concisely and intuitively using diagrams. This is one
of the most powerful aspects of category theory: simply visualiz-
ing complex relationships to facilitate the understanding of the
subject matter.

A category of level of consciousness
Let us verify whether our proposed objects and arrows for level of
consciousness, Lv, can qualify as a category. Objects are certain
levels of consciousness supported by a human brain, such as A, B,
C, etc. An arrow f exists between two conscious levels A and B, if
level of consciousness A “is higher than or equal to” B.

Consider the requirement of composition. Suppose that f: A
→ B and g: B → C exist as arrows for objects A, B, and C in con-
sciousness level category Lv. That is, the level of consciousness
A is higher or the same as B, and B is higher or the same as C.
Then, it follows that A is higher than C or the same. In otherwords,
there is an arrow from A to C, which is the combination of f and g,
which we denote as f;g. Therefore, the condition for composition
is satisfied.

Next, let us consider associativity. We assume that for levels
of consciousness A, B, C, and D, three arrows exist f: A → B, g: B
→ C, and h: C → D. Then, (f;g);h means that (i) we first confirm
that A is higher than or the same as C (i.e. f;g) and (ii) due to h
(i.e. C is higher than or equal to D), we conclude that A is higher

than or the same as D. On the other hand, f;(g;h) means that (i) we
first confirm g;h, that is, B is higher than or equal to D, and (ii) we
conclude A is higher than or equal to D. In other words, associativ-
ity requires these two conclusions to be exactly the same. In the
diagram (Fig. 1b), this translates to the fact that two conclusions
via two paths are exactly the same if the starting and the ending
points are the same.

Finally, let us check the unit. This is the reason why we have
added “or equal to” as a part of the definition of the arrow. For any
level of consciousness A, there exists an arrow 1A: A→ A because
A is always higher than or equal to A. If f:A → B exists, then If f:
A → B exists, then 1A;f means the following. (i) We confirm that
A is the same as A. Then (ii) we conclude that A is higher than or
equal to B. Similarly, f;1B means the following. (i) We confirm A
is higher than or equal to B. Then, (ii) we confirm B is equal to B.
If we define f: A → B as A is strictly higher than B, our proposed
system of objects and arrows for level of consciousness Lv does
not qualify as a category.

Our category of level of consciousness Lv is an example of cate-
gories called “preordered sets.” Preordered sets are categories such
that between any two objects there is at most one arrow. The
arrows in preordered sets are called “preorder.”

A category of contents
Next, let us examine if our proposed definition canmake a system
of contents of consciousness Q into a category. Here, objects are
the contents of consciousness. Let us consider a system Q that
consists of only three objects, A= red sunset, B= red crayon, and
C= red wine. For simplicity, we consider a case of a preordered set;
that is, between two objects, there is either one arrow or none at
all. Suppose there is an arrow fromA to Bwhen the contents of the
two consciousness are “nearly indistinguishable” in terms of their
color [for those who are concerned about the gradual degradation
of distinguishability, see Tsuchiya et al. (2021)]. In other words, if
there is an arrow f between the two contents of consciousness A
and B, then f: A → B, and A is subjectively felt as nearly the same
as B in terms of their color. It is clear that the composition holds.
In other words, if the redness of sunset and crayon are similar,
and the redness of crayon and wine are similar, then the redness
of sunset and wine are also similar. Mathematically speaking, if
f: A → B and g: B → C, then f;g: A → C also holds. Associativity
holds as well. The unit is also valid (these two proofs are simple
and left to the reader). Therefore, our proposed system of objects
and arrows Q can constitute a category.

Here, since arrows mean “nearly indistinguishable,” the direc-
tion of an arrow does not matter. Now that we are considering a
preorder, there is only one arrow in either direction. This implies
that any arrow in this category is invertible. That is, any arrow has
an arrow of a reverse direction such that the composition of the
two is the identity arrow. Invertible arrows are also called “iso-
morphism” not only in preordered sets but also in categories in
general. When all arrows are isomorphism, the category is called
“groupoid.” In sum, we proposed an exemplar category Q, which is
preorder and groupoid, where all arrows are isomorphism (if there
are multiple isomorphisms between objects, then such a category
is groupoid but not preorder).

What does it mean for objects to be the same in a
category? Isomorphic objects in a category
So far, we have introduced categories Lv and Q for level and con-
tents of consciousness. Next, to deepen our understanding of
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what it means to define an object, we will consider what it means
for objects A and B to be equivalent.

When we say that A and B are the “same” in everyday life,
it means that they are equivalent with respect to some defini-
tions or assumptions and ignoring various aspects. For example,
when there are two apples on the right and the left, they may
be similar in terms of their color or a category within the fruit,
but they are different in their surface textures. In fact, they are
not the same thing, being located in different places. Category
theory provides a wealth of mathematical tools to handle these
subtle differences in “sameness” (Tsuchiya et al. 2016) in that it
characterizes different kinds of sameness using various types of
relationships.

Let us explain the sameness between objects in a category,
called “isomorphism.”

Definition: The objects A and B in a certain category C are isomor-
phic if there is an “invertible” arrow (called isomorphism) between them.
When the arrow f: A → B is “invertible,” there exists an arrow g: B → A
with f ;g=1A and g;f=1B.

In the case of category Lv, if coma level A is lower than min-
imally consciousness level B, the reverse of the arrow f: A → B
does not exist. In our proposed example of the category of con-
tents with three objects, all arrows are isomorphisms (see Section
2.3), that is, any pair of objects is isomorphic if there exists an
arrow between them.

This concept of isomorphism is much looser and more flex-
ible than the usual concept of “equalities.” For example, under
the framework of set theory, a set of alphabets {a, b, c, d, e} is
not equal to a set of numbers {1, 2, 3, 4, 5}. The difference in
terms of “elements” disqualifies them to be considered as equal
sets. Now, consider a category Set whose objects are sets and
arrows are functions or mappings between sets. Within the cat-
egory Set, two objects (i.e. sets) {a, b, c, d, e} and {1, 2, 3, 4, 5}
are considered as isomorphic objects in the sense that each ele-
ment can be mapped from one set to the other set in a one-to-one
manner. In fact, a concept of a number, such as 5, is “defined”
when we regard these “different” sets as the “equivalent” in a cer-
tain respect. In this sense, isomorphism captures the concept of
“essential sameness” in the category. As another example of iso-
morphism between objects in a category, consider a category of
topological space, Top, which is the foundation of the mathemat-
ical field called topology. In Top, objects are topological spaces
and arrows are continuous maps. While coffee cups and donuts
are usually considered as “completely different” objects, they are
isomorphic in Top.

In order to make progress in consciousness research, equiv-
alence in the sense of isomorphism is not powerful enough. As
we discuss later, we believe that different types of sameness in
category theory will be more useful and find wider application in
consciousness research. In particular, isomorphism between cat-
egories, or even looser sameness, called categorical equivalence
will be critical. To introduce these concepts, we need to introduce
two concepts: functors and natural transformations, which are
the topics of the next two chapters.

Preliminary conclusion and discussion
We believe that introducing the concept of preordered sets
as a category of level of consciousness Lv has an impor-
tant implication in consciousness research. Some authors
have raised issues with the concept of level of conscious-
ness (Bayne et al. 2016; Pautz 2019). One of the issues is
that this concept seems to imply a gradual change from
unconsciousness to full consciousness, which is not widely
agreed upon. Another issue is the existence of certain pairs of

conscious states, where we can never subjectively compare which
state is “higher” as conscious level. For example, which is higher
in level of consciousness between vivid dreaming and drowsy
awakening states? Or, what about between deep general anes-
thesia and coma, where consciousness completely disappears?
We believe that these issues arise because the scholars who crit-
icize the concept of level of consciousness implicitly assume that
“level” is something that is “isomorphic” to natural numbers (or
positive real numbers), where it is always possible to rank the
order between two objects. Such a strongly ordered structure is
called “total order” in mathematics. We believe that the total
order assumption is not necessary at all for the concept of level
of consciousness to be useful. We propose that a looser concept,
preorder, is a useful and appropriate concept for level of con-
sciousness. As for preorder, any two objects (levels) may or may
not have a relationship “≦.”

Our proposed category Lv can be applied to many cases. Com-
pared to the fully wakeful states, deeply anesthetized, dreamless
sleep, or coma would be lower in the level of consciousness. In Lv,
we will have no arrows between cases of lower level of conscious-
ness, where subjects have no ability to compare their levels and
do not show any behavioral outputs to bemeaningfully compared.
Likewise, Lv can be proposed across animals without proposing
any arrows between animal species but only considering arrows
within animals (between fully wakeful and deeply anesthetized,
deep sleep, or coma).

Note that the two categories Lv andQproposed here are just toy
examples and we are not claiming that they are “the” categories
of consciousness. In both level and contents of consciousness, it
is possible to focus on other aspects of consciousness and con-
sider the corresponding categories. For example, by focusing on
an aspect of consciousness that changes over time, one can pro-
pose a “category of mobility” (Saigo et al. 2019). Another kind
of category, called “co-slice category,” is effective in capturing
association possibilities and metaphorical structures of mean-
ing (Fuyama and Saigo 2018) [note that the subjective experience
of “meaning” of a word is not accepted widely, however; see
Kemmerer (2015) and McClelland and Bayne (2016) for recent dis-
cussions on this issue]. Tsuchiya et al. (2021) explains a further
framework to loosen the condition of arrows in Q by making it
in variable degrees of similarity using a concept of enriched cate-
gories (Lawvere 1973; Leinster and Meckes 2017; Fong and Spivak
2019).

The point of this section was to provide the readers an under-
standing that it is not difficult to propose a category of conscious-
ness. Some readers may think that as a mathematical theory,
category theory cannot be applied to the problem of conscious-
ness, especially because of the problem in composition (Pitt 2018).
As we explained, however, category theory can be applied if
“objects” and “arrows” are appropriately defined and if they satisfy
a few conditions.

What is a functor?
A functor is an arrow between categories
In simple terms, a functor is an arrow between two categories (for
a graphical definition, see Fig. 2). Importantly, a functor needs to
map one category to another category while keeping the “struc-
ture” of the category (e.g. commutativity). From the viewpoint
of equivalence discussed in the last chapter, “the existence of a
functor” is one important condition to consider as the sameness
between categories. The sameness as “existence of a functor” is
much weaker than the other types of sameness discussed in this
paper.
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Figure 2. What is a functor? A structural mapping F between category C
to D is called a functor if the following three conditions are satisfied:
(i) an arrow f: X → Y in category C is mapped onto a corresponding
arrow F(f): F(X) → F(Y) in category D; and (ii) a composite arrow f;g in
category C is preserved as F(f;g)=F(f);F(g); and (iii) an identify arrow 1X
for an object X in category C is preserved as F(1X)=1F(X)

Definition: A mapping F, which maps an object and an arrow in cat-
egory C to an object and an arrow in category D, is called a functor if it
satisfies the following three conditions:

1) F(1X)=1 F(X), that is, the identity arrow of X will map to the
identity arrow of F(X).

2) f:X → Y will map to F(f):F(X) → F(Y), that is, the arrow from X to
Y maps to the arrow from F(X) to F(Y).

3) a composite arrow f;g in category C is preserved as F(f;g)= F(f);F(g).

To see the relevance of functors in consciousness research, let
us examine a functor from categories of level of consciousness Lv.
To remind you, Lv is a preordered set; objects and arrows in Lv are
level of consciousness and “≦” as introduced previously. As we
argued ‘there’ the construction of category Lv and clarifying its
specific structure itself is a difficult research program in itself. But
here, we focus on the other problem: to establish a consciousness
meter, which translates to a construction of a functor from cat-
egory Lv to a convenient preorder category D. As an example,
consider a category D whose objects and arrows are natural num-
bers and≦. Readers can check easily that D is a preorder category;
any pair of objects have at most one arrow (e.g. 1≦ 2), any arrows
can be composed in an associative manner (e.g. 1 ≦ 2 ≦ 3) and
that each object has a unit arrow (e.g. 1 ≦ 1).

Let us consider a mapping F that maps from category Lv to cat-
egory D and satisfies the conditions to be a functor. In other words,
F maps any object of Lv, that is, any level of consciousness, into a
natural number, while all ≦ relations in Lv are preserved in D. In
other words, searching for a functor F is the same as the construc-
tion of a consciousnessmeter as strived for by some consciousness
researchers. We also note here that mapping in the other direc-
tion, that is, from D to Lv does not have to be a functor. In other
words, the validity of a consciousness meter, F, is not compro-
mised if two objects with one arrow (e.g. 1 ≦ 2 in D) do not map
onto Lv functorially. For example, from D to Lv, a mapping G may
map 1 to coma and 2 to deep general anesthesia. If G does notmap
≦ in D into≦ in Lv, then G is not a functor. However, as we pointed
out in the last section, it is unclear whether ≦ exists between
coma and deep anesthesia; thus, this itself is not a problem for
F as a valid consciousness meter.

Figure 3. Exemplar functors between categories QX and QY. (a) In
category QX, there exist arrows for all possible object pairs (only three
arrows are depicted here). In category QY, there are no arrows except for
identity arrows for each object (not drawn). (b) One of 27 (=33) functors
from QY to QX that preserve structures of QY. (c) One of three functors
from QX to QY. This functor has to map all objects in QX into one object
in QY and all arrows in QX to the identity arrow in QY

Next, let us consider a functor F for category Q for contents of
consciousness as considered in the last section. Q is a groupoid,
and its three objects are A= red sunset, B= red crayons, and
C= red wine. Arrows are “nearly indistinguishable” in terms of
color. Here, we consider two persons’ categories QX and QY. For
Ms X, all objects’ colors are nearly indistinguishable; thus, there
are arrows for any pair of objects AX, BX, and CX. However, for Mr
Y, all objects are distinguishable; thus, there are no arrows among
AY, BY, and CY (Fig. 3a).

In this situation, there are 27 functors that map from category
QY to category QX since the destination of each object in category
QY can be any of AX, BX, and CX. For example, one functor F1
maps AY to AX, while it maps BY and CY into BX (Fig. 3b). The only
arrows in QY are the identity arrows. The identity for AY maps
to that for AX, while those for BY and CY maps to that for BX.
The requirement of composition is also satisfied (because the only
way to compose arrows in QX is to compose the identity with the
identity, which is the identity).

What about functors from category QX to category QY? Like
the above example, if F collapses all objects in QX into one
object in QY, F can satisfy all conditions to be a functor. If F
does not collapse them, what happens? For example, if AX is
mapped to AY, while BX is mapped to BY. Because Mr Y can
distinguish AY and BY, there is no arrow between AY and BY.
However, Ms X sees AX as indistinguishable from BX. Thus, the
arrow that connects AX and BX is lost in translation during this
mapping. Such a faulty mapping does not qualify as a functor.
From a viewpoint of equivalence, there is a certain “structural
similarity” in subjective similarity characterized by categories QX
and QY in a sense that there exists a functor from one cate-
gory to the other. But the richness of the structure is “differ-
ent” as can be quantified from the number of arrows in each
category. This nicely represents the situation of the subjective
experience of Ms X and Mr Y—they experience the objects with
certain structural similarity and difference in richness in the
structure.

In sum, functors can be used to compare structures between
categories. In terms of categories of contents of consciousness Q,
functors are not limited in the usage of comparison of similarity
structures among individuals as in our examples. Functors can be
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used to compare structures of content category of color with con-
tent category of shape, content category of meaning, etc. within
individuals. This is one of the possible future directions of category
theoretical research of conscious contents.

Category of categories
In a category of categories, Cat, objects and arrows are categories
and functors (and this is the origin of the title for the last section).
This is an interesting characteristic of category theory; depending
on the viewpoint, what we are talking about can be considered as
objects in a certain category or arrows in another category. Fur-
thermore, a functor, which is considered as an arrow between two
categories in this section, will be considered as an object in the
later section. All of this comes from the fact that category theory
is mathematics that focuses on “relationships.”

Let us consider a category of categories using an example of
category of content Q. We ask Ms X and Mr Y to come back on the
stage. If we consider category QX and QY as objects and functor
F as arrows, the example in Fig. 3 is an exemplar category of
category Q.

What is a natural transformation?
Anatural transformation is the central concept in category theory.
Indeed, category theory was originally invented to introduce the
concept of natural transformation. To explain natural transfor-
mation, the concept of functor was introduced. And to explain the
concept of functor, the concept of category was introduced. Nat-
ural transformations are necessary to state and prove the Yoneda
lemma. The Yoneda lemma and its inspiration for consciousness
research is the central message of the paper: even if it is difficult
or impossible to characterize consciousness per se, we can do so
by characterizing all arrows in the relevant category.

A natural transformation is an arrow between
functors
A natural transformationmaps a functor to another functor while
keeping the structure of the functor. The basic structure of cate-
gory theory can be stated in terms of categories, functors, and
natural transformations. While there are more, solid understand-
ing up to natural transformation is critical to handle category
theory. It is important to develop an intuition about a natural
transformation. It is a family of arrows in the category, which a
functor maps the original category into. The graphical definition
in Fig. 4 helps understand this concept.

Definition: Consider functors F and G that map category C to cate-
gory D. When a mapping t from functor F to G satisfies the following two
conditions, t is called a natural transformation and we write t: F G.

1. Given an object X in category C, t gives an arrow tX: F(X) → G(X)
in category D.

2. For any arrow f: X → Y in category C, tX;G(f)= F(f);tY holds in
category D.

tX is called the X component of t.

Natural transformation for category Lv
To understand the relevance of natural transformations in
consciousness research, let us first consider the category of level
of consciousness Lv and the functors. Suppose Ms F proposed a
functor F as a consciousness meter, which maps all levels in pre-
order category Lv to preorder category D (objects and arrows are

Figure 4. What is a natural transformation? (a) Category C (consisting of
objects X and Y and an arrow f) is mapped into category D by two
functors F and G. Each functor preserves the structure of category C in D
(e.g. F(f):F(X) → F(Y), G(f):G(X) → G(Y)). Natural transformation t maps
functor F into G while preserving its structure. t can be considered as a
family of arrows in category D, such as tX and tY. Each arrow is specified
by an object in the original category C, such as tX, which maps an object
F(X) to G(X) in category D. b) Visualizing t as a family of arrows in the
destination category D

natural numbers and ≦). F maps all objects in Lv to numbers in
D and ≦ in Lv into ≦ in D. On F’s monitor, level of consciousness
under deep general anesthesia shows up as number 10, while that
under the wakeful state is 100. Then Mr G also developed another
functor G as a consciousness meter. On G’s meter, the level under
deep general anesthesia is 20 and the wakeful state is 200. In both
cases, the arrow in category C is preserved as the arrow in cate-
gory D as ≦. Now, we ask: what is the nature of the relationship
between F’s and G’s consciousness meters?

Let us assume that there exists a natural transformation t
between functors F and G. Then, according to Condition 1 above,
the natural transformation t gives us two arrows tA and tW for two
objects that we considered in category Lv: A for anesthesia and W
for wakefulness. tA and tW are two arrows in category D, which
satisfies the following: tA: F(A)=10→ G(A)=20, tW: F(W)=100→
G(W)=200. Interestingly, this arrow corresponds to ≦, the arrow
in D.

Moreover, according to Condition 2, with respect to two objects
A and W and the arrow f:A → W in category Lv, we have
tA;G(≦)=F(≦);tW. The left-hand side of this equation means that
(i) we first evaluate the value for anesthesia in F (=10) to translate
into the value in G (=20), then (ii) we confirm the relation between
A andW (≦) in category Lv to be translated into the relation in G’s
monitor (20 ≦ 200). The right hand side of the equation means
that (i) we first translate the relation A ≦ W in category Lv into
category D (F(A)=10≦ F(W)=100) and then (ii) we map the value
for wakefulness in F’s monitor (=100) into G’s monitor (=200). In
sum, this family of arrows in category D guarantees a lawful rela-
tionship between two functors, preserving the original relations
in category Lv (note that we also have two more relations with
respect to the identity arrows for 1A and 1W in category Lv).

Natural transformation for category Q
Next, let us consider a natural transformation for the category of
contents Q. We consider two categories based on Q introduced in
the section on “A category of contents” and consider a situation
that can be tested in a psychophysical experiment. For simplicity,
we consider two objects as subjective experience of a red Apple (A)
and a red Berry (B) and arrows as a relationship for “nearly indis-
tinguishable” in terms of color (Fig. 5). Category C refers to objects
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Figure 5. Natural transformation. Objects are Apples (A) and Berries (B)
in categories C (central visual field) and E (entire visual field). Arrows in
categories C and E are “nearly indistinguishable” in terms of color. Thus,
category C is included in E. Central vision (C) is mapped to Left and Right
visual fields by functor L and R, respectively, preserving objects and
arrows. If natural transformation t exists from functor L to functor R,
then indistinguishability of Left Apple to Right Berry can be established
by both through Left Berry (=L(f);tB) or Right Apple (=tA;R(f)), that is,
there is no path dependency. Note that tA is an arrow in category E,
indicating that Apple in the Left is “nearly indistinguishable” from Apple
in the Right. Same goes with tB for Berry in the Left and Right

and arrows in the Central visual field, while category E refers to
those in the Entire visual field, which includes the central, left,
and right visual field. A mapping R from C to E translates objects
and arrows to those in the Right visual field. Likewise, amapping L
fromC to E translates those in the Left visual field. Themappings L
and R are likely to be functors in healthy subjects. One way to test
this idea is to operationally define category C with objects as a set
of perceptual objects and arrows as similarity relationships. Like-
wise category E, which includes C but also across the entire visual
field. Under this condition, psychophysical experiments measur-
ing similarity relationships can test if themapping L andR satisfies
the functor conditions. In the following, we assume L and R satisfy
the functor conditions.

Natural transformation t can clarify the relationship between
functors L and R. Let us go through this example slowly as
this is an important point. Assume the existence of a natural
transformation t from functor L to functor R. Now, with respect
to objects A (Apple) and B (Berry) as well as its arrow f (f:A → B; A
is nearly indistinguishable from B in terms of color) in category
C for Central visual field, a natural transformation is a collec-
tion of arrows in category E for Entire visual field. These arrows
include tA: L(A) → R(A) and tB: L(B) → R(B) (Condition 1), both of
which mean “nearly indistinguishable” in terms of color, which
are indeed the arrows in category E. tA means that Apple is nearly
indistinguishable in terms of color in the Left and Right visual
field.

Condition 2 says for an arrow f:A → B in category C, we have
tA;R(f)=L(f);tB. The left side of this equation first confirms that
Apple is indistinguishable between Left and Right visual fields,

then it confirms that Apple in Right is indistinguishable fromBerry

in Right. The right side of the equation first confirms that Apple is

indistinguishable from Berry in Left, then Berry in Left is indistin-
guishable from Berry in Right. In other words, Condition 2 means
that the color of Left Apple is indistinguishable from the color of
Right Berry, and it allows us to go in either way to prove this fact.
The power of the natural transformation t is to handle a lot of
arrows, such as tA and tB, all at once in a lawful manner.

Functor category, whose objects and arrows are
functors and natural transformations
Using the concept of natural transformation, we introduce
another critical concept to prove the Yoneda lemma: functor cate-
gory. Functor categories and equivalence defined in this manner,
we suspect, is something that is likely to be completely missing in
current language in consciousness research, and it is very useful
for future conceptual analyses.

Definition: Functor category, Fun(C, D), considers objects and arrows
as functors from category C to category D and natural transformations
between them.

From the viewpoint of the contents category, let us consider
a functor category. We extend the example categories C and
E in Fig. 5. Simply, treating functor L and R as objects and a
natural transformation t as an arrow constructs a functor cate-
gory Fun(C, E).

What is the benefit of considering a functor category? One of
the benefits is to allow us to introduce two concepts: “natural
equivalence” and “categorical equivalence.” Categorical equiva-
lence is likely to be a critical target to establish in empirical studies
of the structure of consciousness within a framework of category
theory; for example, one application is the examination of cate-
gorical equivalence of color similarity structure at the fovea and
the periphery.

Previously, peripheral and central color vision have been
claimed to be “essentially the same” (Tyler 2015; Haun et al. 2017)
or not (Dennett 1991; Lau and Rosenthal 2011). Between these
visual fields, objective resolutions are different; yet, when the size
of objects are matched for the resolution, essential visual phe-
nomenology, including color experience, seems “essentially the
same” (Gordon and Abramov 1977; Hansen et al. 2009; Webster
et al. 2010). How can we proceed to extract and quantify the
sameness of obviously different objects?

First, you might think of “isomorphism” between category C
and E for Central and Entire visual fields, respectively (Remember
the section on “What does it mean for objects to be the same in
a category? Isomorphic objects in a category”). As we introduced
in the section “Category of categories”, C and E are objects of Cat
(category of categories), where arrows are functors. Isomorphism
in Cat, which is also called “categorical isomorphism,” requires
that, for functor F: C → E, there exists functor G: E → C such that
1C=F;G and 1E=G;F. This turns out to be a very strong require-
ment and it does not work in the case between C and E here. This
is because functor G collapses E into its subset C; thus, F cannot
recover the original E from C.

On the other hand, what occurs if we consider the “isomor-
phism” instead of equality in 1C=F;G and in 1E=G;F? “Isomor-
phism” here is nothing but an invertible natural transformation,
which is called natural equivalence, in functor categories Fun(C,
C) and Fun (E, E). In this case, we obtain a weaker, yet very
proper and flexible, kind of equivalence. In this sense, two cat-
egories C and E are equivalent. This is the level of equivalence
that we are looking for, and potentially useful for conscious-
ness research. The sameness, obtained through natural equiv-
alence, is called “categorical equivalence” between category C
and E.

Definition: Categories C and E are categorical isomorphic if there are
functor F: C→ E and functor G: E→ C such that 1C= F;G and 1E=G;F.
Category C and E are categorically equivalent if the above functors F and
G have an invertible natural transformation t: F G.
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In our example of Central and Entire visual fields (Fig. 5), C
and E will not be “categorically isomorphic,” which implies one-
to-one relation on object and arrows since a functor from E to
C should collapse the multiple objects or arrows into the same
object or arrow. On the other hand, C and E can be “categorically
equivalent” since it allows such multiplicity up to isomorphisms.
If this can be experimentally verified, then we can conclude
that content structures are “essentially the same” across visual
fields. If, however, something essential is lost within a part of
the visual field, say, blindspot, scotoma (Ramachandran and
Blakeslee 1998), or colorblindness in a quadrant (Gallant et al.
2000), then, categorical equivalence would not hold any more.

Empirically, we can possibly test the existence of categor-
ical equivalence between color similarity structures as con-
tent categories between the fovea and the periphery. While
color similarity structure has been extensively studied in psy-
chophysics (Kuehni 2010), most experiments allowed sub-
jects to move their eyes freely in an unlimited time. As a
result, the structure of color experiences is understood bet-
ter at the fovea than the periphery, resulting in disputes
(Cohen et al. 2020; Cohen and Rubenstein 2020; Dennett 1991; Lau
and Rosenthal 2011; Tyler 2015; Haun et al. 2017). We surmise that
a weaker notion of categorical equivalence is much more likely to
be applicable in various types of structures of consciousness and
more fruitful to seek for than the other stronger notions of the
sameness (e.g. categorical isomorphism).

Explaining the Yoneda lemma
Finally, we are ready to introduce one of the most important
results of category theory, the Yoneda lemma, to consciousness
research. If we can apply the Yoneda lemma to consciousness
research, we can characterize consciousness through its relation-
ships with the others even if we cannot describe what conscious-
ness is per se. To be more precise, the general conclusion of the
Yoneda lemma is that the characterization of an object in a cate-
gory is determined up to isomorphism by its arrows to the other
objects in that category. We believe this is a substantial change of
perspective, especially in the context of consciousness research:
properties of an object are essentially the same as how the object
relates with the others.

Having said that, some may say that a concise and general
direct definition of an object is vastly superior to the exhaustive
characterizations of its relationships to other objects. However,
as we noted in problems in characterizing consciousness on its
own, the difficulty in dealing with consciousness is its difficulty
to describe it in itself. How can I examine my definition of “red-
ness” at the fovea compared to my “redness” at the periphery? As
a start, I can compare my “redness” at fovea to all other experi-
ences, including “redness” at periphery. Next, I can do the same by
comparingmy “redness” at periphery to all other experiences. This
is an empirical approach to characterize a structural relationship.
This procedure can establish equivalence of color experiences at
the fovea and the periphery. The Yoneda lemma provides a math-
ematical footing to this empirical approach: we can eventually
establish equivalence of my redness across the visual fields.

Hom sets and hom functors
Before applying the Yoneda lemma to consciousness categories,
let us introduce only two more concepts: hom sets and hom
functors.

Definition:A collection of arrows from object X to object Y in category
Q is called a hom set and written as homQ (X, Y). A hom functor maps

homQ(A,B)

hA(B) = homQ(A,B)

hA(C) = homQ(A,C)

hA(f) = homQ(A,f)

Category Q

f

a

a⨾f

a) b) c)

d)
Hom functor 
h(-, A) 

- A set of arrows 
from all objects to 
A

Hom functor 
h(A,-)

- A set of arrows 
from A to all 
objects  

A A

Figure 6. What are hom sets and hom functors? (a) A hom set, homQ (A,
B), is a set of arrows from Apple (A) to Berry (B) in category Q. homQ (A,
B) includes our familiar arrow, “nearly indistinguishable in color” but
also many other different arrows (e.g. “indistinguishably tasty,”
“indistinguishably sour,” etc). (b) A hom functor, hA, maps objects B and
C in category Q into objects hA(B) and hA(C) in category Set. (c) hA also
maps an arrow f in category Q into an arrow in category Set. (d) Visual
depiction of hA: all sets of arrows emanating from A; and Ah: all sets of
arrows pointing to A

an object X in category Q into a set, which is an object in category Set. A
hom functor also maps an arrow f in category Q into a function, which is
an arrow in category Set. A function maps a set to another set in category
Set (see Fig. 6a for hom sets and 6b and c for hom functors).

Among hom functors, one that is obtained by fixing an object
A in category Q is called hom functor hA. Let us go back to our
familiar example: an object A for Apple. Then, hom functor hA
can be understood as “all relationships that Apple has with other
objects in category Q.” Formally, hA is a functor from category Q to
category Set. This is because hAmaps objects Berry (B) and Cherry
(C) in category Q into homQ (A, B) and homQ (A, C) in category
Set, which can be understood as “how Apple relates to Berry in
all possible ways” and “how Apple relates to Cherry in all possible
ways.” hA also maps an arrow f to homQ(A, f), which is an arrow
in category Set. Note that an arrow in Set is a function from a set
to another set. For unfamiliar readers, homQ(A, f) is a little con-
fusing. To understand this, recall that f is one of the arrows from
object A to B in category Q, which canmean “nearly indistinguish-
able,” for example. Let us single out one of the arrows in homQ
(A, B) as an arrow “a,” which means A is “nearly indistinguishable
in its color” with B. Then, a can be composed with f to obtain a;f.
This compositional situationmeans as follows: A is related to C (in
a sense of “a;f”), where C is related to B (in a sense of “f”), which is
related to A as “nearly indistinguishable in its color”. Note that, in
categories where there aremore than one arrows between objects,
an arrow from A to C, which means “nearly indistinguishable in
its color,” may be a distinct arrow from a;f. hA(f) maps a particu-
lar arrow from A to B into the corresponding arrow from A to C.
If you consider arrows as elements in a set, this means that hA(f)
is a function between two sets of arrows, that is, homQ (A, B) and
homQ (A, C).

Note that until the last paragraph, we have always considered
only one arrow from one object to the other, that is, we have sim-
ply considered categories of preorder in order to simplify various
concepts in category theory. However, we will need to consider
many arrows from one object to another object. homQ (A, B) is a
powerful conceptual tool to think about such situations. We can
consider homQ (A, B) as a list of properties of Berry in terms of
relationship from Apple.
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Pushing this idea further, we can denote a list of properties of
all objects in category Q from the perspective of Apple as homQ
(A, -)=hA. We use “-” to denote the argument in which any object
in category Q can be substituted. For example, homQ (A,-) con-
tains homQ(A, B) (i.e. a set of arrows from A to B, listing the
properties of Berry from Apple’s viewpoint) as well as homQ(A,
C) (i.e. a set of arrows from A to C). Thus, hA can be interpreted

as all sets of arrows emanating from A to characterize the view-
point of Apple. The dual notion is homQ (-, A)=Ah, which can be

interpreted as all sets of arrows pointing to Apple. In other words,
Ah is a list of properties of Apple, from the viewpoints of each and

every object in category Q. These concepts are schematically rep-
resented in Fig. 6d. hA and Ah are likely to be useful to consider
the issue of subjective viewpoints in consciousness research.

What can we say from the Yoneda lemma?
The Yoneda lemma says:

For each object A of C, the natural transformations Nat (hA,
F)≡Hom(Hom(A,-), F) from hA to F are in one-to-one correspondence
with the elements of F(A), that is, Hom(Hom(A,-)F)∼= F(A). Moreover,
this isomorphism is natural in A and F when both sides are regarded as
functors from C × Fun(C, Set) to Set.

Due to the technicality, we will omit the proof of the Yoneda
lemma here. The readers who grasped all concepts introduced so
far can understand the proof in a standard textbook of category
theory (Awodey 2010; Leinster 2014). The important theorem that
follows from the Yoneda lemma is as follows:

Theorem: For objects A and B in category Q, hA∼=hB is a
necessary and sufficient condition for A∼=B.

Here, A∼=B means that A and B are isomorphic objects in cat-
egory Q. hA∼=hB means that there exists a natural equivalence
between hA and hB. A natural equivalence is a natural transfor-
mation from functor hA to hB, which is invertible. Remember a
functor category, which we introduced previously. Given that hA
and hB are both functors from category Q to category Set, they
are objects of Fun(Q, Set). Thus, “hA ∼= hB” means hA and hB
are isomorphic objects in Fun(Q, Set). In other words, there is
an invertible natural transformation (i.e. a natural equivalence)
between them.

Let us translate the theorem into English. hA (and hB) means
all relationships that A has with all other objects in category Q.
Thus, hA∼=hB means that all relationships for A and those for
B are “naturally convertible” to each other (note that hA and hB
includes the relationship from A to B and B to A as well). If A and
B are isomorphic objects in category Q, then it is relatively easy
to prove hA∼=hB. However, a nontrivial mathematical fact is that
hA∼=hB can prove A∼=B. Even if it is impossible to directly com-
pare A and B, we canmake a conclusion about it by examining how
A and B relate to others. This approach is akin to the approaches
taken in other fields; when studying meaning in semantics, envi-
ronments in ecology, and astronomical objects in cosmology. Of
course, the exact and precise approach is taken in mathematics.
Here, we are proposing its application for consciousness research.

Some readers may think that hA∼=hB is more difficult to test
empirically than A∼=B. Surprisingly, however, there are many
cases where it is overwhelmingly easier to check hA∼=hB than
A∼=B. There is no shortage of examples in mathematics. Next, we
consider it in the context of consciousness research.

A simple application of the Yoneda lemma in
consciousness research
Let us apply the above theorem for category of contents Q. To gain
some insights, we consider the Checkershadow illusion (Adelson

Figure 7. Applying the Yoneda lemma to category Q. (a) Checkershadow
Illusion. The two squares labeled A and B look “different” in brightness
as in complementary squares in a checkerboard. (b) Removing the
surrounding of A and B to obtain A* and B*, whose brightness looks the
“same”

1995) (Fig. 7a). In this “illusion,” square A looks very dark, while
square B looks quite bright. In Fig. 7b, we show square A* and
B* without any background, which makes it easy to see that the
brightness of A* and B* are physically the same. The striking effect
of this “illusion” does not reduce even if you try to cognitively con-
vince yourself that it is just a 2D image or that the direction of the
shadow in the image is contradictory to the lighting condition in
your room. It exemplifies the fact that the subjective experience
of brightness of an object strongly depends on the context of the
objects.

Are the brightness of A and B the same? Can we define the
subjective brightness of A and B? If there are individual differences
in how we perceive brightness, is there any way to systematically
examine and characterize subjective brightness?

Let us consider squares A and B in Fig. 7a from a perspective of
category theory. Within category Q, A and B are not isomorphic.
Why? Here, we consider objects as squares denoted by A, B, i, ii,
iii, and iv and arrows as “nearly indistinguishable” as before.

First, consider if there is an arrow from A to i. Due to the
clear boundary between A and i, they look quite different; thus,
there is no arrow. Meanwhile, there is an arrow from B to i partly
due to the fact that the bottom right part of i is indeed the same
as that of B. However, if you pay attention to the top left part
of the i, it becomes clear that i has a gradation and that i and
B are not that similar. Yet, the cylinder on the top right pro-
vides an explanation of this difference within i as an effect of
shadow. Furthermore, the overall configuration of the checker-
board also facilitates the sameness between B and i. In the end,
we conclude the existence of an arrow from B to i. At this point,
there is already a difference between a collection of relationships
between A and the other objects and those between B and the
others; thus, A and B cannot be isomorphic. This prediction coin-
cides with our subjective phenomenology of “difference” between
A and B, which provides a preliminary support of our framework of
category Q.

What has been said above applies similarly to i, ii, iii, and iv.
According to our framework, this collection of arrows created a
conscious experience where A and B do not look the same. Mean-
while, the theorem predicts that A and B should look the same
if we erase the sources that generate the discordances between
arrows from A and arrows from B. And this is a more meaning-
ful aspect of the theorem: if hA∼=hB, then A∼=B. The sources of
discordance may include the green column and its shadow, the
regularity of the checkerboard pattern, etc. Let us consider any
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points in the display as a potential object. Here, we assume A has
a “nearly indistinguishable” arrow with a set of objects. Note that
this set of objects include A itself (as “identity”) and B. If B has the
arrow with the same set of objects, then mathematically, from
hA∼=hB, we can prove A∼=B.

In fact, after painting squares i, ii, iii, and iv into awhite color as
in the background, one of the authors (H.S.) now feels that A and
B look the same. The other author (N.T.) feels that A and B became
much more similar than before but they are still distinguishable.
By removing further contextual cues, as in Fig. 7b, A* and B* look
the same tomost people. At this point, some readersmay find that
the arrows that we have adopted so far, signifying “nearly indistin-
guishable,” are too coarse to be useful in this situation. To capture
different degrees of perceived similarity, we believe that “enriched
category” will be useful (Lawvere 1973; Leinster and Meckes 2017;
Fong and Spivak 2019; Tsuchiya et al. 2021). The Yoneda lemma
is also known to exist in the enriched category (Bonsangue et al.
1998); thus, our argument here still holds in the enriched category.

Note that we are not claiming that this is a novel explana-
tion about the Checker shadow illusion. In fact, the application of
the Yoneda lemma is never surprising as long as we work on pre-
order sets, where there exists at most one arrow between objects.
Unfortunately, there have been very few empirical psychophysics
studies that examined multiple arrows between objects so far.
This is a highly promising avenue of future research.

In sum, the Yoneda lemma predicts that two objects A and B
should look the same if we eliminate the discordances of relation-
ships between A and the others vs B and the others.

Discussion
In this paper, we introduced categories of consciousness in several
forms and showed that the Yoneda lemma can be applied to obtain
novel perspectives and predictions on consciousness. While the
exact and concise definition of consciousness remains difficult,
its characterization through indirect characterization of its rela-
tionships to others using convergent methods (see, for example,
(Velmans 2009)) is actually a valid way as guaranteed by category
theory and, in particular, the Yoneda lemma.

We can already use some tools from category theory to char-
acterize some aspects of consciousness in terms of level and
contents in relational terms, as we demonstrate with some simple
toy models. As the research makes progress, we surmise that we
can possibly characterize all aspects of consciousness in relational
terms in principle. For other related proposals of a relational char-
acterization of concepts, see Chalmers (1996), Edelman (1996),
Goldstone et al. (2005), Kleiner (2020), Loorits (2014), Signorelli et al.
(2021), and Fink et al. (2021).

As a future prospect, we think it is critical to consider various
categories of consciousness within a larger structure of category
of consciousness categories. Categorical equivalence between two
conscious contents categories clarifies “in what sense” these con-
sciousnesses are essentially the same.

The importance and novelty of our proposal here can be better
appreciated by the following criticism on similarity judgment in
consciousness research by Pautz (2019):

“To see how Similarity-Congruence falls short, let us return to

hypothetical case … some unfamiliar sentient organism, Karl.

You want to determine exactly what experiences Karl has…

Karl is presented with three objects consecutively … three T-

shapes such that T1 is more like T2 than T3. Then, given

Similarity-Congruence, you can deduce that Karl has some trio

of experiences, E1, E2, and E3, such that E1 is more like E2

than E3. But, as a simple point of logic, Similarity-Congruence

is not logically strong enough to tell us precisely what those

experiences are… it doesn’t tell us whether they are colour

experiences of similar shades of red, or whether they are colour

experiences of similar shades of green. In fact, it doesn’t tell

us whether they are experiences of colour or experiences of

(say) smell. That is, it doesn’t entail the specific, determinate

qualitative contents of those experiences.”

Our proposal, specifically with the Yoneda lemma, is all about
the power of “a collection of arrows (or relationships)” that is nec-
essary to determine the color experience of red or green, the smell
of fish, the sound of a bell, etc. And the essential role of a collection
of relations doesmake sense in light of the fact that there has been
no clinical report of a patient who lost color of red but not others.
When brain damage causes color blindness, the reported cases
are all about the entire loss of color experience (and associated
concepts) in specific visual location (Gallant et al. 2000) but not
a particular color or range of colors.2 Similar things can be said
about visual motion (Zihl et al. 1983). Loss of a single category of
perception, such as faces (e.g. prosopagnosia) and objects, has
been linked to some specific brain lesions (Milner and Goodale
1995; Kanwisher and Yovel 2006) but rarely on a particular face
[except for the loss of “familiar” faces and objects, called “Capgras
Syndrome” (Ramachandran and Blakeslee 1998)]. On the other
hand, loss of a single linguistic concept (i.e. forgetting) is common.
Why can we lose a specific single concept in the linguistic case but
not for the experiences of color or motion, which is bound to the
retinal locations? While anatomical localizations and functional
mapping in neuroscience can give us a hint, they do not address
this theoretical question.

We believe that one possible answer to this riddle is to do with
the Yoneda lemma. We hypothesize that the essence of the color
experiences resides in relations with other colors (which may or
may not be perceived at a given time), that is, without the entire
sets of relations, color experiences just cannot emerge. On the
other hand, we hypothesize that the essence of linguistic concep-
tual experiences [if any (Kemmerer 2015; McClelland and Bayne
2016)] is its relational structure that allows one concept to be
missing from the web of relations. In retrospect, therefore, the
essential role of a collection of relations in consciousness may
be obvious (Palmer 1999). Yet, we are not aware if a collection
of massive similarity ratings has been ever collected or consid-
ered in consciousness research. Replacing the characterization of
conscious experiences with a collection of comparative descrip-
tions with other experiences can have a mathematically solid
foundation: the Yoneda lemma in category theory.

Combining the perspective of the Yoneda lemma with quanti-
tative theories of consciousness, such as IIT (Oizumi et al. 2014;
Tononi et al. 2016), we should be able to establish a new research
program into animal consciousness (Tsuchiya 2017). Pioneering
works in monkeys have introduced highly creative behavioral
experimental tasks, such as binocular rivalry (Leopold et al. 2003)
and no-report paradigms (Wilke et al. 2009), well beyond sim-
ple button press reports, which poorly characterize consciousness
even in humans [also see Matsuzawa (1985) and Matsuno et al.
(2004)]. These animal researchers have already brought various

2 Note that most people with color deficiency do not report having loss of
a particular red and/or green. In fact, previous studies suggest these color-
deficient people may be experiencing unique color dimensions, as revealed by
the similarity rating experiments (Bosten et al. 2005).
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“arrows” in category Q for nonhuman primates. This type of
research can be extended to other animals, such as dolphins,
birds, octopuses, mice, and even insects such as flies (Boly et al.
2013; Barron and Klein 2016, Leung et al. 2021).

What other new perspectives can category theoretical anal-
yses bring into consciousness research? Normally, researchers
consider properties of the external world, such as the amount of
light, as objective and physical reality. And, we call our perception
“veridical” under the situation, where our subjective experience
matches with these objective properties as in Fig. 7b. On the
other hand, we call our perception “illusory” when our percep-
tion disagrees with the objective properties as in Fig. 7a. This
“disagreement” invites some to call this figure as Checkershadow
“Illusion.”

However, the very usage of the term “illusion” already implies
the world view of the researchers. To some, what is “real” is the
outside world and what we perceive can be “illusory.” This view
is not necessarily endorsed by many consciousness researchers,
especially by those who take phenomenologymore seriously [also,
see an argument fromevolutionary game theory to claim that con-
scious percepts should not be “veridical” in this sense (Prakash
et al. 2020)].

Category theoretical perspective allows researchers to keep
a distance from metaphysical debates and to focus on what is
empirically possible to investigate about conscious experience: its
relationships with other experiences. Such an attitude is ontologi-
cally neutral. This, in turn, can potentially facilitate an interdisci-
plinary investigation of the contextual effects across experimental
psychologists, neurophysiologists, and computational neurosci-
entists, philosophers, mathematicians under the same hood. To
accelerate collaborations with category theory and some mathe-
matical theories of consciousness, such as IIT, it will be necessary
to develop further notions in stochastic categories (Manin and
Marcolli 2020), information structures (Baudot and Bennequin
2015; Baudot et al. 2019), enriched categories (Tsuchiya et al. 2021),
and category algebra (Saigo 2021).

Some readers may think that the Yoneda lemma application
in Fig. 7 is an overkill as A and B can be directly compared in
that example. Of course, this is a simple example to make a
point. However, various controversies surrounding consciousness
research are rooted in a question of whether conscious experi-
ences are equivalent between two conditions, under which direct
comparisons are difficult. For example, with or without paying
attention, are conscious experiences essentially the same (Block
2007; Cohen et al. 2016; Haun et al. 2017)? Are the foveal vision and
peripheral vision equivalent? What is, if any, the effect of expec-
tation on conscious experience? In these situations, objects are
difficult to compare in two conditions directly.

The indirect approach of the Yoneda lemma is especially effec-
tive in these situations. What is particularly powerful is that it
makes an explicit prediction about our phenomenology. For exam-
ple, if similarity relationships between object A and others are the
same as object B and others, then A and B should be experienced
as equivalent. And the prediction is possible to test empirically
through experimentation. Category theory, indeed, is not just
a conceptual framework to summarize what we already know.
Its power originates from its predictions as we demonstrated in
a preliminary way in Fig. 7. Researchers can make meaning-
ful predictions about various outcomes in other situations where
contextual effects play a key role, for example. Contextual mod-
ulatory effects are one of the essential features of conscious
experiences in any modalities; thus, its applicability is likely to
be vast.

Conclusion
In this paper, we intentionally limited most of our examples into
cases where up to one arrow can exist from one object to the other
(preorder category). However, it is easy to extend our category Q
to have multiple arrows between objects, such as “nearly indis-
tinguishable in terms of X,” where X can be color, shape, size,
location, etc. The richer the arrows, the better the structure of
the category can be understood. In addition to what we intro-
duced in this paper, there are many more tools in category theory,
which are likely to be illuminating in consciousness research.
Some of these conceptual tools will clarify complex theoretical
concepts about consciousness, which have been discussed by
philosophers and psychologists for long. Such conceptual clarifi-
cationwill inspire further theoretical and empirical research ideas
to come in the near future.
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