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Optimizing and evaluating 
PCR‑based pooled screening 
during COVID‑19 pandemics
Jiali Yu1, Yiduo Huang2 & Zuo‑Jun Shen3,4*

Population screening played a substantial role in safely reopening the economy and avoiding new 
outbreaks of COVID‑19. PCR‑based pooled screening makes it possible to test the population with 
limited resources by pooling multiple individual samples. Our study compared different population‑
wide screening methods as transmission‑mitigating interventions, including pooled PCR, individual 
PCR, and antigen screening. Incorporating testing‑isolation process and individual‑level viral load 
trajectories into an epidemic model, we further studied the impacts of testing‑isolation on test 
sensitivities. Results show that the testing‑isolation process could maintain a stable test sensitivity 
during the outbreak by removing most infected individuals, especially during the epidemic decline. 
Moreover, we compared the efficiency, accuracy, and cost of different screening methods during 
the pandemic. Our results show that PCR‑based pooled screening is cost‑effective in reversing the 
pandemic at low prevalence. When the prevalence is high, PCR‑based pooled screening may not stop 
the outbreak. In contrast, antigen screening with sufficient frequency could reverse the epidemic, 
despite the high cost and the large numbers of false positives in the screening process.

COVID-19 outbreaks have caused enormous economic losses and have posed health risks, particularly among 
disadvantaged populations. Testing plays a critical role in containing these outbreaks and lifting containment 
measures. Tests for COVID-19 are typically divided into two types according to their goals and focus on diag-
nostic tests and screening tests. Diagnostic tests which prioritize symptomatic individuals are responsible for 
supporting individual medical treatments. These tests require high testing sensitivity, and their results must be 
interpreted along with the exposure history and symptoms of patients. In contrast, the goal of screening is to 
identify and help isolate pre-symptomatic and asymptomatic patients who may unwittingly transmit the  virus1. 
A growing number of countries, including China, Slovakia, Iceland, and the UK, have conducted population 
screening to mitigate COVID-19 spread using PCR-based pooled or antigen  tests1. However, questions have 
arisen, specifically, given different screening strategies and technologies, (1) how we can evaluate their cost-
effectiveness, and (2) what strategies we should adopt to stop the spread of COVID-19.

After the pandemic began, PCR tests, which directly detect the genetic material of the severe acute respira-
tory syndrome-coronavirus-2 (SARS-CoV-2), were rapidly developed following the publication of the reference 
 genome1.  However , the PCR test is a time-consuming process that requires sophisticated laboratory equipment 
and highly trained technicians. Therefore, PCR-based pooled testing (also called Dorfman pooling), which tests 
samples drawn from multiple individuals as a pooled sample, has been proposed to test more people with existing 
equipment and  technicians2,3. If a pool tests negative, every sample in the pool is considered negative. Otherwise, 
all samples need to be re-tested individually because at least one individual in this pool is infected. The practice 
of pooled screening has shown that Dorfman pooling can significantly increase testing efficiency despite the loss 
of accuracy in the early stage of transmission. For example, China has adopted Dorfman pooling as a regular 
tool to screen populations with no symptoms until community transmission ends. Shenzhen, a city of more 
than 17 million people, conducted two rounds of city-wide population screening, five rounds of screening in 
Yantian District, and four rounds of screening in Bao’an District by PCR-based Dorfman pooling between May 
and June 2021 to end the resurgence of COVID-19. The fourth round of screening in Bao’an involved 815 sample 
collection sites and 5228 medical personnel. A total of 5,195,328 people were tested, with no confirmed cases 
within 44 h from June 28 to 30, 2021. By the end of June 2021, the daily PCR testing capacity of Shenzhen had 
reached 550,000 single tubes. By pooling ten samples in one assay, Shenzhen can test 4 million people per  day4,5.
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Compared to PCR tests, antigen tests with lower sensitivity take longer to develop but provide point-of-care 
test results and can be quickly scaled to large quantities. For example, Slovakia conducted two rounds of popu-
lation screening using rapid antigen tests in late 2020. Combined with strict social distancing orders, infection 
prevalence declined by about 80%6.

Although antigen tests offer an alternative way to increase testing capacity, we focus on studying the PCR-
based pooled screening in a real-world context, as PCR tests can be quickly developed and scaled up through 
existing infrastructure in the early stage of an epidemic outbreak. Furthermore, establishing the capability of 
PCR-based pooled screening expedites responses to the current COVID-19 pandemic and will play a central 
role in preparation for future pandemics.

A recent review of scaling testing highlighted the role of population screening in combating the COVID-19 
 pandemic1. Compared to the Dorfman pooling, more sophisticated testing algorithms that may be more efficient 
have been proposed in the literature, including hypercube pooling  testing7, non-random pool  allocations8, multi-
stage hierarchical pool  testing9, and combinatorial non-hierarchical pool  testing10,11. However, such sophisticated 
testing algorithms can be difficult to implement, especially in population screening. Therefore, the Dorfman 
pooling and antigen tests remain the most widely used methods in population screening because of their sim-
plicity and effectiveness. Although the literature on Dorfman pooling and antigen testing has grown rapidly, the 
cost-effectiveness of different testing technologies and strategies under fast-changing epidemic dynamics remains 
unclear. Within the framework of simple Dorfman pooling, most recent studies have focused on the optimal 
design of pool size, modifications of the pooling workflows, and corresponding laboratory  validation7,8,10,12–16. 
The efficiency,  accuracy7,12,14, and cost-effectiveness17 of pooled testing were evaluated under a set of static 
points of prevalence. These studies often assumed a fixed value for test sensitivity in their models, but experi-
mental studies showed that pool size and prevalence had significant impacts on test sensitivity in many pooled 
 algorithms7,8,14,18–28. Braul et al. 29 and Cleary et al.10 bridged this gap by considering diluted sensitivities and viral 
load kinetics of SARS-CoV-2. Cleary et al. studied the design and dilution effects of pooled testing from the new 
perspective of population-level viral load distribution during the  epidemic9. This new perspective is valuable in 
enlightening the investigation of many important issues during the pandemic, for example, the estimation of 
epidemic  dynamics10,30 and the evaluation of large-scale screening. In addition, statistical models were developed 
to estimate the prevalence and individual-level risk of infection based on pooled testing  outcomes10,31–38. Digital 
technologies were proposed to enhance the effectiveness of population  screening39–47. Studies also revealed that 
repeated PCR testing, antigen testing, and household-pooled testing could effectively suppress  outbreaks6,8,48,49.

As implementing PCR-based pooled screening as a large-scale intervention has not been comprehensively 
evaluated, we focused on comparing PCR-based pooled screening with different population screening methods 
as the intervention tool under a dynamic transmission model. Incorporating the testing-isolation process and 
individual-level viral load trajectories into an epidemic model, we studied the interaction between screening 
and population-level viral load distribution. Our results show that the testing-isolation process could maintain 
a stable test sensitivity during the outbreak by removing most infected individuals. Moreover, we compared 
PCR-based pooled screening with individual PCR and antigen screening from the perspectives of contain-
ment effect, accuracy, and cost-effectiveness. Due to the systematic error of hierarchical operation and dilution 
effects, the sensitivity of pooled PCR testing cannot surpass individual PCR testing. Despite the sensitivity loss 
due to hierarchical operation and dilution effects, pooled PCR could facilitate the high-frequency population 
screening at low prevalence, reducing the total number of infections. Moreover, pooled screening could reduce 
false-positive results by testing positive samples twice, avoiding unnecessary confirmatory tests or isolation of 
health people. Finally, our results indicate that PCR-based pooled screening is cost-effective for containing the 
outbreak at low prevalence.

Methods
We defined the population-level viral load distribution as all unidentified infected individuals, as isolated patients 
have been removed from the transmission chain. First, we studied the interaction of screening and population-
level viral load distribution by incorporating the testing-isolation protocol and individual-level viral load tra-
jectories into an epidemic transmission model. Then, we evaluated and compared PCR-based pooled screening 
with other different population screening methods during the pandemic.

Investigating the interaction between viral load distributions and screening sensitivities. On 
the one hand, population-level viral load distribution affects the sensitivities and the design of pooled screening. 
On the other hand, the testing-isolation process has a great impact on the viral load distribution. We simulated 
epidemic outbreaks incorporating individual-level viral loads and testing-isolation process to capture this com-
plicated interaction. First of all, we adopted the viral load kinetic model proposed by Cleary et al. to generate 
the individual-level viral load trajectories throughout the  pandemic10. Parameters for the viral load trajectories 
were estimated based on pharyngeal swab samples (see Table S1 in “Supplementary Materials” for the overview 
of viral kinetic parameters)50.

Then, we compared the test sensitivities by simulating the pandemic with/without the testing-isolation pro-
cess. On a specific day in one simulation, we can estimate the sensitivities by simulating random pooled tests. We 
randomly assigned participants into groups, and the pooled viral load of one group was the average viral load of 
samples in that group. To evaluate the policies and find the optimal pool size, we considered three sensitivities: 
the sensitivity of PCR tests using the individual sample, Sei(t) :=

positive infected individual samples
infected individual samples  , the sensitivity of 

PCR tests using pooled samples, Sep(t, n) :=
positive infected pooled samples

infected pooled samples  , and the overall sensitivity of two-stage 
pooled testing, Sed(t, n) :=

positive infected test participants
infected test participants  , where t  (days) is the time since the beginning of the pan-

demic, n is the pool size. To reduce the stochastic error of these sensitivity estimations, we ran the simulation 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21460  | https://doi.org/10.1038/s41598-021-01065-0

www.nature.com/scientificreports/

many times and used the locally weighted scatterplot smoothing (LOWESS) regression to fit Sei(t) , Sep(t, n) , and 
Sed(t, n) numerically.

Optimal pool size design. Screening during a pandemic aims to identify and remove infected patients 
from the transmission chain as soon as possible. We measured the overall efficiency and effectiveness of screen-
ing by the expected number of tests required to identify an infected patient, defined as the cost-performance 
ratio (CPR). Note that our setting of CPR optimization only considers the test effectiveness of a given test capac-
ity, while the administrative cost will be discussed later. According to its definition, CPR(t, n) is given by:

where Sp represents the test specificity (true negative rate) for the PCR test, p is the prevalence. Sed(t, n) , Sep(t, n) , 
and Sei(t) represent the sensitivity of overall Dorfman pooling, the first-stage pooling, and individual PCR test-
ing, respectively.

The optimal pool size, n∗(t) , at time t  , was calculated by n∗(t) = argmax
n∈N

CPR(t, n) , where N  is the candidate 

set for the pool size. We use a fixed set of candidate pool sizes N := (1, 4–10, 15, 20, 25, 30) to ensure that the 
pool size is stable across a range of prevalence rates, avoiding a frequent change of pool sizes. This range of 
candidate pool sizes is based on an experimental study that evaluated the effect of pooling samples (a range of 
pool sizes, from 4 to 30 samples per pool) 3.

Epidemic model. We incorporated individual-level viral load trajectories and testing-isolation into a SARS-
CoV-2 transmission model where we track discrete individuals who are Susceptible (S), Infected (I), Isolated 
(Q), Self-Isolated (SQ), and Recovered (R) every day. The epidemic dynamics and the testing-isolation process 
is shown in Fig. 1.

At the beginning of the simulation, 50 infected individuals (i.e., I0 = 50 ) who remained in the incubation 
period were mixed in a total population of N = 100,000. The remaining populations are susceptible ( S = N − I0 ). 
At each time step, susceptible individuals were infected through contact with unidentified infected individuals 
(S → I). Newly infected individuals were randomly sampled from susceptible populations and assigned the cur-
rent time as their infection time. Later, the daily viral load was generated for each infected individual according 
to their infection time and current time based on the viral kinetic model proposed by Clearly et al.10. Infected 
individuals would isolate themselves after developing symptoms (I → SQ). Pre-symptomatic or asymptomatic 
individuals could be isolated after receiving positive test results (I → Q). We assumed that 30% of newly infected 
individuals would develop symptoms after the incubation period and go to hospitals. Infected patients would 
recover according to their viral kinetic parameters (I, Q, SQ → R). We assume the basic reproductive number to 

(1)CPR(t, n) =

{

1
Sei(t)∗p

, n = 1,

1
Sed(t,n)∗p

{

1
n + Sep(t, n)− [Sep(t, n)+ Sp − 1]

(

1− p
)n}

, n > 1.

Figure 1.  The epidemic model with testing-isolation protocols. Susceptible individuals are infected through 
contact with infected individuals. They will go through an incubation period and either remain asymptomatic 
or develop symptoms. Symptomatic patients will do self-isolation after developing symptoms. All participants, 
except isolated and self-isolated individuals, will take part in the screening. If screening results are positive, 
people need another confirmatory test to exclude false-positive results. If confirmatory tests have positive 
results, this individual will be isolated. If screening gives a negative result, participants will remain in their 
previous compartments. All infected individuals will finally recover.
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be 2.5, which measures the spread of an infectious disease (see Table S2 in “Supplementary Materials” for more 
description of parameters used in the epidemic transmission models).

Testing‑isolation protocols. In our simulation, screening schemes started if the infection rate reached the 
initial prevalence of screening. Then, multiple rounds of screening were implemented to tests all participants. 
When one round of screening ended, a new round of screening would be initiated the next day until no uni-
dentified infected individuals were mixed in the population or reached the longest simulation time (365 days).

Four screening schemes were evaluated over epidemic dynamics, including (1) pooled PCR screening, (2) 
individual PCR screening, (3) antigen screening (every 3 days), and (4) antigen screening (every 14 days). The 
best-in-class PCR assays demonstrate the limit of detection (LOD) of ~ 2 log10 viral RNA copies/ml, while LODs 
of currently approved assays range 2–3 log10 RNA copies/ml51. In population screening, LOD of PCR tests was 
set as 3 log10 viral RNA copies/ml, while antigen tests were less sensitive with a LOD of 5 log10 viral RNA copies/
ml48. Although the specificities of RT-PCR  tests52 and rapid antigen tests are close to 100%, false-positive results 
are impossible to avoid due to contamination during testing operations. Moreover, studies show that specifici-
ties of rapid antigen tests range from 98.4 to 100%, taking RT-PCR test results as  reference52–56. We assumed 
individual PCR tests had a specificity of 99% and antigen tests had a specificity of 98% in this research. If test 
specificity in population screening can be improved to 100%, there will be no false-positive results.

Moreover, the delays in reporting lead to untimely isolation of infected patients, and they may transmit 
the disease before receiving the test results. The virus spread during turnaround time is also considered in 
the epidemic model. Individual PCR tests had a 1-day turnaround time, while pooling PCR tests had a 2-day 
turnaround time because it would take extra time to pool samples, conduct the second stage individual testing 
for positive pools, and report results. Antigen tests are point-of-care tests that offer results within 15–30 min, 
so they have no turnaround time.

For pooled and individual PCR screening, the main bottleneck was the limited laboratory testing equipment, 
which was difficult to obtain in a short time. We assumed that the PCR testing facilities could individually test 
the entire population in 60 days, so the basic daily test capacity was N60 tubes. By pooling, we could screen more 
individuals using PCR tests. We also assumed laboratories would adapt the optimal pool size and sampling plans 
weekly to ensure full use of PCR testing capacity. In our simulation, the prevalence was known fully. In practice, 
pooled testing can accurately estimate prevalence across a broad range, from 0.02 to 20%10.

Samples in the pooled PCR test went through two stages. In the first stage, samples were collected and mixed 
into pools. One PCR test was conducted on each pool, and samples in positive pools advanced to the next stage, 
while samples in negative pools were labeled as negative. In the second stage, we performed individual PCR 
tests on positive samples from the first stage. A sample was labeled as positive only if the results in both stages 
were positive.

Antigen tests could be quickly scaled in large quantities. We assumed a high testing capacity of  N3  antigen 
kits per day (i.e., antigen testing can test all populations every 3 days) and a low testing capacity of  N14 antigen 
kits per day (i.e., antigen testing can test all populations every 14 days).

Both PCR and antigen tests generate false-negative and false-positive results, which were critical in population 
screening. In our simulation, we kept tracking viral load trajectories for each infected individual. A false-negative 
result would be generated if the viral load in pooled or individual samples was less than LOD. With a fixed speci-
ficity, false-positive results were randomly generated from pooled samples and individual samples with no virus.

Not everyone would like to be tested or isolated after receiving a positive result. Therefore, we assumed that 
90% of the population were willing to participate in screening and follow the testing-isolation protocol. Partici-
pants without symptoms went back to their normal life after receiving negative results, despite a possibility of 
false-negative results. All participants who were not isolated would participate in the next round of screening.

In population screening, an overwhelming number of false-positive results might cause unnecessary isola-
tion of healthy people and reduce their compliance. To avoid this, we assumed that participants who got positive 
results would be confirmed by another testing method (usually a different testing technology) to exclude false-
positive results. Only confirmed cases would be isolated until recovery. We record the number of false-positive 
results to represent the number of confirmatory tests.

Cost analysis. Using simulation results, we evaluated the cost of all screening schemes under COVID-19 
pandemics. The cost of PCR tests can be categorized into two parts: (1) reagents/consumables, like RNA extrac-
tion kits, and (2) labor costs, like pooling and reporting labor.

The cost of employing technicians to do RT-PCR tests was $36.50 per  h17. Antigen screening only costs $10 
per testing  kits30. All cost data come from the US data. The categorized costs are allocated per test or per sample, 
according to Abdalhamid et al.17, as shown in Table S3. Then we can evaluate the cost of four screening schemes 
based on simulation results and categorized costs. We assume the unit costs of materials and labor remain con-
stant throughout the simulation.

Results
Impacts of viral load distribution on test sensitivity without testing‑isolation. For each infected 
individual, the probability of detecting an infection (i.e., sensitivity) varies as their individual-level viral load 
changes during the infection. Sample type also affects the test sensitivity, according to a recent review for system-
atic meta-analysis of the sensitivities of PCR tests using different sample  types57. We generated individual-level 
viral load trajectories based on Cleary et al.10, which derived viral load kinetics using pharyngeal  swabs50. This 
type of sample is the most used in population screening. We did not distinguish the viral load trajectories of 
symptomatic and asymptomatic individuals for the following reasons: first, the newest study revealed that viral 
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loads are similar between asymptomatic and symptomatic individuals but different in viral clearance  time58. 
Then, our study focuses on asymptomatic and pre-symptomatic individuals who have similar viral load trajec-
tories before developing symptoms. The symptomatic individuals do not participate in population screening 
because they need clinical diagnostic tests.

For population screening, the sensitivities are influenced by the population-level viral load distributions, 
which change as the epidemic  evolves10,30. As is shown in Fig. 2A, the population-level viral load distribution 
evolves throughout the epidemic outbreak. We refer interested readers to see Hay et al. for more details about 
the cross-sectional population-level viral load  distribution30.

Sensitivities of pooled testing are more complicated than individual testing. Due to the dilution effects, 
sensitivities of pooled testing vary with pool sizes and population-level viral load distribution. There are three 
sensitivities of interest: the sensitivity of PCR tests using the individual sample, Sei(t) , the sensitivity of PCR tests 
using pooled samples, Sep(t, n) , and the overall sensitivity of two-stage pooled testing, Sed(t, n).

First of all, we simulated an epidemic outbreak without testing-isolation policy. The outbreak peaked at day 
100 (Fig. 2A). The population-level viral load distribution was simulated by generating the viral load of each 
infection during the outbreak. Then we regressed the sensitivities of pooled PCR tests, individual PCR tests, 
and antigen tests with the time since the beginning of the pandemic and the pool size. To reduce the stochastic 
error of these sensitivity estimations, we ran the simulation 8 times and used LOWESS regression to fit Sei(t) , 
Sep(t, n) , and Sed(t, n) numerically, as is shown in Fig. 2B,C.

In practice, the large-scale population screening could change the population-level viral load distribution 
by isolating identified infected individuals. We will discuss the impact of testing-isolation in the next section.

As shown in Fig. 2A, the population-level viral load distributions have a big difference in the epidemic growth 
stage (Day 0–100) and decline stage (Day 100–200). During the epidemic growth, a fair percentage of infected 
individuals are in the early stage of infection, and their viral loads are close to peak viral load, while most people 
gradually recover with waning viral loads during the epidemic decline. The median, first, and third quartiles of 
population-level viral load distribution decreases during the pandemic as more infected individuals enter the 
recovery phase of the disease. Most people will have undetectable viral loads after 200 days.

Overall, the sensitivities of Dorfman pooling PCR, individual PCR, and antigen tests have downward trends 
during the outbreak (Fig. 2C) due to the falling population-level viral load distribution (Fig. 2A). However, the 
sensitivities of pooled samples (the first stage of Dorfman pooling) fluctuate drastically, showing the enhancement 
effect at a high prevalence and the dilution effect at a low prevalence (Fig. 2B). When the prevalence is very high, 
almost all pools return positive results, and false negatives with low viral load can be ’rescued’ by pooling with 
high viral load samples, i.e., the enhancement effect. On the other hand, when the prevalence is low, positive 
samples are diluted with more negative samples, and the average viral load decreases, leading to possible loss of 
sensitivity, i.e., the dilution effect.

Figure 2.  Viral load distribution of infected individuals and regressed sensitivities throughout the outbreak 
without testing-isolation. (A) Viral load distribution of infected individuals without testing-isolation policy. 
At each point, black dots are viral loads of infected individuals in a random sample of 3000 individuals. The 
grey dashed lines in the violin graph (from bottom to top) are the first, second, and third quartiles of viral load 
distribution of infected individuals. The limit of detection of PCR (purple dotted line) and antigen tests (pink 
dash-dotted line) are 3 and 5 log10 viral RNA copies/ml, respectively. (B) Sensitivity of PCR pooled samples, 
individual PCR tests, and antigen tests. ‘PCR n = 1’ is the individual PCR test, while ‘PCR n = k’ represents a pool 
size of k. ’Antigen’ is the sensitivity for individual antigen tests. (C) The overall sensitivity of Dorfman pooling. 
Sensitivities of individual PCR tests (solid purple line) and antigen tests (solid pink line) are also included. The 
yellow area represents the rising phase of the epidemic (Day 0–100), and the green area represents the falling 
phase (Day 100–200).
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Due to the systematic error of hierarchical operation, the overall sensitivities of two-stage Dorfman pool-
ing cannot surpass individual PCR testing (Fig. 2C). Moreover, the hierarchical procedures also take longer to 
report results, which weakens the effect of testing-isolation policies. Thus, the combinatorial pool design, where 
samples are split into multiple non-hierarchical pools, was proposed to facilitate reporting results and efficiency 
(see Clearly et al. for more  details10). However, as combinatorial pooling is complicated in splitting samples into 
several pools, Dorfman pooling has the advantage of simplicity in population screening.

As expected, the sensitivity of individual PCR tests is higher throughout the pandemic than pooled PCR 
and antigen tests. Although the pooled PCR tests lost some sensitivity due to the systematic error of hierarchi-
cal operation and dilution effects, they still have higher sensitivity than antigen tests. In our model, the mean 
sensitivity of individual PCR testing is 67% during epidemic growth, 46% during the epidemic decline, and 56% 
across the whole epidemic. A recent study estimated the overall sensitivity of home self-swabbing RT-PCR based 
on a single swab as 79% (77%, 81%)59. The difference from the literature is due to our higher LOD for PCR tests 
in population screening, so the test sensitivity is lower. Taking the maximum pool size 30 as an example, the 
overall sensitivity of Dorfman pooling is 59% during epidemic growth, 36% during the epidemic decline, and 
48% across the whole epidemic.

Moreover, the mean sensitivity of antigen tests is 47% during epidemic growth, 25% during the epidemic 
decline, and 40% across the whole epidemic. Comparing with PCR test results, studies found that the antigen 
test sensitivity was 41.2% for asymptomatic participants and 80.0% symptomatic  participants60. As the positive 
results in PCR tests do not represent all “true positive results”, studies estimated the sensitivity of antigen tests 
as 48.6% under the assumption of a 10% false-negative rate of PCR  tests53.

Impacts of testing‑isolation on viral load distribution and sensitivities. In population screening, 
the testing-isolation process will affect the population-level viral load distribution, influencing the test sensitivi-
ties. Therefore, we incorporated the testing-isolation policy into the epidemic transmission model and weekly 
re-calculated all sensitivity parameters and the optimal pool size by simulating random pooled testing of all pool 
sizes. Figure 3 shows the viral load distribution of unidentified infected individuals and test sensitivity under dif-
ferent screening schemes. Population screening starts when prevalence reaches 0.1% and ends when all infected 
individuals are isolated or when the running time reaches the maximum. The horizontal axes vary due to the 
different end times of population screening. Moreover, the optimal pool size of pooled PCR screening maintains 
30 throughout the outbreak (Fig. 5A) because of the low prevalence.

When the testing-isolation process could remove most infected individuals from the transmission chain, 
test sensitivity does not drop substantially during the epidemic decline (Fig. 3A,C). As shown in Fig. 2C, with-
out the testing-isolation process, overall sensitivities of pooled PCR, individual PCR, and antigen tests fall off 
during epidemic decline. In contrast, the sensitivity under pooled PCR screening does not decrease during the 
epidemic decline because of the high population-level viral load distribution throughout the outbreak (Fig. 3A). 
As is shown in Fig. 3A, the first, second, and third quartiles of viral load distribution of unidentified infected 

Figure 3.  Viral load distribution of infected individuals and test sensitivity under different screening schemes 
with testing-isolation (initial prevalence of screening 0.1%). The grey dashed lines in the violin figure (from 
the bottom to the top) are the first, second, and third quartiles of viral load distribution of unidentified 
infected individuals in 3000 randomly sampled individuals. The black dots are viral loads of sampled infected 
individuals. The red dots represent the real-time sensitivity of screening which changes with the population-
level viral load distribution. Viral load distributions of unidentified infected individuals and test sensitivities 
are under (A) pooled PCR screening, (B) individual PCR screening, (C) antigen screening (every 3 days), and 
(D) antigen screening (every 14 days). The limit of detection of PCR (purple dotted line) and antigen tests 
(pink dash-dotted line) are 3 and 5 log10 viral RNA copies/ml, respectively. The horizontal axes vary due to the 
different end times of outbreaks.
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individuals under pooled PCR screening are higher than the LOD of PCR tests throughout the outbreak. As 
individual PCR screening and antigen screening (every 14 days) cannot remove most infected individuals from 
the transmission chain, the sensitivity drop obviously during epidemic decline (Fig. 3B,D).

Impacts of population screening on epidemic dynamics. We evaluated different population screen-
ing schemes under a dynamic transmission model described in our methods. As shown in Fig. 4A,B, without 
screening, the susceptible population was quickly infected through contact with pre-symptomatic or asympto-
matic individuals. Pre-asymptomatic individuals were isolated after developing symptoms, while asymptomatic 
individuals continued to spread the virus without knowing their infection. The epidemic outbreak would decline 
as a large population gained immunity.

Pooled PCR screening or antigen screening (every 3 days) could reverse the outbreak. As is shown in 
Fig. 4C,E, compared to no screening, population screening using pooled PCR tests or antigen tests (every 3 days) 
could immediately reverse the outbreak, as most unidentified infected individuals were isolated after testing. In 
addition, although the daily number of people taking tests was similar for the pooled PCR screening and antigen 
screening (every 3 days) (Fig. 5B), antigen screening (every 3 days) could reverse and end the epidemic spread 
earlier. It resulted in fewer total infections than pooled PCR screening because the 2-day turnaround time of 
pooled testing delayed the isolation of infected individuals and diminished the effectiveness of pooled screening, 
offsetting some sensitivity advantages of PCR tests.

Antigen screening (every 14 days) could mitigate the outbreak. Although antigen tests are less sensitive than 
PCR tests, antigen screening (every 14 days) could isolate a large number of infected individuals (Fig. 4F) and 
contain the epidemic to a low prevalence (Fig. 4B), winning time for the development of vaccines and treatments.

Individual PCR testing was ill-suited for population screening owing to its limited effects on isolating infected 
individuals (Fig. 4D). As is shown in Fig. 4A,B, individual PCR tests only partially mitigated the total infec-
tion and flattened the curve because of limited testing capability. The epidemic faded as people developed herd 
immunity after recovering from COVID-19. The pattern was similar to that of the no-screening scenario.

Figure 4.  Epidemic dynamics under different screening schemes with testing-isolation (initial prevalence of 
screening 0.1%). (A) Cumulative infection rates 

(

1− S
N

)

 and (B) infection rates 
(

I+Q+SQ
N

)

 of different screening 
schemes over time. For each screening scheme, trajectories of infected individuals ( I ,Q, SQ ) under (C) PCR 
pooled screening, (D) PCR individual screening, (E) antigen screening (every 3 days), and (F) antigen screening 
(every 14 days) were plotted separately. Note the variation in the vertical axes.
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Accuracy of different screening schemes during the pandemic. The accuracy of population screen-
ing was evaluated from two aspects: the number of testing errors and the predictive value of test results. The 
number of testing errors has a direct impact on epidemic dynamics and screening operations. The predictive 
value of test results helps to interpret the test results.

False-negative results are more consequential, as infected individuals with false-negative results spread the 
virus unwittingly. The impacts of false-negative results could be rescued by multiple rounds of screening, i.e., 
the repeated screening. As is shown in Fig. 5C, pooled PCR screening and antigen screening (every 3 days) had 
fewer false-negative results than individual PCR screening and antigen screening (every 14 days) in the long run. 
At the beginning of the screening, pooled PCR and antigen screening generated false-negative results at higher 
rates than individual screening because of low sensitivity and high testing throughput. However, as prevalence 
decreased, thanks to pooled PCR screening or antigen screening (every 3 days), the cumulative number of 
false-negative results remained at a low level. By contrast, the individual PCR screening and antigen screening 
(every 14 days) accumulated a large number of false-negative results (Fig. 5C) as cumulative infections increased 
(Fig. 4A).

In population screening, false-positive results are also problematic, as people with false-positive results need 
another confirmatory test or isolation. Moreover, false-positive results may discourage people’s compliance 
with the testing-isolation policy. Pooled PCR screening had the fewest false-positive results, followed by indi-
vidual PCR screening, antigen screening (every 14 days), and antigen screening (every 3 days). As the specific-
ity assumed a fixed value, the number of false-positive results was proportional to the number of total tested 
individuals and increased almost linearly over time. Although pooled PCR screening tested the largest number 
of people, it generated the fewest false-positive results (Fig. 5D) by testing each positive sample twice in the 
Dorfman pooling operations. The hierarchical tests ruled out some false-positive results in Dorfman pooling.

Figure 5.  Optimal pool size and test results under different screening schemes with testing-isolation (initial 
prevalence of screening 0.1%). (A) Optimal pool sizes for pooled PCR screening stayed at the maximum value 
because of low prevalence. The pool size of individual PCR and antigen are all one sample. (B) The total number 
of screening rounds. Pooled PCR screening has a similar testing frequency with antigen screening (every 
3 days), while antigen screening (every 3 days) ends the virus spread earlier than pooled PCR screening. (C) 
The total number of false-negative results. Pooled PCR screening and antigen screening (every 3 days) have few 
false-negative results, while antigen screening (every 14 days) has the largest number of false-negative results. 
(D) The total number of false-positive results. Pooled PCR screening has the fewest false-positive results, while 
antigen screening has a large number of false-positive results. (E) Negative predictive values. The negative 
predictive values of pooled PCR screening and antigen screening (every 3 days) are higher than those of 
individual PCR screening and antigen screening (every 14 days) at most points during the pandemic, except the 
initial periods. (F) Positive predictive values. Pooled PCR screening has the highest positive predictive values at 
most points during the pandemic. Note the variation in the vertical axes.
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Positive predictive value (PPV, the probability that subjects with a positive result truly have the disease) and 
negative predictive value (NPV, the probability that subjects with a negative result truly do not have the disease) 
help interpret testing results. PPVs and NPVs incorporate the information on prevalence, pool size, test sensitiv-
ity, specificity, and testing procedures. Thus, high PPVs and NPVs correspond to reliable positive and negative 
results, respectively.

According to our simulation, pooled PCR and antigen testing (every 3 days) could increase their NPVs by 
suppressing the prevalence, as NPVs increase as prevalence decreases. As is shown in Fig. 5E, in our simula-
tion, pooled PCR and antigen screening (every 3 days) had high NPVs during the pandemic, despite their low 
sensitivities.

In our simulation, PCR screening had high PPVs during the pandemic, especially the pooled PCR screening, 
as shown in Fig. 5F. Pooled PCR testing increases PPVs by repeated testing on positive samples in two-stage 
operations. Thus, pooled PCR tests had a much higher PPV than antigen tests and individual PCR tests under 
very low prevalence. Although the specificity of antigen (98%) tests was slightly lower than that of PCR tests 
(99%), antigen screening had much lower PPVs than PCR screening, especially at low prevalence.

Cost‑effectiveness of different screening schemes during the pandemic. From the cost-effective-
ness aspect, pooled PCR screening had the lowest cost to reduce one infection, while individual PCR screening 
was most costly but had the highest total infections, as shown in Fig. 6A. Moreover, pooling and reporting labor 
costs took more than half of the total cost for pooled PCR screening.

Although the antigen test kit can be used for self-testing and is nearly half the price of individual PCR tests, 
it requires a high testing frequency (e.g., testing every 3 days) to suppress the pandemic, leading to a high total 
cost and a large number of false-positive results (Fig. 6B). In our simulation, if the cost of antigen test kits fell 
by 60%, it would be cheaper to use antigen screening (every 3 days) than pooled PCR screening to identify one 
infected individual. In addition, as shown in Fig. 4B, antigen screening (every 3 days) could stop the pandemic 
in the shortest time, which is critical for economic recovery. Although individual PCR screening has the highest 
sensitivity, it is most costly to identify one infected patient due to the low efficiency.

In practice, pooled screening is a labor-intensive process that poses a significant challenge to both the health-
care system and participants, as healthcare workers need to collect samples from people more than 30 times 
in 100 days, while antigen testing is more convenient for participants and reduces the burden on laboratories. 
However, antigen screening generates more false-positive results, leading to unnecessary isolation or confirma-
tory tests. On the other hand, pooled PCR screening generates the fewest false-positive results because of the 
two-stage operation on positive samples.

Impacts of the initial prevalence of population screening. The initial prevalence for implementing 
population screening is critical for reversing the outbreak, especially for pooled PCR screening. If the initial 
prevalence was lower than 0.1%, the pooled PCR screening could quickly reverse the growth of the outbreak 
(Fig. 4B). Pooled PCR screening entered an accelerating process after the pandemic was under control. As is 

Figure 6.  Comparison of different screening schemes (A) Cost per infection reduced. To end the virus spread, 
pooled PCR screening has the least total cost (no more than $100 per infection reduced), within which labor 
cost accounts for more than half of the total cost. Antigen screening (every 3 days) costs more than $150 
per infection reduced. The cost of antigen screening comes from antigen test kits. Although individual PCR 
screening has a high sensitivity, it is most costly to identify one infected patient due to the limited capacity. (B) 
Comparison of different screening schemes. Four testing schemes were compared from seven aspects, including 
cost per infection reduced, total cost, total infections, the total number of false-negative results, total number 
of false-positive results, total rounds of screening, and the duration of screening. All data in (B) are normalized 
into the range of 0 and 1.
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shown in Fig. 5B, the first round of pooled screening took 8 days, with a 2-day delay in reporting. After several 
rounds of screening, pooled PCR screening could test all the participants within 3–4 days, which was similar to 
the antigen screening (every 3 days).

Pooled PCR screening needs to be implemented at a low initial prevalence to reverse the pandemic, as the 
effects of pooling PCR screening become weaker as prevalence increases. When the initial prevalence is 0.1%, 
pooled PCR screening can reverse the outbreak, similarly to the antigen screening (every 3 days). However, if 
the initial prevalence reaches 0.5%, pooled PCR screening could only mitigate the outbreak rather than reversing 
the growth of an outbreak (Fig. 7A,B). During the early stage of population screening, pooled PCR screening 
(Fig. 7C) isolated a higher ratio of infected individuals (i.e., testing-isolation ratio) than antigen screening every 
14 days (Fig. 7E). As prevalence increases, the optimal pool size decreases (Fig. 7D), and the testing-isolation 
ratio of pooled PCR screening gets worse antigen screening every 14 days (Fig. 7C,E).

Increasing antigen screening frequency could reverse the outbreak when the initial prevalence is high (e.g., 
0.5%). For example, antigen screening every 3 days could isolate more than 60% of infected individuals (Fig. 7F). 
We assume that 30% of infected individuals will go to hospitals after developing symptoms. Most infected indi-
viduals will be isolated under antigen screening (every 3 days).

We further compared different testing strategies and technologies by simulating population screening starting 
at different prevalence rates, e.g., 0.1%, 0.5%, and 1%. When prevalence was low, pooled PCR screening was the 
most cost-effective scheme (Fig. 8A); antigen screening (every 3 days) had the fewest total infections (Fig. 8B) 
and ended the outbreak at the earliest (Fig. 8C); while individual PCR tests were not suitable for population 
screening (Fig. 8A,B).

However, the effectiveness of pooled PCR screening diminished as the initial prevalence of screening 
increased, as shown in Fig. 8B,C, because the optimal pool size was sensitive to the prevalence. Thus, when 

Figure 7.  Epidemic dynamics, viral load distributions, and testing-isolation ratios under difference screening 
schemes with testing-isolation (initial prevalence of screening 0.5%). (A) Cumulative infection rates 
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)

 
and (B) infection rates 

(

I+Q+SQ
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)

 of different screening schemes over time. Viral load distributions and the 
testing-isolation ratios are under (C) PCR pooled screening, (E) antigen screening (every 14 days), and (F) 
antigen screening (every 3 days). The grey dashed lines in the violin figure (from the bottom to the top) are the 
first, second, and third quartiles of viral load distribution of infected individuals in 3000 randomly sampled 
individuals. The black dots are viral loads of sampled infected individuals. The orange dots represent the 
testing-isolation ratio, the proportion of isolated individuals due to tests to the cumulative infected individuals. 
(D) The optimal pool sizes (blue line) and the corresponding sensitivities of the Dorfman pool (red dots). The 
limit of detection of PCR (purple dotted line) and antigen tests (pink dash-dotted line) are 3 and 5 log10 viral 
RNA copies/ml, respectively. Note the variation in the horizontal and vertical axes.
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pooled PCR screening started at a higher prevalence, pooled screening could not reverse the epidemic. Therefore, 
pooled PCR screening should be implemented as early as possible.

A protocol to update optimal pool size. As it may not be feasible to adjust the pool size frequently, 
we propose a simple protocol to determine the optimal pool size and the next update time at different preva-
lence rates, as shown in Fig. 8D. When the prevalence remains lower than 0.1%, the optimal pool size is 30 and 
requires no update. If the prevalence exceeds 0.2%, the optimal pool size remains 30 but needs to be updated 
after 3 weeks. If the prevalence exceeds 0.3%, the optimal pool size decreases to 25 and needs to be changed after 
2 weeks. If the prevalence exceeds 0.4%, the optimal pool size is 20 and needs to be changed after 1 week. Finally, 
as prevalence exceeds 0.5%, optimal pool size should be updated weekly.

Conclusion and discussion
Our results show that the testing-isolation policy changes the population-level viral load distributions, influenc-
ing the test sensitivities. When the testing-isolation process could remove most infected individuals from the 
transmission chain, the population-level viral load distribution throughout the outbreak remains high, and test 
sensitivity does not drop substantially during the epidemic decline.

Our results indicate that high-frequency population screening at low prevalence enabled by pooled PCR and 
antigen tests is a cost-effective method to reduce total infections and potentially end the viral transmission of 
SARS-CoV-2. Although individual PCR tests are useful in clinical diagnosis because of their high accuracy, they 
are ill-suited for population screening owing to their limited capacity.

Although pooled PCR testing sacrifices accuracy for efficiency and has a long turnaround time for report-
ing results, pooled PCR screening remains a cost-effective method to contain the epidemic or even stop the 
virus transmission, especially at the low prevalence. Compared to individual PCR and antigen testing (every 
14 days), pooled testing can test more people with existing equipment and isolate more pre-symptomatic and 

Figure 8.  Comparison of different screening schemes with different initial prevalence. When screening starts 
at prevalence rates of 0.1%, 0.5%, and 1%, (A) pooled PCR screening takes the least cost to reduce one infection, 
followed by antigen screening (every 3 days), antigen screening (every 14 days), and individual PCR screening; 
(B) antigen screening (every 3 days) has the fewest total infections, while individual PCR screening has the 
largest infected population. (C) The end time of the epidemic outbreak. Antigen screening (every 3 days) 
will end the ep idemic earlier than PCR pooled screening. Antigen screening (every 14 days) will not end the 
pandemic within 1 year. Note that our simulation ends after 365 days. Individual           pooled           testing   
ends the epidemic earlier than antigen screening (every 14 days) by developing herd immunity. (D) The protocol 
to update the optimal pool size. When the preval ence i s lower than 0.1%, the optimal pool size is 30 and 
does not need to be changed. As prevalence exceeds 0.2%, the optimal pool size is 30 and needs to be changed 
after 3 weeks. As prev alence exceeds 0.3%, the optimal pool size is 25 and needs to be changed after 2 weeks. 
As prevalence exceeds 0.4%, the optimal pool size is 20 and needs to be changed after 1 week. As prevalence 
exceeds 0.5%, optimal pool size should be updated weekly according to Fig. 7D.
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asymptomatic infected patients to prevent future infections. Moreover, pooled testing generates much fewer 
false-positive results because of the two-stage testing procedure on positive samples. In population screening, 
low sensitivity can be rescued by increasing testing frequency, while false-positive results lead to unnecessary 
confirmatory tests or isolation. Our results were consistent with previous research that repeated testing could 
effectively contain the  epidemic48,49.

For developing countries, building up the pooled PCR warning and screening systems could expedite 
responses to the possible epidemic outbreaks in the future. First of all, PCR testing works for possible virus 
variations and other infectious diseases. Then, the labor cost, which takes more than half of the total pooled PCR 
screening cost, is much cheaper in developing countries. Besides, the epidemic warning systems could detect the 
outbreak at an early stage. The earlier pooled PCR screening is implemented, the earlier the epidemic outbreak 
will end, reducing total infections and costs. As the prevalence increases, pooled tests will use a smaller pool size, 
and the test capacity expansion effect will diminish. Thus, implementing pooled PCR testing at high prevalence 
cannot reverse the direction of the epidemic outbreak, while high-frequency antigen testing could reverse the 
epidemic at a high cost. However, the development of antigen tests is difficult for many developing countries 
because it requires many scientists and lots of funding. In addition, importing antigen test kits is expensive, and 
the supply has great uncertainty. Therefore, we suggest developing countries build up pooled PCR warning and 
screening systems to suppress the outbreaks as early as possible for the above reasons.

Our results indicate that the pooled PCR can be more cost-effective than high-frequency antigen testing. 
However, if manufacturers can significantly reduce the price of antigen testing kits and massively raise produc-
tion to meet the high testing frequency, high-frequency antigen testing would be better for population screening 
than pooled PCR screening. Nevertheless, high-frequency antigen screening still has problems even if the price 
is further reduced. Due to the low specificity, false-positive results are typical when antigen tests are used in 
a population with a low prevalence. Therefore, positive results of antigen tests for participants without symp-
toms should be treated as presumptively positive results until confirmed by another test as soon as  possible51. 
Otherwise, a high percentage of the population will be wrongly isolated, which may cause social panic and low 
compliance of participants. Thus, healthcare providers should offer more information on interpreting test results 
and organize timely follow-up testing to rule out false-positive results during antigen screening.

In addition, workflows of pooled PCR screening can be modified to improve cost-effectiveness further. (1) 
Pooling samples immediately upon collection can save pooling labor and consumables, especially when the 
prevalence is very low. For example, in China, ten samples are collected in one tube as a pool for asymptomatic 
population screening. If the pool tests positive, all individuals will be individually resampled and re-tested. (2) 
It is beneficial to advise participants to self-quarantine to prevent possible onward transmission until receiv-
ing negative test results. This is equivalent to reducing the turnaround time, as a delay in reporting results can 
significantly diminish the effectiveness of  screening48. (3) Household-pooled testing saves resources and labor 
by constructing pools out of individuals that belong to the same household. For countries with limited testing 
capacity, if the pool tests positive, all family members will be isolated because they are close contacts to each 
 other8. (4) Application of highly inter-related digital technologies can also improve the effectiveness of population 
screening, the response to tests results, and the compliance of  populations39–41. These technologies include the 
Internet of  Things42,43,  biosensors44,45, health information  technology46,  telemedicine47, and machine learning 
 algorithms44,47.

Our analysis was subject to several limitations. First, although we incorporated testing in a stochastic epidemic 
model with individual-level trajectories, we did not incorporate the population mobility, contact patterns, age, 
or gender differences, considered in other agent-based models. Second, our model can be extended to a more 
detailed transmission model and re-parameterized to evaluate different testing schemes once more detailed data 
are available. Moreover, our model can be further extended to incorporate large-scale contact tracing to improve 
the cost-effectiveness of population screening.

Code availability
All code is available for free use at: https:// github. com/ JL- YU/ Flexi ble- Testi ng.

Received: 19 November 2020; Accepted: 19 October 2021

References
 1. Mercer, T. R. & Salit, M. Testing at scale during the COVID-19 pandemic. Nat. Rev. Genet. 22, 415–426. https:// doi. org/ 10. 1038/ 

s41576- 021- 00360-w (2021).
 2. Dorfman, R. The detection of defective members of large populations. Ann. Math. Stat. 14, 436–440 (1943).
 3. Lohse, S. et al. Pooling of samples for testing for SARS-CoV-2 in asymptomatic people. Lancet. Infect. Dis 20, 1231–1232. https:// 

doi. org/ 10. 1016/ S1473- 3099(20) 30362-5 (2020).
 4. Ke, J. Bao’an completed 5,195,328 nucleic acid tests in 44 hours. Daily Sunshine Post (2021). https:// baiji ahao. baidu. com/s? id= 

17035 33421 28167 6862& wfr= spide r& for= pc. Accessed 24 October 2021.
 5. Xue, Y. China’s tech hub Shenzhen restricts travel and tests millions to stem COVID-19 after one case confirmed. South China 

Morning Post (2021). https:// www. scmp. com/ tech/ big- tech/ artic le/ 31363 14/ chinas- tech- hub- shenz hen- restr icts- travel- and- tests- 
milli ons- stem. Accessed 24 October 2021.

 6. Pavelka, M. et al. The impact of population-wide rapid antigen testing on SARS-CoV-2 prevalence in Slovakia. Science 372, 635–641. 
https:// doi. org/ 10. 1126/ scien ce. abf96 48 (2021).

 7. Mutesa, L. et al. A pooled testing strategy for identifying SARS-CoV-2 at low prevalence. Nature 589, 276–280. https:// doi. org/ 10. 
1038/ s41586- 020- 2885-5 (2021).

 8. Libin, P. J. K. et al. Assessing the feasibility and effectiveness of household-pooled universal testing to control COVID-19 epidem-
ics. PLoS Comput. Biol. 17, e1008688. https:// doi. org/ 10. 1371/ journ al. pcbi. 10086 88 (2021).

https://github.com/JL-YU/Flexible-Testing
https://doi.org/10.1038/s41576-021-00360-w
https://doi.org/10.1038/s41576-021-00360-w
https://doi.org/10.1016/S1473-3099(20)30362-5
https://doi.org/10.1016/S1473-3099(20)30362-5
https://baijiahao.baidu.com/s?id=1703533421281676862&wfr=spider&for=pc
https://baijiahao.baidu.com/s?id=1703533421281676862&wfr=spider&for=pc
https://www.scmp.com/tech/big-tech/article/3136314/chinas-tech-hub-shenzhen-restricts-travel-and-tests-millions-stem
https://www.scmp.com/tech/big-tech/article/3136314/chinas-tech-hub-shenzhen-restricts-travel-and-tests-millions-stem
https://doi.org/10.1126/science.abf9648
https://doi.org/10.1038/s41586-020-2885-5
https://doi.org/10.1038/s41586-020-2885-5
https://doi.org/10.1371/journal.pcbi.1008688


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21460  | https://doi.org/10.1038/s41598-021-01065-0

www.nature.com/scientificreports/

 9. Eberhardt, J. N., Breuckmann, N. P. & Eberhardt, C. S. Multi-stage group testing improves efficiency of large-scale COVID-19 
screening. J. Clin. Virol. 128, 104382. https:// doi. org/ 10. 1016/j. jcv. 2020. 104382 (2020).

 10. Cleary, B. et al. Using viral load and epidemic dynamics to optimize pooled testing in resource-constrained settings. Sci. Transl. 
Med. 13, eabf1568. https:// doi. org/ 10. 1126/ scitr anslm ed. abf15 68 (2021).

 11. de Wolff, T., Pflüger, D., Rehme, M., Heuer, J. & Bittner, M.-I. Evaluation of pool-based testing approaches to enable population-
wide screening for COVID-19. PLoS ONE 15, e0243692. https:// doi. org/ 10. 1371/ journ al. pone. 02436 92 (2020).

 12. Shental, N. et al. Efficient high-throughput SARS-CoV-2 testing to detect asymptomatic carriers. Sci. Adv. 6, eabc5961. https:// 
doi. org/ 10. 1126/ sciadv. abc59 61 (2020).

 13. Bilder, C. R., Iwen, P. C., Abdalhamid, B., Tebbs, J. M. & McMahan, C. S. Tests in short supply? Try group testing. Significance 
(Oxford, England) 17, 15. https:// doi. org/ 10. 1111/ 1740- 9713. 01399 (2020).

 14. Ben-Ami, R. et al. Large-scale implementation of pooled RNA extraction and RT-PCR for SARS-CoV-2 detection. Clin. Microbiol. 
Infect. 26, 1248–1253. https:// doi. org/ 10. 1016/j. cmi. 2020. 06. 009 (2020).

 15. Aprahamian, H., Bish, D. R. & Bish, E. K. Optimal group testing: structural properties and robust solutions, with application to 
public health screening. INFORMS J. Comput. 32, 895–911. https:// doi. org/ 10. 1287/ ijoc. 2019. 0942 (2020).

 16. Polage, C. R. et al. Assessment of an ONLINE TOOL TO SIMULATE THE EFFECT OF POOLED TESTING for SARS-CoV-2 
detection in asymptomatic and symptomatic populations. JAMA Netw. Open 3, e2031517. https:// doi. org/ 10. 1001/ jaman etwor 
kopen. 2020. 31517 (2020).

 17. Abdalhamid, B., Bilder, C. R., Garrett, J. L. & Iwen, P. C. Cost effectiveness of sample pooling to test for SARS-CoV-2. J. Infect. Dev. 
Ctries 14, 1136–1137. https:// doi. org/ 10. 3855/ jidc. 13935 (2020).

 18. Žilinskas, J., Lančinskas, A. & Guarracino, M. R. Pooled testing with replication as a mass testing strategy for the COVID-19 
pandemics. Sci. Rep. 11, 3459. https:// doi. org/ 10. 1038/ s41598- 021- 83104-4 (2021).

 19. Yelin, I. et al. Evaluation of COVID-19 RT-qPCR test in multi sample pools. Clin. Infect. Dis. https:// doi. org/ 10. 1093/ cid/ ciaa5 31 
(2020).

 20. Watkins, A. E. et al. Pooling saliva to increase SARS-CoV-2 testing capacity. medRxiv. https:// doi. org/ 10. 1101/ 2020. 09. 02. 20183 
830 (2020).

 21. Sawicki, R., Korona-Glowniak, I., Boguszewska, A., Stec, A. & Polz-Dacewicz, M. Sample pooling as a strategy for community 
monitoring for SARS-CoV-2. Sci. Rep. 11, 3122. https:// doi. org/ 10. 1038/ s41598- 021- 82765-5 (2021).

 22. Praharaj, I. et al. Pooled testing for COVID-19 diagnosis by real-time RT-PCR: A multi-site comparative evaluation of 5- & 
10-sample pooling. Indian J. Med. Res. 152, 88–94. https:// doi. org/ 10. 4103/ ijmr. IJMR_ 2304_ 20 (2020).

 23. Majid, F., Omer, S. B. & Khwaja, A. I. Optimising SARS-CoV-2 pooled testing for low-resource settings. Lancet Microbe 1, e101–
e102. https:// doi. org/ 10. 1016/ S2666- 5247(20) 30056-2 (2020).

 24. Hanel, R. & Thurner, S. Boosting test-efficiency by pooled testing for SARS-CoV-2—Formula for optimal pool size. PLoS ONE 15, 
e0240652. https:// doi. org/ 10. 1371/ journ al. pone. 02406 52 (2020).

 25. Deckert, A., Bärnighausen, T. & Kyei, N. Pooled-sample analysis strategies for COVID-19 mass testing: A simulation study. Bull. 
World Health Organ. 98, 590–598. https:// doi. org/ 10. 2471/ BLT. 20. 257188 (2020).

 26. Cherif, A., Grobe, N., Wang, X. & Kotanko, P. Simulation of pool testing to identify patients with coronavirus disease 2019 under 
conditions of limited test availability. JAMA Netw. Open 3, e2013075. https:// doi. org/ 10. 1001/ jaman etwor kopen. 2020. 13075 (2020).

 27. Bukhari, S. U. K., Khalid, S. S., Syed, A. & Shah, S. S. H. Smart pooled sample testing for COVID-19: A possible solution for sparsity 
of test kits. medRxiv. https:// doi. org/ 10. 1101/ 2020. 04. 21. 20044 594 (2020).

 28. Augenblick, N., Kolstad, J. T., Obermeyer, Z. & Wang, A. Group testing in a pandemic: THE role of frequent testing, correlated 
risk, and machine learning. Natl. Bureau Econ. Res. Working Paper Series. https:// doi. org/ 10. 3386/ w27457 (2020).

 29. Brault, V., Mallein, B. & Rupprecht, J.-F. Group testing as a strategy for COVID-19 epidemiological monitoring and community 
surveillance. PLoS Comput. Biol. 17, e1008726. https:// doi. org/ 10. 1371/ journ al. pcbi. 10087 26 (2021).

 30. Hay, J. A. et al. Estimating epidemiologic dynamics from cross-sectional viral load distributions. Science 373, eabh0635. https:// 
doi. org/ 10. 1126/ scien ce. abh06 35 (2021).

 31. Vansteelandt, S., Goetghebeur, E. & Verstraeten, T. Regression models for disease prevalence with diagnostic tests on pools of 
serum samples. Biometrics 56, 1126–1133. https:// doi. org/ 10. 1111/j. 0006- 341X. 2000. 01126.x (2000).

 32. Hughes-Oliver, J. M. & Rosenberger, W. F. Efficient estimation of the prevalence of multiple rare traits. Biometrika 87, 315–327. 
https:// doi. org/ 10. 1093/ biomet/ 87.2. 315 (2000).

 33. Huang, X. An improved test of latent-variable model misspecification in structural measurement error models for group testing 
data. Stat. Med. 28, 3316–3327. https:// doi. org/ 10. 1002/ sim. 3698 (2009).

 34. Delaigle, A. & Meister, A. Nonparametric regression analysis for group testing data. J. Am. Stat. Assoc. 106, 640–650. https:// doi. 
org/ 10. 1198/ jasa. 2011. tm105 20 (2011).

 35. Delaigle, A., Hall, P. & Wishart, J. New approaches to nonparametric and semiparametric regression for univariate and multivariate 
group testing data. Biometrika 101, 567–585. https:// doi. org/ 10. 1093/ biomet/ asu025 (2014).

 36. Bilder, C. R. & Tebbs, J. M. Bias, efficiency, and agreement for group-testing regression models. J. Stat. Comput. Simul. 79, 67–80. 
https:// doi. org/ 10. 1080/ 00949 65070 16089 90 (2009).

 37. Bilder, C. R. in Wiley StatsRef: Statistics Reference Online, 1–11. https:// doi. org/ 10. 1002/ 97811 18445 112. stat0 8227 (2019).
 38. Li, M. & Xie, M. Nonparametric and semiparametric regression analysis of group testing samples. Int. J. Stat. Med. Res. 1, 60–72. 

https:// doi. org/ 10. 1002/ sim. 817 (2012).
 39. Javaid, M. et al. Industry 5.0: Potential applications in COVID-19. J. Ind. Integr. Manag. 05, 507–530. https:// doi. org/ 10. 1142/ s2424 

86222 05002 20 (2020).
 40. Sheng, J., Amankwah-Amoah, J., Khan, Z. & Wang, X. COVID-19 pandemic in the new era of big data analytics: Methodological 

innovations and future research directions. Br. J. Manag. 32, 1164–1183. https:// doi. org/ 10. 1111/ 1467- 8551. 12441 (2020).
 41. Ting, D. S. W., Carin, L., Dzau, V. & Wong, T. Y. Digital technology and COVID-19. Nat. Med. 26, 459–461. https:// doi. org/ 10. 

1038/ s41591- 020- 0824-5 (2020).
 42. Pratap Singh, R., Javaid, M., Haleem, A., Vaishya, R. & Ali, S. Internet of Medical Things (IoMT) for orthopaedic in COVID-19 

pandemic: Roles, challenges, and applications. J. Clin. Orthop. Trauma. 11, 713–717. https:// doi. org/ 10. 1016/j. jcot. 2020. 05. 011 
(2020).

 43. Singh, R. P., Javaid, M., Haleem, A. & Suman, R. Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes 
Metab. Syndr. 14, 521–524. https:// doi. org/ 10. 1016/j. dsx. 2020. 04. 041 (2020).

 44. Ali, S. et al. A review of the role of smart wireless medical sensor network in COVID-19. J. Ind. Integr. Manag. https:// doi. org/ 10. 
1142/ S2424 86222 03000 69 (2020).

 45. Bahl, S. et al. Biosensors applications in fighting COVID-19 pandemic. Apollo Med. 17, 221 (2020).
 46. Singh, R. P., Javaid, M., Haleem, A., Vaishya, R. & Bahl, S. Significance of Health Information Technology (HIT) in context to 

COVID-19 pandemic: Potential roles and challenges. J. Ind. Integr. Manag. 05, 427–440. https:// doi. org/ 10. 1142/ s2424 86222 05002 
32 (2020).

 47. Bahl, S. et al. Telemedicine technologies for confronting COVID-19 pandemic: A review. J. Ind. Integr. Manag. 05, 547–561. https:// 
doi. org/ 10. 1142/ s2424 86222 03000 57 (2020).

 48. Larremore, D. B. et al. Test sensitivity is secondary to frequency and turnaround time for COVID-19 screening. Sci. Adv. 7, 
eabd5393. https:// doi. org/ 10. 1126/ sciadv. abd53 93 (2021).

https://doi.org/10.1016/j.jcv.2020.104382
https://doi.org/10.1126/scitranslmed.abf1568
https://doi.org/10.1371/journal.pone.0243692
https://doi.org/10.1126/sciadv.abc5961
https://doi.org/10.1126/sciadv.abc5961
https://doi.org/10.1111/1740-9713.01399
https://doi.org/10.1016/j.cmi.2020.06.009
https://doi.org/10.1287/ijoc.2019.0942
https://doi.org/10.1001/jamanetworkopen.2020.31517
https://doi.org/10.1001/jamanetworkopen.2020.31517
https://doi.org/10.3855/jidc.13935
https://doi.org/10.1038/s41598-021-83104-4
https://doi.org/10.1093/cid/ciaa531
https://doi.org/10.1101/2020.09.02.20183830
https://doi.org/10.1101/2020.09.02.20183830
https://doi.org/10.1038/s41598-021-82765-5
https://doi.org/10.4103/ijmr.IJMR_2304_20
https://doi.org/10.1016/S2666-5247(20)30056-2
https://doi.org/10.1371/journal.pone.0240652
https://doi.org/10.2471/BLT.20.257188
https://doi.org/10.1001/jamanetworkopen.2020.13075
https://doi.org/10.1101/2020.04.21.20044594
https://doi.org/10.3386/w27457
https://doi.org/10.1371/journal.pcbi.1008726
https://doi.org/10.1126/science.abh0635
https://doi.org/10.1126/science.abh0635
https://doi.org/10.1111/j.0006-341X.2000.01126.x
https://doi.org/10.1093/biomet/87.2.315
https://doi.org/10.1002/sim.3698
https://doi.org/10.1198/jasa.2011.tm10520
https://doi.org/10.1198/jasa.2011.tm10520
https://doi.org/10.1093/biomet/asu025
https://doi.org/10.1080/00949650701608990
https://doi.org/10.1002/9781118445112.stat08227
https://doi.org/10.1002/sim.817
https://doi.org/10.1142/s2424862220500220
https://doi.org/10.1142/s2424862220500220
https://doi.org/10.1111/1467-8551.12441
https://doi.org/10.1038/s41591-020-0824-5
https://doi.org/10.1038/s41591-020-0824-5
https://doi.org/10.1016/j.jcot.2020.05.011
https://doi.org/10.1016/j.dsx.2020.04.041
https://doi.org/10.1142/S2424862220300069
https://doi.org/10.1142/S2424862220300069
https://doi.org/10.1142/s2424862220500232
https://doi.org/10.1142/s2424862220500232
https://doi.org/10.1142/s2424862220300057
https://doi.org/10.1142/s2424862220300057
https://doi.org/10.1126/sciadv.abd5393


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21460  | https://doi.org/10.1038/s41598-021-01065-0

www.nature.com/scientificreports/

 49. Grassly, N. C. et al. Comparison of molecular testing strategies for COVID-19 control: A mathematical modelling study. Lancet. 
Infect. Dis 20, 1381–1389. https:// doi. org/ 10. 1016/ S1473- 3099(20) 30630-7 (2020).

 50. Wölfel, R. et al. Virological assessment of hospitalized patients with COVID-2019. Nature 581, 465–469. https:// doi. org/ 10. 1038/ 
s41586- 020- 2196-x (2020).

 51. Arnaout, R. et al. SARS-CoV2 Testing: The limit of detection matters. bioRxiv. https:// doi. org/ 10. 1101/ 2020. 06. 02. 131144 (2020).
 52. Pray, I. W. et al. Performance of an antigen-based test for asymptomatic and symptomatic SARS-CoV-2 testing at two university 

campuses—Wisconsin, September-October 2020. MMWR Morb. Mortal Wkly. Rep. 69, 1642–1647. https:// doi. org/ 10. 15585/ 
mmwr. mm695 152a3 (2021).

 53. Sood, N. et al. Evaluation of the Abbott BinaxNOW rapid antigen test for SARS-CoV-2 infection in children: Implications for 
screening in a school setting. PLoS ONE 16, e0249710. https:// doi. org/ 10. 1371/ journ al. pone. 02497 10 (2021).

 54. Albert, E. et al. Field evaluation of a rapid antigen test  (PanbioTM COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in 
primary healthcare centres. Clin. Microbiol. Infect. 27(472), e477-472.e410. https:// doi. org/ 10. 1016/j. cmi. 2020. 11. 004 (2021).

 55. Fernandez-Montero, A., Argemi, J., Rodríguez, J. A., Ariño, A. H. & Moreno-Galarraga, L. Validation of a rapid antigen test as a 
screening tool for SARS-CoV-2 infection in asymptomatic populations. Sensitivity, specificity and predictive values. EClinical-
Medicine https:// doi. org/ 10. 1016/j. eclinm. 2021. 100954 (2021).

 56. Peña, M. et al. Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-PCR in asymptomatic individuals. Int. 
J. Infect. Dis. 107, 201–204. https:// doi. org/ 10. 1016/j. ijid. 2021. 04. 087 (2021).

 57. Böger, B. et al. Systematic review with meta-analysis of the accuracy of diagnostic tests for COVID-19. Am. J. Infect. Control https:// 
doi. org/ 10. 1016/j. ajic. 2020. 07. 011 (2020).

 58. Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a 
systematic review and meta-analysis. Lancet Microbe 2, e13–e22. https:// doi. org/ 10. 1016/ S2666- 5247(20) 30172-5 (2021).

 59. Eales, O. et al. Characterising the persistence of RT-PCR positivity and incidence in a community survey of SARS-CoV-2. medRxiv. 
https:// doi. org/ 10. 1101/ 2021. 08. 12. 21261 987v1 (2021).

 60. Pray, I. W. Performance of an antigen-based test for asymptomatic and symptomatic SARS-CoV-2 testing at two university cam-
puses—Wisconsin, September–October 2020. MMWR Morbid. Mortal. Wkly. Rep. https:// doi. org/ 10. 15585/ mmwr. mm695 152a3 
(2021).

Acknowledgements
Publication made possible in part by support from the Berkeley Research Impact Initiative (BRII) sponsored by 
the UC Berkeley Library.

Author contributions
J.Y. developed the model and prepared the first draft of the paper. J.Y. and Y.H. modified the model and revised 
the manuscript. Z.S. supervised the study, contributed to data interpretation. All authors wrote the manuscript, 
verified the underlying data, and approved the final version.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 01065-0.

Correspondence and requests for materials should be addressed to Z.-J.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.1016/S1473-3099(20)30630-7
https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1038/s41586-020-2196-x
https://doi.org/10.1101/2020.06.02.131144
https://doi.org/10.15585/mmwr.mm695152a3
https://doi.org/10.15585/mmwr.mm695152a3
https://doi.org/10.1371/journal.pone.0249710
https://doi.org/10.1016/j.cmi.2020.11.004
https://doi.org/10.1016/j.eclinm.2021.100954
https://doi.org/10.1016/j.ijid.2021.04.087
https://doi.org/10.1016/j.ajic.2020.07.011
https://doi.org/10.1016/j.ajic.2020.07.011
https://doi.org/10.1016/S2666-5247(20)30172-5
https://doi.org/10.1101/2021.08.12.21261987v1
https://doi.org/10.15585/mmwr.mm695152a3
https://doi.org/10.1038/s41598-021-01065-0
https://doi.org/10.1038/s41598-021-01065-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Optimizing and evaluating PCR-based pooled screening during COVID-19 pandemics
	Methods
	Investigating the interaction between viral load distributions and screening sensitivities. 
	Optimal pool size design. 
	Epidemic model. 
	Testing-isolation protocols. 
	Cost analysis. 

	Results
	Impacts of viral load distribution on test sensitivity without testing-isolation. 
	Impacts of testing-isolation on viral load distribution and sensitivities. 
	Impacts of population screening on epidemic dynamics. 
	Accuracy of different screening schemes during the pandemic. 
	Cost-effectiveness of different screening schemes during the pandemic. 
	Impacts of the initial prevalence of population screening. 
	A protocol to update optimal pool size. 

	Conclusion and discussion
	References
	Acknowledgements


