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Abstract: Over 760 legume species occur in the ecologically-heterogeneous Core Cape Subregion
(CCR) of South Africa. This study tested whether the main symbionts of CCR legumes (Burkholderia
and Mesorhizobium) are phylogenetically structured by altitude, pH and soil types. Rhizobial strains
were isolated from field nodules of diverse CCR legumes and sequenced for 16S ribosomic RNA
(rRNA), recombinase A (recA) and N-acyltransferase (nodA). Phylogenetic analyses were performed
using Bayesian and maximum likelihood techniques. Phylogenetic signals were determined using the
D statistic for soil types and Pagel’s λ for altitude and pH. Phylogenetic relationships between
symbionts of the narrowly-distributed Indigofera superba and those of some widespread CCR
legumes were also determined. Results showed that Burkholderia is restricted to acidic soils, while
Mesorhizobium occurs in both acidic and alkaline soils. Both genera showed significant phylogenetic
clustering for pH and most soil types, but not for altitude. Therefore, pH and soil types influence
the distribution of Burkholderia and Mesorhizobium in the CCR. All strains of Indigofera superba were
identified as Burkholderia, and they were nested within various clades containing strains from outside
its distribution range. It is, therefore, hypothesized that I. superba does not exhibit rhizobial specificity
at the intragenic level. Implications for CCR legume distributions are discussed.
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1. Introduction

There is an open debate in the microbial biogeography literature regarding whether or not
microorganisms are biogeographically structured [1–3], thanks to the Baas Becking hypothesis that
“everything is everywhere, but the environment selects” [4]. The premise of the hypothesis is that
since microorganisms are small, they reproduce rapidly, they have dormancy stages and they have
high dispersal potential; it follows that they should not be limited by geographical barriers and
distances [5,6]. However, there is a growing body of evidence from studies on archaea, bacteria, fungi
and protists, which points to the existence of microbial biogeographic structure [7–12].

Like the other microorganisms alluded to above, the various rhizobial genera exhibit some
notable biogeographic structuring at local, regional, continental and global scales [13]. For example,
while Burkholderia is the predominant symbiont of mimosoid legumes in the Brazilian Cerrado and
Caatinga Biomes [14], the Mimosoid legumes occurring in Mexico are predominantly nodulated
by Alphaproteobacteria, particularly the genera Rhizobium and Ensifer [15]. Genome level studies
have also shown that the Burkholderia species that nodulate Mimosoid legumes in South America are
genetically distinct from those that nodulate papilionoid legumes in the CCR of South Africa, such
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that they are incapable of nodulating each other’s hosts [16–18]. Furthermore, a recent study of the
symbionts of legumes found in the sub-Himalayan region of India showed that they are nodulated
by distinct Bradyrhizobium strains that represent new species to science [19]. Likewise, legumes of the
Core Cape Subregion (CCR) of Southern Africa are predominantly nodulated by unique Burkholderia
and Mesorhizobium strains [20–22], whereas those from the Grassland and Savannah biomes of the
region are largely nodulated by unique strains of Bradyrhizobium [23]. Therefore, the distribution of
rhizobia is as prone to biogeographic limitations as other living organisms.

Some of the factors that influence the growth and distribution of rhizobia species include pH,
temperature, salinity and the distribution of suitable hosts [24–29]. These factors also affect general
plant growth and nodule development [30,31]; hence, they can influence levels of nitrogen fixation.
Notably, rhizobia species differ in their sensitivity to these factors. For example, species of the
genus Burkholderia can tolerate acidic soil conditions, whereas they are replaced by alpha-rhizobia in
alkaline habitats [32–34]. This could explain the predominance of Burkholderia in the acidic soils of
the Cerrado, Caatinga biomes and other parts of South America [14,35], and in South Africa’s CCR,
where it associates with diverse legume tribes including the Crotalarieae, Hypocalypteae, Indigofereae,
Phaseoleae and Podalyrieae [20,21]. However, unlike in South America, Burkholderia is not the only
dominant rhizobial symbiont in the CCR. Mesorhizobium is also an abundant symbiont, associated with
a wide range of legumes in the tribes Crotalarieae, Galegeae, Genisteae and Psoralea [21,22], and the
reasons for its dominance are yet to be determined.

Contrary to Burkholderia’s genus-wide predilection for acidic soils [34], Mesorhizobium species
exhibit differential tolerance to environmental stress, including heavy metals, pH, salinity and
temperature [27,36,37]. In terms of pH, Mesorhizobium species can tolerate a wide range of pH
conditions (3–10), despite an optimal range of pH 6–8 [36,38]. For example, Mesorhizobium was found to
be the dominant symbiont of Cicer arietinum L. (chickpea) plants growing on alkaline soils in China [39].
On the other hand, a study of Mesorhizobium strains nodulating chickpea plants in Portuguese soils
showed that some strains were able to tolerate acidic conditions down to a minimum of pH 3 [36].
This suggests that the predominance of Mesorhizobium in the CCR (in addition to Burkholderia) might
be linked to its wide-ranging tolerance to different pH conditions. Notably, while acidic soil conditions
are more prevalent in the CCR, particularly in the sandstone-derived soils, patches of near neutral
and alkaline soils (e.g., granite, limestone and shale) also exist [40,41]. Based on the discussion above,
it appears that Burkholderia is more sensitive to pH, and hence, soil type, than Mesorhizobium. Therefore,
in the case of the CCR, it is hypothesized that the distribution of Burkholderia species is structured by
soil type and pH; while Mesorhizobium should be more dispersed. Moreover, Burkholderia should only
dominate in the acidic soils, being replaced by Mesorhizobium species in neutral and alkaline soils.

Apart from the effects of edaphic factors on the growth and distribution of rhizobia, some studies
have found correlations between turnover in the diversity of rhizobia and altitude. For example,
Bontemps and co-workers [14] observed that discrete Burkholderia species complexes were restricted to
specific altitudes in the Brazilian Caatinga and Cerrado biomes. Likewise, turnover in Sinorhizobium
community assemblages along elevation gradients were observed in Northern China [42]. Since
differences in altitude are directly related to changes in humidity and temperature [43], the correlations
between altitude and rhizobial diversity suggest that rhizobial lineages vary in their sensitivity and
tolerance to these attributes. The evident influence of altitudinal gradients on microbial diversity is not
unique to rhizobia as similar patterns have been reported for other microorganisms, e.g., non-rhizobial
bacteria and fungi [10,44–46]. Considering that altitude is highly variable in the CCR and that it is
one of the major drivers of the diversification of the CCR flora [47], it is hypothesized that altitude
influences rhizobial diversity and turnover in CCR landscapes.

Considering that the soils of the CCR are generally oligotrophic [48] and the observation that
legumes have a high nitrogen-demanding lifestyle [49,50], nitrogen fixation must be a key strategy
for their success in the region. Since the distribution of rhizobia is constrained by environmental
factors (as previously discussed), legumes might fail to establish in habitats where their rhizobial
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symbionts are lacking [51,52]. Therefore, legumes that are highly specific in the kinds of rhizobia
that they associate with might be restricted to habitats where their specific symbionts are present.
A study by Lemaire and co-workers [21] showed that CCR legumes of the tribe Podalyrieae are
exclusively nodulated by Burkholderia species. A subsequent study, which sampled multiple disjunct
populations of the widespread Podalyria calyptrata Willd., found high levels of genetic diversity
between the Burkholderia strains that nodulate the species [53]. This indicates that while P. calyptrata
exhibits symbiotic specificity towards the genus Burkholderia, it associates with diverse lineages within
Burkholderia, and this could explain its widespread distribution. Studies on the diversity of symbionts
that nodulate geographically-restricted taxa are lacking for the CCR, yet such studies could shed light
on the potential influence of rhizobia specificity on legume distributions. For the CCR, one such taxon is
Indigofera superba C.H. Stirt., a rare legume species that is restricted to the Kleinrivier Mountains within
the Fynbos biome of the CCR [54]. It occurs on sandstone-derived soils, at altitudes of 100–300 m [55].
It occurs in sympatry with some widespread legume species, such as Aspalathus carnosa Eckl. & Zeyh.,
Indigofera filifolia Thunb. and Psoralea pullata C.H. Stirt. Its rhizobial symbionts are presently unknown,
and it is hypothesized that rhizobia specificity contributes to its limited distribution.

The main objectives of the present study were to determine if the ecological parameters; altitude,
pH and soil type influence the distribution of rhizobial symbionts that nodulate various legumes of the
Cape Peninsula as a microcosm of the CCR and to determine the diversity and phylogenetic position
of rhizobia that associate with the narrowly-distributed I. superba in the CCR. The first objective was
pursued through molecular characterization of rhizobial strains isolated from nodules of legume
species collected in the field across the Cape Peninsula. These were analyzed together with the data
from a previous study [21] that sampled broadly within the CCR. It was postulated that if an ecological
parameter limits the distribution of symbionts within the landscape, then each habitat type should
predominantly harbor symbionts that are suitably adapted to the local conditions. Such symbionts
would likely be genetically similar. Therefore, a significant phylogenetic signal would be expected
for that parameter, i.e., closely-related species would occupy similar habitats [56]. Thus, tests for
phylogenetic signals for the three ecological parameters were conducted based on phylogenies of
housekeeping and nodulation genes of the rhizobial strains. For the study of rhizobial symbionts of
the rare I. superba, field nodules were sampled from multiple populations across its distribution range,
and a phylogeny of its symbionts was reconstructed in a matrix that included symbionts of diverse
legumes from diverse habitats within the CCR.

2. Materials and Methods

2.1. Study Site, Nodule Sampling and Rhizobia Isolation

The primary study area was the Cape Peninsula, which is located on the south westernmost tip of
the Core Cape Subregion of South Africa. Details of its climatic, edaphic, physiographic and vegetation
characteristics and the selection of sampling sites are as described by Dludlu and co-workers [57].
Root nodules of legume species occurring at each site were collected and transported to the laboratory,
where they were kept at 4 ◦C before the isolation of rhizobia, which took place within 2–5 days of
sampling. Rhizobia were isolated and cultured using standard protocols [58] on yeast extract mannitol
agar (YEMA), with the exception that for the surface sterilization of the nodules, a 4% solution of
sodium hypochlorite (NaOCl) was used instead of acidified mercuric chloride. Rhizobial isolates
were incubated at 28 ◦C for three to ten days depending on their growth rates, and pure cultures
were obtained by sub-culturing on fresh YEMA plates. Purified cultures were suspended in 20% (v/v)
glycerol solution and stored in a −80 ◦C freezer for long-term storage. This method of obtaining
rhizobial cultures was chosen over the direct sequencing of DNA from the nodules because it allows to
produce a pure culture that can be authenticated for nitrogen fixing properties. Furthermore, previous
studies from our laboratory have shown that each nodule is occupied by a single dominant rhizobial
strain [18], but nodules may be colonized by non-rhizobial bacteria.
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2.2. DNA Extraction, Amplification and Sequencing

DNA was extracted using a modified version [59] of the cetyl trimethylammonium bromide
(CTAB) DNA Extraction protocol [60]. Polymerase chain reactions (PCR) were conducted to amplify
16S ribosomic RNA (rRNA), recombinase A (recA) and N-acyltransferase (nodA) using an Applied
Biosystems GeneAmp 2700 thermal cycler (Applied Biosystems, Foster City, CA, USA). Primer
pairs used were 16S-f27 and 16S-r1485 [61,62] for 16S rRNA; recA-63F and recA-504R [63] for recA;
and nodA-1F and nodA-2R [64] for nodA. Each PCR reaction had a total volume of 25 µL: comprising
19.92 µL of water, 2 µL of 10× buffer (Buffer A) that contained 1.5 mM Mg2+, 0.4 µL of 10 mM dNTP,
0.8 µL each of forward and reverse primers (10 µM), 0.08 µL of Taq polymerase (Kapa Biosystems,
Cape Town, South Africa) and 1 µL of template DNA. All DNA regions were amplified according to
the reaction conditions described by the authors of the primers, i.e. Weisburg and co-workers [61]
for 16S rRNA, Gaunt and co-workers [63] for recA and Haukka and co-workers [64] for nodA. PCR
products were loaded onto ethidium bromide agarose gels (1%) and subjected to electrophoresis
using 0.5× Tris Borat EDTA (TBE). The gels were observed under UV light (Wavelength = 365 nm) to
identify successfully amplified samples. Amplified products were enzymatically purified using the
Exo/SAP protocol [65] and sent to Macrogen (Macrogen, Amsterdam, The Netherlands) for sequencing
with the same primers used for PCR amplification. Newly generated sequences were deposited in
the GenBank database, and the accession numbers for 16S rRNA range from MG593870–MG593941,
MG704159-MG704225 for recA and MG704226-MG704280 for nodA.

2.3. Contig Assembly and Phylogenetic Analyses

The forward and reverse DNA sequence contigs were assembled using the Staden package
Version 2.0.0 [66] and aligned using the online version of MAFFT [67]. Identification of the isolated
strains was achieved by comparing individual sequences with publically available sequences on
GenBank, using the Basic Local Alignment Search Tool (BLAST) of Altschul and co-workers [68].
The highest matching (% similarity) GenBank sequences for the various strains are provided as
part of the supplementary materials (Table S1). The newly-generated sequences were combined
with those from the study by Lemaire and co-workers [21], which sampled various legume species
throughout the CCR to allow for a broader representation. The alignments were viewed in Bioedit
Version 7.1.9 [69], and equivocally aligned fragments were adjusted manually. Phylogenetic analyses
of the aligned matrices were performed on the Cyberinfrastructure for Phylogenetic Research
(CIPRES) web portal (https://www.phylo.org), through a maximum likelihood (ML) approach,
using RaxML Version 8.2.10 [70] and Bayesian inference (BI), as implemented in MrBayes Version
3.2.6 [71]. The ML analyses employed the General Time Reversible with categorized rates (GTRCAT)
substitution model, and statistical support on nodes was evaluated using the non-parametric rapid
bootstrapping technique [72], with 1000 replicates. For the BI analysis, the best model of nucleotide
substitution was determined using jModelTest2 Version 2.1.6 [73], employing the Bayesian Information
Criterion (BIC). The BI analyses were run for as many generations as necessary to achieve chain
convergence (5–10 million generations). A conservative burn-in of 25% was applied to all BI analyses,
and convergence of the chains was assessed using Tracer Version 1.6 [74].

To determine the combinability of the different DNA data partitions, the approach used by Pirie
and co-workers [75,76] was employed. The DNA sequence data for the different genes were first
analyzed separately by ML techniques as described above, and the resulting tree topologies were
examined for conflicting nodes with ≥70% bootstrap support. Nodes that had <70% bootstrap support
were considered unsupported, and thus, when no supported conflict was observed, the partitions
were considered combinable. This approach was chosen over the widely used incongruence length
difference (ILD) test [77] because the ILD only tests for overall incongruence between partitions
without detecting local conflict that is due to specific taxa or clades [76]. There was no conflict observed
between 16S rRNA and recA, and therefore, these partitions were combined in subsequent analyses.

https://www.phylo.org
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However, the nodA partition had significantly supported conflict with both chromosomal markers,
and therefore, it was analyzed separately.

For the study of the diversity of rhizobia associated with I. superba, root nodules were sampled
from six populations of the species across its distribution range in Vogelgat Private Nature Reserve
(Hermanus, Western Cape, South Africa), sampling multiple (at least five) individuals per population
to capture any potential genetic variation within and between populations. Root nodules from other
legumes (i.e., Aspalathus carnosa Eckl. & Zeyh., Indigofera candolleana Meisn., P. pullata C.H. Stirt.
and Psoralea restioides Eckl. & Zeyh.) that occur in the same locality as I. superba were also sampled
to determine phylogenetic relationships between their symbionts. One chromosomal gene (recA)
and one nodulation gene (N-acetylglucosaminyltransferase (nodC)) were sequenced for this study.
Additional sequences from previous studies [53,78] on CCR legumes were incorporated into the dataset
to determine the phylogenetic position of I. superba strains relative to strains nodulating other legumes
in the CCR. Some sequences for reference strains, downloaded from GenBank were also included
(Table S1).

2.4. Determination of Phylogenetic Signals

Analyses of phylogenetic signals for the various ecological parameters were conducted in R [79]
using the phylogenetic trees constructed above as input and the corresponding parameters’ data as
described below. Data for soil types of the sampling sites were extracted from a geological map of
the CCR (shapefiles were kindly provided by the Geology Department, University of Cape Town,
Western Cape, South Africa) using the site Global Positioning System (GPS) information collected
during fieldwork. Soil type was coded as a binary character for each of the four soil types from which
the legumes had been sampled (granite, limestone, sandstone and shale), as follows: 1, when the
site belonged to a particular soil type, and 0, if it did not (Table S2). Phylogenetic structuring of
rhizobial strains by soil type was tested using the D statistic, which measures phylogenetic signal
for a discrete binary trait [80]. This was implemented using the ‘phylo.d’ function of the ‘Caper’
package, which calculates the value of D and tests for its significant departure from a random
association and the clumping expected under a Brownian motion model [81]. The statistic D = 0
denotes a phylogenetically-conserved trait under a Brownian model, while D = 1 indicates a random
distribution of traits on the tips of the phylogeny, and D < 0 indicates a strong phylogenetic signal,
while D > 1 points toward phylogenetic overdispersion [80]. Significance testing was conducted using
10,000 permutations.

Altitude data for the sampled sites were recorded during field surveys using a GPS, and the soil
pH was determined using the methods described by Dludlu and co-workers [57]. The raw data for
altitude and pH are provided as part of the supplementary materials (Table S3). Pagel’s λ [82] was
used to test for the presence of phylogenetic signal for these two continuously varying parameters.
This metric ranges from 0–1, where 0 indicates that the trait evolves independently of the phylogeny
and 1 indicates that the trait evolves according to the shared evolutionary history of the phylogeny’s
tips, i.e., presence of phylogenetic signal [83]. The metric has proven to be robust to incomplete
phylogenetic information and the presence of polytomies in the phylogenetic tree [84,85], making
it suitable for the present study. The analyses were conducted using the ‘phylosig’ function of the
‘phytools’ package [86], employing 10,000 simulations for significance testing.

3. Results

3.1. Strain Identification and Phylogenetic Analyses

All strains isolated as part of this study were identified to the genus level, based on BLAST [68]
search results of individual sequences, as belonging to either Burkholderia or Mesorhizobium.
All Burkholderia strains had at least 97% similarity to known South African strains, while the
Mesorhizobium strains were similar to rhizobial strains from various parts of the world. Strains isolated
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from the legume genera Aspalathus L. (except for Aspalathus callosa, Aspalathus capensis and A. carnosa),
Argyrolobium Eckl. & Zeyh., Otholobium C.H. Stirt. and Psoralea L. were identified as Mesorhizobium.
Burkholderia strains were from Amphithalea Eckl. & Zeyh., Aspalathus L., Bolusafra Kuntze., Dipogon
Liebm., Indigofera L., Lebeckia Thunb., Podalyria Willd., Rafnia Thunb. and Virgilia Poir. Phylogenetic
analyses were conducted separately for each of the two genera to allow for independent analyses
of phylogenetic signals within each genus. The aligned 16S rRNA matrix of Burkholderia consisted
of 67 strains and 1540 characters (total aligned length), while that of Mesorhizobium had 73 strains
and 1520 characters. The recA matrix for Burkholderia had 67 strains and 951 characters, while that
of Mesorhizobium had 67 strains and 886 characters. The Bayesian and ML analyses of the individual
chromosomal gene regions produced trees of similar topologies, and in all cases, the recA tree was
better resolved than that of the 16S rRNA. The trees from the concatenated matrices were better
resolved and more strongly supported (Figures 1 and 2) than the individual gene trees. The aligned
nodA matrix for Burkholderia had 74 rhizobial strains and 734 characters, while that of Mesorhizobium
had 41 strains and 674 characters. The Bayesian and ML trees had similar topologies and were well
supported (Figures 3 and 4). However, for both Burkholderia and Mesorhizobium, the nodA topologies
were incongruent to those of the chromosomal gene trees, suggesting disparate evolutionary histories
between the chromosomal and nodulation genes.
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Figure 1. Phylogenetic relationships of Burkholderia strains based on 16S ribosomic RNA (rRNA) and 
recombinase A (recA) data. Names of the legume hosts and the rhizobial strain numbers are in 
parentheses. Strain numbers with the prefixes OD- (i.e., collector name: Oscar Dlodlo) and MM-  
(i.e., collector name: Muthama Muasya) are from the study by Lemaire and co-workers [21]. All other 
strains were newly generated in this study. Maximum likelihood (ML) bootstrap (%) and Bayesian 
Inference (BI) posterior probabilities are shown above and below nodes, respectively. Colored circles 
indicate the soil types of the sites where the legumes and their symbionts were collected, blue: 
granite, pink: sandstone, yellow: shale. 

Figure 1. Phylogenetic relationships of Burkholderia strains based on 16S ribosomic RNA (rRNA)
and recombinase A (recA) data. Names of the legume hosts and the rhizobial strain numbers are in
parentheses. Strain numbers with the prefixes OD- (i.e., collector name: Oscar Dlodlo) and MM- (i.e.,
collector name: Muthama Muasya) are from the study by Lemaire and co-workers [21]. All other
strains were newly generated in this study. Maximum likelihood (ML) bootstrap (%) and Bayesian
Inference (BI) posterior probabilities are shown above and below nodes, respectively. Colored circles
indicate the soil types of the sites where the legumes and their symbionts were collected, blue: granite,
pink: sandstone, yellow: shale.
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Figure 2. Phylogenetic relationships of Mesorhizobium strains based on 16S rRNA and recA data. 
Names of the legume hosts and rhizobial strain numbers are in parentheses. Strain numbers with the 
prefixes OD- and MM- are from the study by Lemaire and co-workers [21]. The rest were newly 
generated in this study. ML bootstrap (%) and BI posterior probabilities are shown above and below 
nodes, respectively. Colored circles indicate the soil types of the sites where the legumes and their 
symbionts were collected, blue: granite; green: limestone; pink: sandstone, yellow: shale. 

Figure 2. Phylogenetic relationships of Mesorhizobium strains based on 16S rRNA and recA data. Names
of the legume hosts and rhizobial strain numbers are in parentheses. Strain numbers with the prefixes
OD- and MM- are from the study by Lemaire and co-workers [21]. The rest were newly generated
in this study. ML bootstrap (%) and BI posterior probabilities are shown above and below nodes,
respectively. Colored circles indicate the soil types of the sites where the legumes and their symbionts
were collected, blue: granite; green: limestone; pink: sandstone, yellow: shale.
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Figure 3. Phylogenetic relationships of Burkholderia strains based on N-acyltransferase (nodA) data. 
Names of the legume hosts and rhizobial strain numbers are in parentheses. Strain numbers with the 
prefixes OD- and MM- are from the study by Lemaire and co-workers [21]. The rest were newly 
generated in this study. ML bootstrap (%) and BI posterior probabilities are shown above and below 
nodes, respectively. Colored circles indicate the soil types of the sites where the legumes and their 
symbionts were collected, blue: granite; pink: sandstone, yellow: shale. 

Figure 3. Phylogenetic relationships of Burkholderia strains based on N-acyltransferase (nodA) data.
Names of the legume hosts and rhizobial strain numbers are in parentheses. Strain numbers with
the prefixes OD- and MM- are from the study by Lemaire and co-workers [21]. The rest were newly
generated in this study. ML bootstrap (%) and BI posterior probabilities are shown above and below
nodes, respectively. Colored circles indicate the soil types of the sites where the legumes and their
symbionts were collected, blue: granite; pink: sandstone, yellow: shale.
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Figure 4. Phylogenetic relationships of Mesorhizobium strains based on nodA data. Names of the 
legume hosts and rhizobial strain numbers are in parentheses. Strain numbers with the prefixes OD- 
and MM- are from the study by Lemaire and co-workers [21]. The rest were newly generated in this 
study. ML bootstrap (%) and BI posterior probabilities are shown above and below nodes, 
respectively. Colored circles indicate the soil types of the sites where the legumes and their 
symbionts were collected, blue: granite; green: limestone; pink: sandstone, yellow: shale. 

Figure 4. Phylogenetic relationships of Mesorhizobium strains based on nodA data. Names of the
legume hosts and rhizobial strain numbers are in parentheses. Strain numbers with the prefixes OD-
and MM- are from the study by Lemaire and co-workers [21]. The rest were newly generated in this
study. ML bootstrap (%) and BI posterior probabilities are shown above and below nodes, respectively.
Colored circles indicate the soil types of the sites where the legumes and their symbionts were collected,
blue: granite; green: limestone; pink: sandstone, yellow: shale.
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3.2. Analyses of Phylogenetic Signals

For Burkholderia, 72% of the strains occurred on sandstone, 24% on granite, 4% on shale and none
were on limestone-derived soils, whereas for Mesorhizobium, 54% of the strains were on sandstone,
20% on granite, 17% on shale and 9% on limestone-derived soils (Table S2). From the chromosomal gene
tree, a comparison of the phylogenetic D statistic with the random shuffling of parameter values along
the tips of the phylogeny showed a significant phylogenetic signal for sandstone (D = 0.133; p = 0.00)
and a strong phylogenetic signal for granite (D = −0.22; p = 0.00) for Burkholderia. Mesorhizobium
had significant phylogenetic signals for sandstone (D = 0.433; p = 0.0009) and granite (D = 0.252;
p = 0.0006) and a strong phylogenetic signal for limestone-derived (D = −0.359; p = 0.0006) soils
(Table 1). On the other hand, when the D statistic was compared to the Brownian threshold model,
all but the Mesorhizobium on shale-derived soils were as clumped on the phylogeny as expected under
a Brownian motion model (Table 1).

Table 1. Results of the tests of phylogenetic signals on soil types using the D statistic on the combined
chromosomal gene (16S ribosomic RNA (rRNA) and recombinase A (recA)), and the N-acyltransferase
(nodA) trees of Burkholderia and Mesorhizobium.

DNA Region Genus Soil Type D p-Value
Random Shuffle

p-Value
Brownian Motion

16S rRNA
and recA

Burkholderia
Granite

Sandstone
Shale

−0.220
0.133
0.956

0.00
0.00

0.375

0.717
0.384
0.144

Mesorhizobium

Granite
Limestone
Sandstone

Shale

0.252
−0.359
0.133
0.975

0.0006
0.0006
0.0009
0.419

0.235
0.744
0.056
0.001

nodA

Burkholderia
Granite

Sandstone
Shale

−0.208
0.082
0.617

0.00
0.00

0.160

0.715
0.424
0.291

Mesorhizobium

Granite
Limestone
Sandstone

shale

1.752
−0.871
0.162
0.492

0.833
0.0005
0.002
0.118

0.032
0.914
0.423
0.218

For the nodA phylogeny, Burkholderia showed similar patterns of phylogenetic signal as observed
for the chromosomal genes (Table 1). Despite having similar patterns to those of the chromosomal
genes for sandstone and limestone-derived soils, nodA results for Mesorhizobium showed evidence
of random dispersion of parameter values for granite-derived soils (D = 1.752; p = 0.833), with a
significant departure (p = 0.032) from a Brownian threshold model (Table 1), indicating a lack of
phylogenetic structure for this parameter.

Analyses based on the chromosomal gene trees showed significant phylogenetic signals for pH
for both Burkholderia (Pagel’s λ = 0.642; p = 0.019) and Mesorhizobium (Pagel’s λ = 0.508; p = 0.027).
On the other hand, altitude showed no significant phylogenetic signal on either Burkholderia (Pagel’s
λ = 0.402; p = 0.081) or Mesorhizobium (Pagel’s λ = 0.217; p = 0.097). Similar patterns were observed for
analyses based on the nodA trees of both rhizobial genera (Table 2).
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Table 2. Results of the tests of phylogenetic signals for altitude and pH using Pagel’s λ on the
chromosomal (16S rRNA and recA) and nodA trees of Burkholderia and Mesorhizobium.

Genus Gene Type Variable Pagel’s λ p-Values

Burkholderia
Chromosomal Altitude

pH
0.402
0.643

0.081
0.019

nodA Altitude
pH

0.093
0.840

0.389
0.0008

Mesorhizobium
Chromosomal Altitude

pH
0.217
0.508

0.097
0.027

nodA Altitude
pH

0.767
0.912

0.999
0.016

3.3. Diversity of Rhizobial Symbionts of Indigofera superba

In total, 87 and 86 strains were isolated and successfully sequenced for recA and nodC, respectively,
from I. superba and its sympatric legumes in Vogelgat Private Nature Reserve (South Africa). All strains
that were isolated from the root nodules of I. superba were identified (based on BLASTn searches on
GenBank) as Burkholderia, and the highest matches ( ≥ 95% similarity) were known Burkholderia species
from South Africa, i.e., Burkholderia dilworthii, Burkholderia kirstenboschensis, Burkholderia rhynchosiae,
Burkholderia sprentiae and Burkholderia tuberum. The highest matching (% similarity) GenBank sequences
for the various strains are provided as part of the supplementary materials (Table S1). On the other
hand, all strains isolated from P. pullata, which occurs in sympatry with I. superba, were Mesorhizobium.
The BI and ML analyses of the recA and nodC matrices produced some fairly resolved and supported
topologies (Figures 5 and 6). Indigofera superba symbionts were part of multiple distinct clades, most of
which included strains isolated from other legume species that occur outside its distribution range in
the CCR in both the recA and the nodC trees (Figures 5 and 6).
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Figure 5. (A) Phylogenetic relationships of rhizobial strains based on recA data, showing the 
phylogenetic position of strains isolated from Indigofera superba (red nodes) in relation to rhizobial 
strains of other legumes in the CCR, blue: Mesorhizobium strains; black: Burkholderia, green: outgroup. 
(B) Detailed version of Figure 5A), showing the tip labels and ML Bootstrap support values (%) 
above the nodes and Bayesian posterior probabilities, below the branches. 
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Figure 5. (A) Phylogenetic relationships of rhizobial strains based on recA data, showing the
phylogenetic position of strains isolated from Indigofera superba (red nodes) in relation to rhizobial
strains of other legumes in the CCR, blue: Mesorhizobium strains; black: Burkholderia, green: outgroup.
(B) Detailed version of Figure 5A), showing the tip labels and ML Bootstrap support values (%) above
the nodes and Bayesian posterior probabilities, below the branches.
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Figure 6. (A) Phylogenetic relationships of rhizobial strains based on nodC data, showing the
phylogenetic position of strains isolated from I. superba (red nodes) in relation to rhizobial strains
of other legumes in the CCR, blue: Mesorhizobium strains; and black: Burkholderia strains. (B) Detailed
version of Figure 6A), showing the tip labels and ML and Bootstrap support values (%) above branches
and Bayesian posterior probabilities below branches.
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4. Discussion

The main objective of this study was to determine if the three ecological parameters, altitude,
pH and soil type, show phylogenetic structuring for the two predominant rhizobial genera, Burkholderia
and Mesorhizobium [21], in the Core Cape Subregion of South Africa. For both genera, the results
showed significant phylogenetic signals for soil type and pH, but not for altitude. Soil type can
be viewed as an indicator of the nutrient status of the habitats based on the literature [87,88] and
on the results of Dludlu and co-workers [57], which showed that sandstone habitats are the most
nutrient-impoverished relative to the granite and shale substrates. Limestone soils are generally more
fertile than the granite, sandstone and shale substrates [48,89]. Soil type is also related to pH, with the
following general ranges, sandstone pH: 3–4.5, granite pH: 4.5–5.5, shale pH: 5.5–6.5 and limestone
pH: > 6.5 [48,88,90]. Therefore, it is unsurprising that the results show similar patterns for pH and
soil type.

Consistent with previous studies [14,34], Burkholderia strains showed a preference for acidic soils,
as indicated by the large proportion (72%) of its strains that were collected from the highly acidic
sandstone habitats and its complete absence in the limestone habitats, which have alkaline conditions
(Table S2). The findings of significant phylogenetic signals on the acidic sandstone and granite habitats
indicate that in addition to the genus-wide preference for acidic conditions, Burkholderia strains are not
randomly distributed within these soil types, but closely-related strains tend to occupy similar habitats
with respect to soil type and pH. Thus, these ecological parameters have a significant influence on
Burkholderia’s distribution within the CCR landscape. On the other hand, the results indicated that
Mesorhizobium tolerates a wider range of soil types and pH conditions because it had nearly equal
proportions of its strains isolated from the highly acidic and infertile sandstones and the higher pH
and nutrient rich substrates (Table S2). The finding of significant phylogenetic signals for granite,
limestone and sandstone and for pH indicates that despite the wider tolerance range of Mesorhizobium
as a genus, the distribution of various strains is phylogenetically structured. Thus, for each of the
different soil types and pH conditions of the CCR, there are particular strains of Mesorhizobium that are
adapted to them. This is consistent with observations from other biomes showing that Mesorhizobium
species exhibit high diversity in their tolerance to various pH conditions [27,37,91]. This could explain
the predominance of Mesorhizobium (in addition to Burkholderia) in the CCR [21]. Overall, the results
suggest that Mesorhizobium has a wider soil type and pH tolerance range than Burkholderia, and strains
of both genera exhibit phylogenetic clustering within their distribution ranges.

The finding of a significant phylogenetic signal for granite-derived soils (for Mesorhizobium)
based on the chromosomal gene tree, versus a lack of phylogenetic signal for the same parameter
on the nodA tree suggests that the chromosomal and nodulation genes have different evolutionary
histories, possibly due to horizontal inheritance of the nodulation genes. This would be unsurprising
as studies [20,78] show that horizontal gene transfer (HGT) is a common phenomenon among CCR
rhizobia, leading to conflicting phylogenetic signals between chromosomal and nodulation genes.

The observed variation in the biogeographical structuring of the different rhizobia with respect to
soil type and pH has implications for the biogeography of legumes in the CCR. This is particularly the
case considering that distinct edaphic habitats are characterized by discrete legume assemblages in
the Cape Peninsula [57], which points to an important role of edaphic factors in driving legume
biogeography. Considering that soil nutrients are a limiting factor to plants in the CCR [48],
the ecological advantage that nitrogen fixation confers on legumes must be key to their success
in such an environment. Therefore, if edaphic factors also limit the distribution of rhizobia,
legumes that exhibit high rhizobial specificity, e.g., species of the tribe Podalyrieae, which are only
nodulated by Burkholderia [21], might fail to establish in habitats that are unsuitable for their rhizobial
symbionts [51,52]. In such a case, the biogeography of such legumes would also be driven by the
distribution of their specific symbionts. This could explain the sparse representation of the tribe
Podalyrieae in the limestone habitats (three out of 104 species), whereas most of its species occur in
sandstone habitats (i.e., where Burkholderia are the predominant symbionts) in the CCR [92]. On the



Genes 2018, 9, 2 17 of 23

contrary, promiscuous legume lineages, e.g., Aspalathus and Indigofera, or those that are nodulated by
Mesorhizobium, e.g., Psoralea and Otholobium [21], are widespread in diverse soil types of the CCR [92].
These patterns suggest that rhizobia play a significant role in the distribution of legumes in the CCR.
Furthermore, in a glasshouse experiment where legumes from the Fynbos and Grassland biomes
were grown in soils from both biomes, Fynbos legumes were only able to nodulate in Fynbos soil
(Lemaire and co-workers, unpublished [93]). This indicates a potential role of rhizobia specificity in
driving the distribution of legumes in the various biomes of Southern Africa. This, therefore, opens up
avenues for further research. For example, can rhizobia specificity explain why some Cape clades that
occur outside the Fynbos are restricted to sandstone habitats? Furthermore, why are genistoid legumes
that occur in the CCR nodulated by Mesorhizobium [21], whereas those of the Great Escarpment are
nodulated by Bradyrhizobium? [23].

Although altitude is highly heterogeneous and it has been found to play a significant role in
driving plant diversification in the CCR [47], the results of the present study showed no evidence
of phylogenetic structuring of the two predominant rhizobial genera, for this ecological parameter.
Similar results were obtained in the study conducted by Lemaire and co-workers [21] for both the
chromosomal (16S rRNA) and nodA genes of Mesorhizobium. Likewise, the nodA genetic diversity in
Burkholderia was not significantly correlated with altitude [21]. The only disparity is that they [21]
found a positive correlation between altitude and genetic diversity of 16S rRNA for Burkholderia.
The disparity is likely because the current study considered overall phylogenetic signals based on
a combination of both 16S rRNA and recA, whereas the previous study only considered genetic
distances of a single chromosomal marker: 16S rRNA. These findings are contrary to the observed
biogeographic structuring of Burkholderia communities along altitudinal gradients in Brazil [14]. Such
conflicting results have also been observed in other rhizobial genera, e.g., Sinorhizobium in Northern
China, where the diversity of nodule isolates from different sites was correlated with altitude [42],
versus central China, where they found no correlation between altitude and the genetic variation
of rhizobial strains cultured from soils collected from sites of different altitudes [94]. Although the
latter study was conducted under glasshouse conditions while the former was based on field nodules,
the soils used for the trapping experiments were from sites of different altitudes [94], which validates
comparing the two studies. Considering that the glasshouse trapping experiments were conducted
under the same conditions for all the different soils, changes in rhizobial diversity (if any) as a result of
the glasshouse conditions would have to be homogeneous across the samples. However, the sampling
of the present study and that of Lemaire and co-workers [21] spanned an altitude range of 10–1000 m
above sea level, whereas the highest altitude in the CCR is 2249 m [47]. Thus, the current data may not
be sufficient to allow for conclusive inferences on the role of altitude in rhizobial biogeography for the
region. Hence, future studies, sampling higher altitude areas could allow for further investigation of
the effect of altitude on rhizobia diversity and turnover in the CCR.

The finding that all strains isolated from the root nodules of the rare I. superba belong to the genus
Burkholderia (despite the availability of Mesorhizobium, which was isolated from its sympatric species,
P. pullata) suggests a potential symbiotic specificity at the generic level. However, the dispersion
of the different strains in several distinct clades points towards association with multiple divergent
lineages within the genus Burkholderia. If these strains that cluster with divergent lineages are capable
of nodulating I. superba, it would be a similar scenario to that of the widespread P. calyptrata, which is
nodulated by strains from several distinct lineages within Burkholderia [53], i.e., no symbiotic specificity
at the intragenic level. The results also suggest that the strains isolated from I. superba are not genetically
distinct since they were part of various clades that included strains isolated from legumes that occur
outside its distribution range. Overall, these results lead to the hypothesis that I. superba does not
exhibit rhizobia specificity at the intragenic level. More studies are required to test this hypothesis,
and this could involve testing if the various strains are able to induce nodulation on I. superba and
determining if I. superba is able to form nodules in soils from outside its distribution range. A lack



Genes 2018, 9, 2 18 of 23

of nodulation from these soils would indicate that the restricted distribution of I. superba is due to
rhizobia specificity.

5. Conclusions

The study of the legume-rhizobia relationship in Southern Africa is still at its infancy, and although
the CCR has received more attention relative to the rest of the sub-continent, only a small proportion
of its legume diversity has been studied. Nevertheless, the patterns that are emerging from these
few studies suggest that these below ground mutualists of the legumes might be significant drivers
of the distribution of legumes in the CCR. The findings of the present study suggest that while
Burkholderia has an affinity for the acidic and nutrient-poor soils of the CCR, Mesorhizobium has a wider
soil type and pH tolerance range, allowing various strains to thrive in habitats of varying edaphic
stress. The presence of such ecologically diverse symbionts, coupled with the edaphic heterogeneity
of the CCR landscape provide opportunities for the legumes to diversify, and this might explain the
high species richness of the family. With the finding that rhizobia contribute towards the structuring
of legume assemblages in the CCR, it is plausible that rhizobia also have a strong influence on the
structuring of legume assemblages within and across the different biomes of Southern Africa, and this
provides a potential direction for future research.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4425/9/1/2/s1. Table S1:
BLASTn search results for the various rhizobial strains isolated for this study, Table S2: List of rhizobial strains
with binary scoring of their soil types, Table S3: List of rhizobial strains used with the altitude and pH data of
their sites.

Acknowledgments: The authors would like to thank Benny Lemaire and Edward Chirwa for assistance with
field and laboratory experiments. The Table Mountain National Parks (Cape Research Centre, Tokai, Cape Town,
Western Cape, South Africa and the Vogelgat Private Nature Reserve (Hermanus, Western Cape, South Africa) are
acknowledged for providing permits to conduct the research within their reserves. Funding for this research was
provided by the National Research Foundation of South Africa (Grant Number 81818: Biology of Cape Legumes).
Two anonymous reviewers, who commented on an earlier version of the manuscript, are gratefully acknowledged.

Author Contributions: All authors conceived of and designed the experiments. M.N.D. performed the
experiments and analyzed the data. A.M.M and S.B.M.C. contributed reagents and materials. C.H.S. identified the
legume specimens. M.N.D wrote the paper with contributions from all authors. All authors read and approved
the final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design of
the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; nor in the decision
to publish the results.

References

1. Martiny, J.B.H.; Bohannan, B.J.; Brown, J.H.; Colwell, R.K.; Fuhrman, J.A.; Green, J.L.; Horner-Devine, M.C.;
Kane, M.; Krumins, J.A.; Kuske, C.R. Microbial biogeography: Putting microorganisms on the map.
Nat. Rev. Microbiol. 2006, 4, 102–112. [CrossRef] [PubMed]

2. Queloz, V.; Sieber, T.N.; Holdenrieder, O.; McDonald, B.A.; Grünig, C.R. No biogeographical pattern for
a root-associated fungal species complex. Glob. Ecol. Biogeogr. 2011, 20, 160–169. [CrossRef]

3. Yang, J.; Smith, H.G.; Sherratt, T.N.; Wilkinson, D.M. Is there a size limit for cosmopolitan distribution in
free-living microorganisms? A biogeographical analysis of testate amoebae from polar areas. Microb. Ecol.
2010, 59, 635–645. [CrossRef] [PubMed]

4. O’Malley, M.A. The nineteenth century roots of ‘Everything is Everywhere’. Nat. Rev. Microbiol. 2007, 5,
647–651. [CrossRef] [PubMed]

5. Fontaneto, D.; Barraclough, T.G.; Chen, K.; Ricci, C.; Herniou, E.A. molecular evidence for broad-scale
distributions in bdelloid rotifers: Everything is not everywhere but most things are very widespread.
Mol. Ecol. 2008, 17, 3136–3146. [CrossRef] [PubMed]

6. Fontaneto, D.; Hortal, J. Microbial biogeography: Is everything small everywhere. In Microbial Ecological
Theory: Current Perspectives; Ogilvie, L.A., Hirsch, P.R., Eds.; Caister Academic Press: Norfolk, UK, 2012;
pp. 87–98.

www.mdpi.com/2073-4425/9/1/2/s1
http://dx.doi.org/10.1038/nrmicro1341
http://www.ncbi.nlm.nih.gov/pubmed/16415926
http://dx.doi.org/10.1111/j.1466-8238.2010.00589.x
http://dx.doi.org/10.1007/s00248-009-9615-8
http://www.ncbi.nlm.nih.gov/pubmed/19956939
http://dx.doi.org/10.1038/nrmicro1711
http://www.ncbi.nlm.nih.gov/pubmed/17603517
http://dx.doi.org/10.1111/j.1365-294X.2008.03806.x
http://www.ncbi.nlm.nih.gov/pubmed/18522694


Genes 2018, 9, 2 19 of 23

7. Geml, J. Altitudinal Gradients in Mycorrhizal Symbioses. In Biogeography of Mycorrhizal Symbiosis;
Tedersoo, L., Ed.; Springer: New York, NY, USA, 2017; pp. 107–123.

8. Rout, M.E.; Callaway, R.M. Interactions between exotic invasive plants and soil microbes in the rhizosphere
suggest that ‘everything is not everywhere’. Ann. Bot. 2012, 110, 213–222. [CrossRef] [PubMed]

9. Sánchez-Ramírez, S.; Wilson, A.W.; Ryberg, M. Overview of phylogenetic approaches to mycorrhizal
biogeography, diversity and evolution. In Biogeography of Mycorrhizal Symbiosis; Tedersoo, L., Ed.; Springer:
New York, NY, USA, 2017; pp. 1–37.

10. Shen, C.; Xiong, J.; Zhang, H.; Feng, Y.; Lin, X.; Li, X.; Liang, W.; Chu, H. Soil pH drives the spatial
distribution of bacterial communities along elevation on changbai mountain. Soil Biol. Biochem. 2013, 57,
204–211. [CrossRef]

11. Telford, R.J.; Vandvik, V.; Birks, H.J.B. Dispersal limitations matter for microbial morphospecies. Science 2006,
312, 1015. [CrossRef] [PubMed]

12. Whitaker, R.J.; Grogan, D.W.; Taylor, J.W. Geographic barriers isolate endemic populations of
hyperthermophilic archaea. Science 2003, 301, 976–978. [CrossRef] [PubMed]

13. Sprent, J.I.; Ardley, J.; James, E.K. Biogeography of nodulated legumes and their nitrogen-fixing symbionts.
New Phytol. 2017, 215, 40–56. [CrossRef] [PubMed]

14. Bontemps, C.; Elliott, G.N.; Simon, M.F.; Dos Reis Junior, F.B.; Gross, E.; Lawton, R.C.; Neto, N.E.;
Louriero, D.M.; De Faria, S.M.; Sprent, J.I. Burkholderia species are ancient symbionts of legumes. Mol. Ecol.
2010, 19, 44–52. [PubMed]

15. Bontemps, C.; Rogel, M.A.; Wiechmann, A.; Mussabekova, A.; Moody, S.; Simon, M.F.; Moulin, L.;
Elliott, G.N.; Lacercat-Didier, L.; Dasilva, C. Endemic Mimosa species from Mexico prefer alphaproteobacterial
rhizobial symbionts. New Phytol. 2016, 209, 319–333. [CrossRef] [PubMed]

16. De Meyer, S.E.; Briscoe, L.; Martínez-Hidalgo, P.; Agapakis, C.M.; de-los Santos, P.E.; Seshadri, R.; Reeve, W.;
Weinstock, G.; O’Hara, G.; Howieson, J.G. Symbiotic Burkholderia species show diverse arrangements of
nif /fix and nod genes and lack typical high-affinity cytochrome cbb3 oxidase genes. Mol. Plant Microbe Interact.
2016, 29, 609–619. [CrossRef] [PubMed]

17. Zheng, J.Z.; Wang, R.; Liu, R.R.; Chen, J.J.; Wei, Q.; Wu, X.Y.; Pang, X.W.; James, E.K.; Liu, X.Y. The structure
and evolution of beta-rhizobial symbiotic genes deduced from their complete genomes. Immunome Res.
2017, 13. [CrossRef]

18. Lemaire, B.; Chimphango, S.B.; Stirton, C.; Rafudeen, S.; Honnay, O.; Smets, E.; Chen, W.M.; Sprent, J.;
James, E.K.; Muasya, A.M. Biogeographical patterns of legume-nodulating Burkholderia spp.: From African
Fynbos to continental scales. Appl. Environ. Microbiol. 2016, 82, 5099–5115. [CrossRef] [PubMed]

19. Ojha, A.; Tak, N.; Rathi, S.; Chouhan, B.; Rao, S.R.; Barik, S.K.; Joshi, S.R.; Sprent, J.I.; James, E.K.;
Gehlot, H.S. Molecular characterization of novel Bradyrhizobium strains nodulating Eriosema chinense and
Flemingia vestita, Important unexplored native legumes of the Sub-Himalayan region (Meghalaya) of India.
Syst. Appl. Microbiol. 2017, 40, 334–344. [CrossRef] [PubMed]

20. Beukes, C.W.; Venter, S.N.; Law, I.J.; Phalane, F.L.; Steenkamp, E.T. South African papilionoid legumes
are nodulated by diverse Burkholderia with unique nodulation and nitrogen-fixation loci. PLoS ONE 2013,
8, e68406. [CrossRef] [PubMed]

21. Lemaire, B.; Dlodlo, O.; Chimphango, S.; Stirton, C.; Schrire, B.; Boatwright, J.S.; Honnay, O.; Smets, E.;
Sprent, J.; James, E.K. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the
Core Cape Subregion (South Africa). FEMS Microbiol. Ecol. 2015, 91, 2–17. [CrossRef] [PubMed]

22. Gerding, M.; O’Hara, G.W.; Bräu, L.; Nandasena, K.; Howieson, J.G. Diverse Mesorhizobium spp. with unique
nodA nodulating the South African legume species of the genus Lessertia. Plant Soil 2012, 358, 385–401.
[CrossRef]
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