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Abstract: Protein–protein interactions (PPI) are key to protein functions and regulations within the
cell cycle, DNA replication, and cellular signaling. Therefore, detecting whether a pair of proteins
interact is of great importance for the study of molecular biology. As researchers have become
aware of the importance of computational methods in predicting PPIs, many techniques have been
developed for performing this task computationally. However, there are few technologies that
really meet the needs of their users. In this paper, we develop a novel and efficient sequence-based
method for predicting PPIs. The evolutionary features are extracted from the position-specific
scoring matrix (PSSM) of protein. The features are then fed into a robust relevance vector machine
(RVM) classifier to distinguish between the interacting and non-interacting protein pairs. In order
to verify the performance of our method, five-fold cross-validation tests are performed on the
Saccharomyces cerevisiae dataset. A high accuracy of 94.56%, with 94.79% sensitivity at 94.36% precision,
was obtained. The experimental results illustrated that the proposed approach can extract the most
significant features from each protein sequence and can be a bright and meaningful tool for the
research of proteomics.

Keywords: protein–protein interactions (PPI); low rank; protein sequence; relevance vector machine
(RVM); evolutionary information

1. Introduction

Protein–protein interactions (PPI) are a key step in the realization of protein function within
cell cycle progression, DNA replication, and signal transmission [1–3]. With the development of
high-throughput biological technologies, including a yeast two-hybrid screen (Y2H) [4], protein chip
technology [5], mass spectrometry [6], and tandem affinity purification tagging (TAP) [7], more PPI
data have been accumulated [8]. PPI datasets have been stored in a number of constructed databases,
such as the Molecular Interaction database (MINT), the Database of Interacting Proteins (DIP), and the
Biomolecular Interaction Network Database (BIND) [8–10]. However, experimental methods are
labor-intensive and time-consuming. The number of PPIs that are validated by these methods
represents only a small portion of the entire PPI network. Moreover, the experimental methods
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are usually associated with a high rate of both false negative and false positive predictions. All of these
drawbacks encourage further research into a computational approach for identifying PPIs.

Different kinds of available protein data are obtained by previous experimental methods, such as
the primary, secondary, and tertiary structure of proteins. In order to utilize this wealth of protein data,
numerous machine learning approaches have been designed to infer new PPIs. It is popular, among these
approaches, to predict PPIs based on the structure of the protein information. For example, Agrawal
et al. [11] proposed a computational tool—named a spatial interaction map (SIM)—that utilizes the
structure of unbound proteins to detect the residues from PPIs. Qiu et al. [12] presented a novel residue
characterization model, based on 3D structures, for the purpose of detecting PPIs. These computational
methods—based on structural data—identify the interaction domain by analyzing the hydrophobicity,
solvation, protrusion, and accessibility of residues. Since the volume of newly discovered protein sequence
data is increasing exponentially, there is an increasingly larger gap between the volume of complex protein
structure data, and that of protein sequence data [13,14]. Predicting PPIs based on structure data does not
satisfy the requests of the many biochemists who have the sequences, but no structural data. Therefore,
it is more important to develop effective computational models based on protein sequence data.

Currently, there are a number of different computational methods designed to implement this
pattern in PPI prediction [15–23]. The common computational models for PPI prediction are composed
of two key parts, namely, protein feature representation and sample classification. The purpose of
the first step is to represent the proteins with useful attributes and transform the samples into feature
vectors that are the same size as the sample classifier’s inputs. Effective feature descriptors can play
an important role in improving the prediction performance of the system.

Previous studies have shown that the evolutionary information on proteins may play a crucial
role in predicting PPIs [24,25]. However, it is not easy to include evolutionary information in a protein
sequence [26–28]. There is currently no single protein presentation method that takes full advantage
of protein evolutionary information. Additionally, sequence evolution information is more difficult
to use because of the differences in protein sequence length. In the face of such difficulties, how do
we design a way to use the evolution information of proteins to implement the prediction of PPIs
efficiently? In order to overcome this problem, we proposed a novel scheme that uses a position-specific
scoring matrix (PSSM) to translate the protein sequence into a matrix, in which both the evolutionary
information and the amino acid composition are included. Following this, we introduced a low-rank
approximation (LRA) method to find the lowest level representation of all of the candidates and
accurately recover the row space of the data to achieve high precision.

With regards to the second issue, some machine learning algorithms—such as random forests,
neural networks, ensemble classifiers, random projections, and Naïve Bayes classifiers—are proposed
for detecting PPIs to improve the accuracy of the prediction model [29–31]. The main trend in
computational PPI detection is to achieve the highest precision, rather than speed, in the training
of the classified model. Recently, relevance vector machines (RVMs) are a new statistical learning
technique that provide the output of the probability classification, which uses Bayesian inferences to
obtain a concise solution for the regression and classification [32]. Unlike support vector machines
(SVM), RVM classifiers—with fewer input variables—provide better classification estimates for small,
high dimensional datasets [33]. In this paper, the performances of RVMs and SVMs for classifying PPIs
were compared. Using the PPI dataset, we show that the proposed method can quickly and effectively
differentiate interactive protein pairs from large-scale data. The results of the experiment indicate that
the proposed technique can complement experimental approaches for identifying PPI interactions.

In this paper, we proposed a novel protein representation method using protein evolutionary
information. The main improvement was attributed to the use of LRA, a PSSM, and RVMs. In particular, we
first used an LRA method on a PSSM that represented protein in a matrix form to obtain the feature vectors
of the protein. Following this, the principal component analysis (PCA) method was employed to eliminate
some of the noise and reduce the dimensions of the feature vectors. Finally, we used RVM classifiers to
carry out the test. The proposed method was performed on the Yeast PPI dataset. The experimental results
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show that it is superior to SVM-based methods and other excellent technology that has been developed
previously. Therefore, this approach is fit for predicting PPIs. Additionally, a user-friendly web server for
predicting PPIs, PCLPred, was developed for academic users at http://219.219.62.123:8888/pclpred/.

The rest of this paper is organized as follows: Section 2 introduces the test results obtained from
applying the proposed method, the SVM-based method, and several other existing methods. Section 3
describes the proposed approach. Section 4 summarizes the work presented in this paper.

2. Results and Discussion

2.1. Five-Fold Cross-Validation

In this study, five-fold cross-validation methods were utilized to compare the performance of
this model with other competing approaches. The whole PPI dataset is randomly divided into
five roughly-equivalent subsets, each containing approximately equal amounts of interacting and
non-interacting proteins. Four of the subsets are used for training and the remaining one is used for
the test. This process is repeated five times, using a different subset of the test each time. The average
of the five results is then calculated to ensure the highest level of fairness.

2.2. Comparison with the SVM-Based Approach Using the Same Feature Representation

In order to effectively assess the performance of the SVM classifier, we compared its performance
with that of a state-of-the-art SVM classifier with the same feature extraction method on the Yeast
dataset [34]. The LIBSVM (A Library for Support Vector Machines) tool provides an interface to
facilitate the use of the SVM classifier. The cross-validation strategy is employed to optimize the
related parameters of the SVM. Consequently, the parameters (c, g) are set to 0.8 and 0.4, respectively.
Furthermore, the radial basis function is taken as the kernel function.

The result of applying the two methods to the Yeast dataset are presented in Table 1, and the
corresponding receiver operating characteristic (ROC) curves are shown in Figure 1. The prediction
performance of the SVM classifier can be seen, from Table 1, to have achieved 89.4% accuracy,
88.5% sensitivity, 90.3% specificity, and 81.1% Matthews Correlation Coefficient (MCC). The average
prediction results of applying the RVM classifier were 94.6% accuracy (which is 5.2% higher than the
SVMs classifier) and 94.8% sensitivity (which is 6.3% higher than SVMs classifier). Several other
indicators of the RVM classifier’s performance—shown in Table 1—are 4.0% above the performance
of the SVM classifier. This comparison proves that the effect of using the RVM classifier to predict
PPIs can be clearly distinguished from the effect of using the SVM classifier. Additionally, Figure 1
indicates that the ROC curves of the two classifiers also show that RVM classifier can be more powerful
in detecting PPI performance than the SVM classifier.

Figure 1. A comparison of the receiver operating characteristic (ROC) curves of the relevance vector
machines (RVMs) classifier and the support vector machines (SVMs) classifier on the Yeast dataset.

http://219.219.62.123:8888/pclpred/
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Table 1. Five-fold cross-validation results shown using our proposed method on the Yeast dataset.

Model Testing Set Accuracy Sensitivity Specificity PPV NPV MCC

PSSM+
LR+RVM

1 94.7% 95.4% 94.0% 93.9% 95.46% 89.3%
2 95.3% 96.1% 94.5% 94.7% 95.96% 91.1%
3 93.9% 93.9% 93.8% 93.8% 93.91% 88.5%
4 93.8% 93.6% 94.1% 94.4% 93.22% 88.4%
5 95.1% 94.9% 95.2% 94.9% 95.2% 90.6%

Average 94.6 ± 0.6% 94.8 ± 1.0% 94.3 ± 0.5% 94.3 ± 0.4% 94.75 ± 1.1% 89.6 ± 1.2%

PSSM+
LR+SVM

1 88.3% 87.3% 89.3% 88.8% 87.8% 79.4%
2 89.3% 89.4% 89.1% 89.2% 89.3% 80.8%
3 89.8% 89.2% 90.3% 90.7% 88.8% 81.6%
4 89.7% 88.3% 91.2% 90.9% 88.6% 81.6%
5 90.0% 88.4% 91.5% 90.8% 89.2% 81.9%

Average 89.4 ± 0.6% 88.5 ± 0.8% 90.3 ± 1.0% 90.1 ± 1.0% 88.7 ± 0.5% 81.1 ± 1.0%

SVM: support vector machine; PSSM: position specific scoring matrix; AB: average blocks; RVM: relevance vector
machine; PPV: Positive Predictive Value; NPV: Negative Predictive Value; MCC: Matthews Correlation Coefficient.

The reasons for this method producing better classification results come from the following points:
(1) Based on a Bayesian framework to build a learning machine, the RVM classifier is conducive to
making more scientific decisions based on the information; (2) in the choice of the kernel function,
the RVM classifier is not limited by the Mercer theorem, and can construct any kernel function; (3) there
is no need to set penalties. The penalty factor in the SVM classifier is a constant that balances the
empirical risk and the confidence interval. The experimental results are very sensitive to the data.
An improper setting may cause over-learning and other problems. The parameters in the RVM
classifier, however, are automatically assigned; (4) compared to the SVM classifier, the RVM classifier
is sparser, which means that the test time is shorter, making it more suitable for online testing. It is
well known that the number of SVM support vectors grows linearly with the increase of the training
samples, which is obviously not convenient when the training samples are very large. Although
the RVM correlation vector also increases with the training samples, the growth rate is much slower
than that of the SVM support vectors; and (5) previous research indicates that the RVM classifier has
a better generalization performance than the SVM classifier. Additionally, when compared with the
SVM classifier, the RVM classifier not only produces a binary output, but also gets the probability of
the output.

2.3. A Comparison of the Proposed Method with Other Methods

Currently, many methods that are based on machine learning theory have been proposed for
sequences-based PPIs. To assess the ability of the proposed approach, several existing techniques [35]
are applied to the Yeast dataset and their results are compared to the results of our method.
The comparison of the results of these methods is listed in Table 2. Table 2 clearly indicates that
the proposed method achieved the highest average accuracy (94.6%) out of all of these methods. At the
same time, the sensitivity and precision of the proposed technique are also superior to those of the
other techniques. All of these results indicated that the RVM classifier, using the features vector that
was extracted by the PSSM, LRA, and the PCA method, can substantially improve the quality of PPI
prediction. This is mainly because of the efficient feature extraction strategy and the powerful classifier.
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Table 2. The prediction ability of the different methods on the Yeast dataset.

Model Testing Set Acc (%) Sen (%) Pre (%) Mcc (%)

Guos’ work [35]
ACC 89.3 ± 2.6 89.9 ± 3.6 88.8 ± 6.1 N/A
AC 87.4 ± 1.3 87.3 ± 4.6 87.8 ± 4.3 N/A

Zhous’ work [36] SVM+LD 88.6 ± 0.3 87.4 ± 0.2 89.5 ± 0.6 77.2 ± 0.7

Yangs’ work [37]

Cod1 75.1 ± 1.1 75.8 ± 1.2 74.8 ± 1.2 N/A
Cod2 80.0 ± 1.0 76.8 ± 0.6 82.2 ± 1.3 N/A
Cod3 80.4 ± 0.4 78.1 ± 0.9 81.7 ± 0.9 N/A
Cod4 86.2 ± 1.1 81.0 ± 1.7 90.2 ± 1.3 N/A

Yous’ work [38] PCA-EELM 87.0 ± 0.2 86.2 ± 0.4 87.6 ± 0.3 77.4 ± 0.4

Proposed method LRA+RVM 94.6 ± 0.6 94.8 ± 1.0 94.4 ± 0.4 89.6 ± 1.2

ACC: Auto Covariance; LD: Local Description; PCA: Principal Component Analysis; EELM: Ensemble Extreme
Learning Machines; N/A: Not Available; Acc: Accuracy; Sen: sensitivity; Pre: precision; Mcc: Matthew’s
Correlation Coefficient.

2.4. An Assessment of the Prediction Performance on the Helicobacter pylori PPI Dataset

In order to further investigate the prediction performance of our approach, we also compared
the proposed approach with several other existing methods on the Helicobacter pylori PPI dataset.
The prediction results for the abovementioned methods are reported in Table 3. In order to achieve a fair
measure of randomness, we calculated the average of the measure values over five runs. We can observe
from Table 3 that this method can achieve a good result, with 84.7% accuracy, 85.9% precision, and 84.4%
sensitivity. It should be noticed that the precision and accuracy achieved by the proposed method are
superior to those of the other methods.

Table 3. The prediction ability of the different methods on the Helicobacter pylori protein–protein
interactions (PPIs) dataset.

Methods Acc(%) Sen (%) Pre (%) Mcc (%)

HKNN 84.0 86.0 84.0 N/A
Phylogenetic

bootstrap 75.8 69.8 80.2 N/A

Signature
Products 83.4 79.9 85.7 N/A

Boosting 79.5 80.4 81.7 N/A
Proposed method 84.7 ± 1.0 84.4 ± 1.2 85.9 ± 0.8 76.7 ± 1.0

HKNN: Hyperplane Distance Nearest Neighbor.

3. Materials and Methods

3.1. Dataset

In this paper, the proposed approach was verified on the high-confidence Yeast and
Helicobacter pylori PPI datasets. We gathered the Yeast dataset from the publicly available Database
of Interacting Proteins (DIP) [8]. For the purpose of ensuring the effectiveness of the experiment,
we removed the protein pairs of less than fifty residues and greater than 40% sequence identity.
By performing this screening work, the remaining 5594 protein pairs are reserved for building
the positive dataset. The additional 5594 non-interacting protein pairs, with different subcellular
localizations, were then used to build the negative dataset. As a result, the whole Yeast dataset finally
consisted of 11,188 protein pairs. In order to further verify the general applicability of the proposed
method, we also evaluated our method on the Helicobacter pylori PPI dataset. In total, we obtained 1458
positive samples and 1458 negative samples, as described by Martin et al. [39].
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3.2. Position Specific Scoring Matrix (PSSM)

PSSM is a type of scoring matrix that was proposed by Gribskov et al. [24]. It is used to
perform BLAST (Basic Local Alignment Search Tool) searches, where amino acid substitution scores
are assigned to a specific location in the proteins’ multiple sequence alignments. It has been
successfully applied in various fields of biological information because it contains the evolutionary
information of proteins. PSSM is represented as a T × 20 matrix that can be interpreted as
M =

{
ci,j : i = 1 · · · T and j = 1 · · · 20

}
. The representation of PSSM is as follows:

M =


c1,1 c1,2 · · · c1,20

c2,1 c2,2 · · · c2,20
...

...
...

...
cL,1 cL,2 · · · cL,20

 (1)

The elements in this matrix are generally expressed as integers (negative or positive). A higher
score indicates that a given amino acid substitution occurs frequently in the alignment, while a lower
score indicates a lower frequency of the substitution.

We created the PSSM using a Position-Specific Iterated BLAST (PSI-BLAST, Bethesda, MD, USA),
which found a protein sequence that was similar to the query sequence, and then constructed the
PSSM from the obtained alignment. In this work, we set the number of iterations to three and the
e-value to 0.001 and t, respectively, in order to obtain a highly broad homologous sequence.

3.3. Low-Rank Approximation (LRA)

LRA is a widely used method for matrix analysis, where the cost function measures the fit between
an approximation matrix (optimization variable) and a given sparse matrix, constrained by the reduced
rank of the approximation matrix [40,41]. In this case, using LRA on the PSSM of the obtained protein
sequences results in a descriptor containing evolutionary information that is used for representing
a protein. For a 20 × L feature matrix N, the LRA would be written as follows:

min
N̂
‖N − N̂‖F (2)

Subject to : rank(N̂) ≤ r (3)

where ‖•‖F represents the Frobenius norm. Formula (2) is solved using the singular value
decomposition (SVD) method.

Let N = U ∑ VT ∈ Rm×n be the SVD of N and partition U, ∑ =: diag(σ1, σ2, σ3, . . . , σ20), and V
as follows:

U =:
[

U1 U2

]
, ∑ =:

[
∑1 0
0 ∑2

]
, and V =:

[
V1 V2

]
(4)

where ∑1 is a square array of r. U1 and V1 represent different matrices, and their sizes are m × r and
n × r. The rank-r matrix can then be gained as follows:

N̂∗ = U1 ∑1 V1
T (5)

where ‖N − N̂∗‖F = min
rank(N̂)≤r

‖N − N̂‖F =
√

σ2
r+1 + σ2

r+2 + . . . + σ2
m.

The Σ1
1/2, with dimensions r-by-r, can be obtained by computing the square root of the reduced

matrix Σ1, in which the sequence order information of the protein is contained. It is noteworthy that
the feature matrix N of the protein may have a different number of columns, which is caused by the
unequal lengths of protein sequences. However, the U1Σ1

1/2 is a fixed length (a 20 × r matrix).
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We form a vector from the gained matrix U1Σ1
1/2 by concatenating all of the rows, from row

1 to 20, of matrix U1Σ1
1/2. Therefore, the feature descriptor consists of a total of 20 × r descriptor

values. Considering the trade-off between the cost of computing for extracting the protein feature and
the overall prediction accuracy, the optimal rank is 5. We connect the descriptors of the two protein
sequences to represent an interaction pair.

3.4. Properties of the Proposed Algorithm

Based on orthogonal triangular decomposition theory and LRA theory, the properties of the PSSM
feature extraction algorithm are deduced.

Lemma 1. Suppose that matrix N̂∗ in (5) satisfies (3). For the Frobenius norm, if r ≤ rank(N), then N̂∗ is
unique if and only if N’s rth and (r + 1)th largest singular values differ.

Proof. N̂∗ is a solution to
N̂∗ := argmin

M̂
‖N − N̂‖F (6)

s.t.rank(N̂) ≤ r.

and N̂∗ := U∗ ∑∗ (V∗)T is an SVD of N̂∗. Based on the single invariance of the Frobenius norm,
we have

‖N − N̂∗‖F = ‖(U∗)T(N − N̂∗)V∗‖F= ‖(U
∗)T NV∗ −∑∗‖F (7)

where (U∗)T NV∗ = N̂. Partition

N̂ =

[
N̂11 N̂12

N̂21 N̂22

]
(8)

conformably with ∑∗ =

[
∑∗ 1 0

0 0

]
and observe that

rank

([
∑∗ 1 N̂12

0 0

])
≤ mandN̂12 6= 0⇒ ‖N̂ −

[
∑∗ 1 N̂12

0 0

]
‖

F

< ‖N̂ −
[

∑∗ 1 0
0 0

]
‖

F

(9)

Thus, N̂12 = 0. Similarly, N̂21 = 0. Observe also that

rank

([
N̂11 0

0 0

])
≤ mand N̂11 6= ∑

1

∗ ⇒ ‖N̂ −
[

N̂11 0
0 0

]
‖

F

< ‖N̂ −
[

∑∗ 1 0
0 0

]
‖

F

(10)

Thus, N̂11 = ∑∗1 . Therefore,

N̂ =

[
∑∗ 1 0

0 N̂22

]
(11)

Let N̂22 = U22 ∑22 V22
T be the SVD of N̂22. Then the matrix[

I 0
0 U22

T

]
N̂

[
I 0
0 V22

]
=

[
∑∗1 0
0 ∑22

]
(12)

has the optimal rank-m approximation ∑∗ =

[
∑∗1 0
0 0

]
, such that

min(diag(∑∗
1)) > max(diag(∑22)) (13)

Therefore,
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N = U∗
[

I 0
0 U22

][
∑∗1 0
0 ∑22

][
I 0
0 V22

T

]
(V∗)T is an SVD of N.

Thus, if σm > σm+1, the rank-m truncated SVD

N̂∗ = U∗
[

∑∗1 0
0 ∑22

]
(V∗)T = U∗

[
I 0
0 U22

][
∑∗1 0
0 0

][
I 0
0 V22

T

]
(V∗)T (14)

is unique and N̂∗ is the unique solution of LRA. �

The salient feature of Lemma 1 is that, although the rank constraint is highly non-convex and
non-linear, one is still able to efficiently solve (2) using the SVD method. Additionally, under all of the
consistent rules, there is an optimal solution under the Frobenius norm.

3.5. Relevance Vector Machine (RVM) Model

The RVM model is a probabilistic model under a Bayesian framework, developed by
Tipping et al. [32,33,42]. It has been widely applied for solving classification and regression problems.
Assuming that the training datasets are (xn,yn)n=1

N for binary classification problems, xn ∈ Rd is the
training sample; tn ∈ (0, 1) denotes the label of the training dataset; ti is the label of the testing dataset;
ti = bi + εi, where bi = wT ϕ(xi) = ∑N

j=1 wjK
(
xi, xj

)
+ w0, is the classification model; and εi is the

additional noise, with a variance of σ2 and a mean value of zero, where εi ∼ N
(
0, σ2), yi ∼ N

(
bi, σ2).

The training datasets are assumed to be independent and distributed identically. The observation of vector
t follows the distribution as follows:

m
(

y
∣∣∣x, c, σ2

)
=
(

2πσ2
)−N/2

exp[− 1
2σ2 ||y− ∂c||2] (15)

where ∂ meets the following definition:

∂ =

 1 k(x1, x1) · · · k(x1, xN))

. . . . . . . . .
1 k(xN , x1) . . . k(x, xN)

 (16)

The method used by the RVMs to predict the label t * of a test sample is given by:

m(y∗|y) =
∫

p
(

y∗
∣∣∣c, σ2

)
p(c, σ2

∣∣∣y)dwdσ2 (17)

In order to reduce the computational complexity of the kernel function and ensure that the
majority of the weight vector has a value of zero, the weight vector w is limited by extra conditions.
Assuming that ci ∼ N

(
0, x−1

i

)
, p(w|x) = ∏N

i=0 p(ci|xi), where x is a hyper-parameters vector.

m(t∗|t) =
∫

p
(

t∗
∣∣∣w, x, σ2

)
p(c, x, σ2

∣∣∣t)dwdadσ2 (18)

m
(

t∗
∣∣∣c, x, σ2

)
= N

(
t∗
∣∣∣b(a∗; c), σ2) (19)

We get p
(
c, x, σ2

∣∣t) using the Bayesian formula

m
(

c, x, σ2
∣∣∣t) = p(x, σ2

∣∣∣t)p
(

x
∣∣∣x, σ2, t

)
(20)

m
(

c
∣∣∣x, σ2, t

)
= p

(
t
∣∣∣c, σ2

)
p(c|x)/p

(
t
∣∣∣x, σ2

)
(21)
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The integral of the product of p(t
∣∣x, σ2) and p(c|x) is given by

m
(

t
∣∣∣x, σ2

)
= (2π)−N/2|Ω|−1/2 exp

(
− tTΩ−1t

2

)
(22)

Ω = σ2 I + ∂A−1∂T , A = diag(x0,x1, . . . , xN) (23)

m
(

c
∣∣∣x, σ2, t

)
= (2π)−(N+1)/2|Σ|−1/2 exp

(
− (c− u)T(c− u)

2

)
(24)

Σ = (σ−2∂T∂ + A)
−1

(25)

u = σ−2Σ∂Tt (26)

The maximum likelihood method was used to solve m(x, σ2
∣∣t )∝ m

(
t
∣∣x, σ2)m(x)m

(
σ2) and

m(x, σ2
∣∣t ), and is represented by (

xMP, σ2
MP

)
= arg

x,σ2
maxp(t|x, σ2) (27)

The iterative process of xMP and σ2
MP is as follows:

xnew
i = γi

µ2
i

(σ2)
new

= ||t−∂µ||2

N−∑N
i=0 µi

γi = 1− xi ∑ i, i

(28)

where ∑ i, i represents the ith element on the diagonal of Σ, and the initial value of a and σ2 are
determined via the approximation of aMP and σ2

MP, by continuously using Formula (19).

3.6. Procedure of the Proposed Method

In the study, the workflow of the PCLPred method is presented in Figure 2. More specifically,
the protein amino acids sequence datasets are downloaded from DIP. The CD-HIT (Cluster Database
at High Identity with Tolerance) and PSI-BLAST programs are then used to remove sequence
redundancy and generate PSSM, respectively [43]. Following this, LRA is employed to obtain the
feature representation from PSSM, which contains a large volume of valuable evolutionary knowledge
for PPI prediction. After the dimensionality reduction—using the PCA technique—the significant
features are extracted and used as input features to train the RVM classifier. Finally, the prediction
performance is evaluated using five-fold cross-validations [44–48].

Figure 2. The flow chart of the proposed method.
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3.7. Performance Evaluation

In order to evaluate the performance of the designed model, a number of validation measures
are employed.

(1) Overall prediction accuracy:

Accuracy =
TP + TN

TP + FP + TN + FN
(29)

(2) Sensitivity:

Sensitivity =
TP

TP + FN
(30)

(3) Specificity:

Speci f icity =
TN

TN + FP
(31)

(4) Positive predictive value:

PPV =
TP

TP + FP
(32)

(5) Negative predictive value:

NPV =
TN

TN + FN
(33)

(6) F-score:

Fs = 2× Sen× PPV
Sen + PPV

(34)

(7) Matthews correlation coefficient:

MCC =
TP × TN − FP × FN√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(35)

where TP is true positive, indicating that the total number of interactive proteins will be predicted
correctly; FP is false positive, indicating the total number of these proteins pairs that have no interaction,
but are determined as interacting; FN is false negative, indicating the total number of interactive
proteins that are determined as non-interacting; and TN is true negative, indicating the total number
of these proteins pairs that have no interaction that are determined correctly. Additionally, the ROC
curve is adopted as a measure that is used to evaluate the prediction performance of the different
methods [49,50].

4. Conclusions

In this study, we proposed a novel computation-based automated decision-making method by
employing the RVM model combined with the LRA method and PSSM. More specifically, LRA is
employed to obtain the feature representation from PSSM, which contains a large volume of valuable
evolutionary knowledge for PPI prediction. The RVM classifier is then applied to predict novel PPIs.
Extensive computational experiments are performed on several PPI datasets in order to evaluate the
PPI identification ability of the developed approach. These experimental results have proven that the
PPI identification ability of this approach is clearly stronger than that of the SVM-based method and
several other existing approaches. The promising results demonstrate that the proposed method is
an efficient and reliable approach to detecting PPIs. It is also a practical tool that will help to advance
research in the field of bioinformatics.
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